A generalization of Kantorovich operators and a shapepreserving property of Bernstein operators

Authors

  • Radu Paltanea Transilvania University of Brasov, Romania

Keywords:

Kantorovich type operators, Bernstein operators, shape-preserving property

Abstract

We construct a generalization of the Kantorovich operators, depending on a parameter b ≥ 0 and we prove that if a function f C1[0, 1] with f (0) = 0, satisfies the differential inequality f ' + b ≥ 0, then functions Bn(), n\mathbb{N} satisfy the same inequality, where Bn is the Bernstein operator.

Author Biography

Radu Paltanea, Transilvania University of Brasov, Romania

Faculty of Mathematics and Informatics, Iuliu Maniu 50, Brasov 500091

Downloads

Published

2013-01-17

Issue

Section

MATHEMATICS