Equivalence of K-functional and modulus of smoothness constructed by Fourier-Bessel transform in the space L2,γ(ℝn+)

Authors

  • M. El Hamma Universite Hassan II, Casablanca, Maroc
  • A. Mahfoud Universite Hassan II, Casablanca, Maroc

DOI:

https://doi.org/10.31926/but.mif.2022.2.64.2.6

Keywords:

Laplace-Bessel differential operator, generalized shift operator, K-functional, modulus of smoothness

Abstract

Using a generalized shift operator, we define generalized modulus of smothness in the space L2,γ(ℝn+). Based on the Laplace-Bessel differential operator we define Sobolev-type space and K-functionals. In this paper paper we prove the equivalence theorem for a K-functional and a modulus of smoothness for the Fourier-Bessel transformation on ℝn+.

Author Biographies

M. El Hamma, Universite Hassan II, Casablanca, Maroc

Laboratoire Mathematiques Fondamentales et Appliques, Faculte des Sciences Ain Chock, B.P 5366 Maarif

A. Mahfoud, Universite Hassan II, Casablanca, Maroc

Laboratoire Mathematiques Fondamentales et Appliques, Faculte des Sciences Ain Chock, B.P 5366 Maarif

Downloads

Published

2022-12-29

Issue

Section

MATHEMATICS