On a Kuramoto-Velarde type equation

Authors

  • G.M. Coclite Politecnico di Bari, Italy 
  • L. di Ruvo Universita di Bari, Italy

DOI:

https://doi.org/10.31926/but.mif.2024.4.66.2.7

Keywords:

existence, uniqueness, stability, Kuramoto-Velarde-type equation, Cauchy problem

Abstract

Kuramoto-Velarde-type equations describe the evolution of the spinodal decomposition of phase-separating systems in an external field, or, the spatiotemporal evolution of the morphology of steps on crystal surfaces. Under appropriate assumptions on the initial data, on the time T, and on the coefficients of such equation, we prove the well-posedness of the classical solutions for the Cauchy problem, associated with this equation.

Author Biographies

G.M. Coclite, Politecnico di Bari, Italy 

Dipartimento di Meccanica, Matematica e Management

L. di Ruvo, Universita di Bari, Italy

Dipartimento di Matematica

Downloads

Published

2024-09-03

Issue

Section

MATHEMATICS