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Abstract: As a composer and theorist, Iannis Xenakis has raised the level and quality of 

mathematics involved in music to unprecedented heights. He inspired generations of 

composers and also stimulated research and development in the theory of music. The 

present paper explores how influential some of his ideas have proved to be in numerous 

domains. 
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1. Introduction 

 

Iannis Xenakis definitely changed the importance of mathematics in music. He 

proved unafraid to raise the level of the former to unprecedented heights that 

could be unreachable for most listeners. However, the mathematical structure 

behind his works had perceptible evidence and vindicated its utilisation. The author 

of this paper remembers vividly the life-changing experience of Polytopes in the 

musée de Cluny, Paris, in 1972, where mysteriously the interplay of lights and notes 

exhibited a coherence that cried out to be elucidated.  

While the concept of 'outside-time structure' can be viewed as a 

generalisation of previous notions, such as scales or tonalities, Xenakis used it in a 

conceptual revolution wherein set of pitches (for instance) are operated upon by 

algebraic operations, and the actual musical composition draws notes at random in 

the resulting sets. This paper explores four similarly ground-breaking ways of 

thinking, selected for the durable influence on both composition and theory: 

sieves, iterations, geometrical spaces, and stochastic processes. 
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2.   Sieves: punching holes 

 

It was traditional in music theory to build material mostly by adding new elements: 

starting from a pitch and adding its octaves, then its fifths for instance; or glueing 

together tetrachords to build scales, maqams, srutis, etc. Xenakis reverses the 

perspective as he preserves some notes in the original, regular infinite sequence 

while suppressing the others. This process he called sieving. 

 

2.1. Historical example: the sieve of Eratosthenes 

 

This most ancient algorithm, well known to Xenakis, produces the list of primes by 

removing successively all composite integers. From the complete list of all integers 

larger than 1 (up to some range), 2 3 4 5 6 7 8 9 10… 

• select 2 and scratch out all its multiples: 4, 6, 8… 

• go to the next integer, 3, and remove all its multiples: 9, 15, 21… (the other 

ones have been scratched already) 

• carry on (the next remaining integer is 5, etc). 

When the end on the list is reached, all remaining numbers are prime. This simple 

process is still in use for producing tables of “small” primes. We will see below 

some of its musical inheritance. 

 

2.2. Sieving in Xenakis compositions 

 

The set-theoretic operations used on lists of integers, representing pitches or 

onsets for instance, are union, intersection, complementation, symmetrical 

difference. Not all remove elements, but Xenakis usually insisted on this dynamic. 

For instance in Herma
2
 for piano solo (1962), he works on three sets of integers A, 

B, C generated by some prime multiples, plus the set R of all integers for purposes 

of complementation (see [Montague 1995]). Clearly there is here an aspiration to 

the beautiful abstraction of the boolean algebra of sets, but no less clearly (from 

Xenakis's own theoretical texts) the aesthetics move towards the rarefaction of 

available material, from the indiscriminate totality of R to the meaningfulness of, 

say, A ∆ B (the subsets of elements of either A or B but not both), which can be 

prolonged in-time either by A or by B or their complements. I will refrain from 

listing all manifestations of these techniques, which has been done in numerous 
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papers, and instead mention subsequent works that seem to inherit this 

philosophy. 

 

2.3. Classical notions reinterpreted as sieving 

 

Run of the mill notions such as periodic rhythms or ordinary musical scales can be 

presented in many different ways. I argue that looking at them as sieves — 

removing elements rather than adding new ones — is an important trend in 

contemporary theory and composition. For instance, although a diatonic scale can 

be described as a specific sequence of semitones and tones 2212221, starting from 

the tonic, the generation as a truncated chain of fifths (say F C G D A E B for C 

major) has gained influence, and is a specific instance of the more general notion of 

Maximally Even Set, developed by Jack Douthett [Clough anduthett 1990] with 

several different co-authors. The simplest way to create all ME sets of d notes in a c 

element cyclic universe uses the almost arithmetic sequence of values
3 

 

which truncates the last terms of the sequence (from k=d to c). For (c, d)=(12, 7) 

one finds all diatonic scales, changing d to 5 would yield their complements, the 

pentatonic scales; for c = 8 and d = 3 or 5 one finds the ubiquitous tresillo and 

cinquillo rhythms, etc. (The complement of a ME set is always a ME set.) 

Yet another process for generating (some) ME sets, even more reminiscent 

of Eratosthenes, generalizes the sequence of fifths for the diatonic, by iterating the 

interval f defined as the multiplicative inverse of d modulo c and truncating the 

sequence to d elements. For instance in the diatonic case, f is equal to 7 like d, 

since 

 

Although this definition is equivalent to the previous one, it involves more 

advanced maths, i.e. group theory. Identifying ME sets and comparing other sets to 

them has become a mainstay of XXIst century music theory, they being involved in 

Gottfried Toussaint's Euclidean Rhythms (Gomez-Martín 2009) as well as measuring 

the octatonicity of slavic music at the turn of XIXth century (Amiot 2017). 

