q-Deformed and λ-parametrized A-generalized logistic function based Banach space valued ordinary and fractional neural network approximation

Authors

  • George A. Anastassiou University of Memphis, U.S.A.

DOI:

https://doi.org/10.31926/but.mif.2023.3.65.2.4

Keywords:

q-deformed and λ-parametrized A-generalized logistic function, Banach space valued neural network approximation, Banach space valued quasi-interpolation operator, modulus of continuity, Banach space valued Caputo fractional derivative, Banach space valued fractional approximation

Abstract

Here we research the univariate quantitative approximation, ordinary and fractional, of Banach space valued continuous functions on a compact interval or all the real line by quasi-interpolation Banach space valued neural network operators. These approximations are derived by establishing Jackson type inequalities involving the modulus of continuity of the engaged function or its Banach space valued high order derivative of fractional derivatives. Our operators are defined by using a density function generated by a q-deformed and λ-parametrized A-generalized logistic function, which is a sigmoid function. The approximations are pointwise and of the uniform norm. The related Banach space valued feed-forward neural networks are with one hidden layer.

Author Biography

George A. Anastassiou, University of Memphis, U.S.A.

Department of Mathematical Sciences,  Memphis, TN 38152

Downloads

Published

2023-12-18

Issue

Section

MATHEMATICS