 

                                                
3  
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2.4. Rhythmic canons 

 

Another innocent musical object has been involved in formidable mathematical 

problems and conjectures. Although as far as I know Xenakis did not write any, 

rhythmic canons are definitely instances of his philosophy: the outside-time 

structure is an algebraic equation between discrete sets: 

 

 

which means in musical terms that the motif A, copied at different offsets listed in 

B, fills in the time line exactly: A corresponds precisely to what it carves out. The 

following instance is a very short example (actually a birthday card) of a rhythmic 

canon composed by Georges Bloch. 

Fig. 1. A birthday card rhythmic canon 

 

Measuring in sixteenth notes and beginning with 0, motif A is simply 0 4 5 9 (see 

bass voice in first bar). It is offset 4 times, respectively by 0, 6, 8 and 14 which 

together constitute B. Each version is repeated indefinitely every 16 notes (e.g. A+8 

gives 8 12 13 1 since 9+8 = 1 modulo 16, cf. the middle upper voice in the repeated 

bar). 

Apparently simple queries, such as determining all possible canons (for a 

given length) or even testing easily whether a given motif A can produce a canon, 

are still open questions and raise many deep conjectures. The study of rhythmic 

canons originates in the huge solo work of D.T. Vuza [Vuza 1991-93], who 

rediscovered a bevy of results of commutative algebra originating in a conjecture 

stated by Hajòs in 1948. It is one of these areas where musical ideas enabled 

progress in so-called 'pure' mathematics, see [Amiot 2011]. One disproved 

conjecture stated that in a canon, either A or B should be a palindrom, just as the 

motives in the next example which raises the level of maths in the inheritance of 

Xenakis to dizzying heights. 
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2.4. From Eratosthenes to Riemann's hypothesis 

 

Perhaps the greatest unsolved mathematical conjecture is the Riemann hypothesis, 

which states that all roots of the ζ function lie on a given line in the complex plane 

(Re z = 1/2). Whereas the metaphor of considering these roots as musical pitches 

has been advanced, Field medalist Alain Connes [Connes 2021] went further and 

discovered interesting discrete rhythmic structures in complicated mathematical 

objects which (typically) generalize the unsolved problem. To quote him, 

To a hyperelliptic curve of genus g corresponds for each prime number p not 

dividing the discriminant a collection of 2g time onsets with profound 

mathematical meaning which repeat in a periodic manner with a frequency 

log p.  

 

More practically, lists of such onsets appear on the next figure. 

 

Fig. 2. Rhythms obtained from hyperelliptic curves on finite fields 

 

These palindromic motives are parametrized by prime numbers, neatly tying the 

loop of this section with Eratosthene's sieve, which Connes used in a choreography 

putting in-time the above rhythms as can be seen following this link: 
https://www.dropbox.com/s/ld1z64em5u3mxjx/fullvideo.mp4?dl=0 
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3. Iterations 

 

Eratosthene's sieve is actually an algorithm: the same procedure is applied again 

and again until the final result is obtained. The spirit of exhausting the initial 

material is frequent in Xenakis practice — keeping in line with the example of 

Herma, he computed the total number of sets that could be obtained from A, B, C, 

and R with boolean operations. The essence of this systematic mind
4
 (which in 

itself inspired combinatorial composers) appears to be the process of iteration, 

which was used in a very abstract context in the composition of Nomos Alpha for 

solo Cello. The operation which is repeated again and again is the composition of 

the two last elements obtained. In a simpler context, this is the definition of the 

Fibonacci sequence: 

 

1, 1, 1+1=2, 2+1=3, 3+2=5, 5+3=8, … 

 

although Xenakis did it not with numbers but with much more complicated objects, 

the rotations of a cube (perhaps inspired by his architectural persona), which lie in 

a mathematical structure called a group. This group has 24 elements, which means 

that any Fibonacci-like sequence
5
 must repeat itself since there is a limited, finite 

number of a possible consecutive pair: 

 

… a b [b.a (b.a).b …   …] a b [b.a … ] a b [ … ]  

 

When one pair a b is found again, as it must, the sequence will repeat itself exactly 

from this point, and indefinitely. There is, or was, no general study of such 

sequences in a group, but Xenakis found and used only maximal cases, which 

happen to loop after 18 iterations and involve 13 distinct elements out of 24 

[Andreatta 2012]. In the talk, instead of the actual moves on the cube drawn by 

Xenakis (not unlike Rubik's cube! See [Mannone 2022] for a recent musical 

application), I showed the sequence of rotations using their 3x3 matrixes, alluding 

to the Markovian processes evoked in the last section. Xenakis himself used 

pictures of the rotating cube, pinpointing the permutations of its vertices which 

were the actual musical cells to be played by the cellist. 

 

                                                
4
  “J’ai pu aller plus loin dans la compréhension interne de la musique, mais aussi dans sa pratique, en 

recherchant toutes les possibilités mathématiques des combinaisons sonores que j’inventais”, in Le 

fait culturel, 1980. I stressed “looking for every mathematical possibility”. 
5
  Indeed any recursive sequence, defined by applying the same operation on instances of the 

sequence. 
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3.1. Vieru sequences 

 

Slightly later, Anatol Vieru also raised the ante by using iterations in a highly 

abstract context. Considering sequences of integers modulo some number (usually 

pitch-classes, modulo 12), he iterated the shift and difference operators. For 

instance, starting with the sequence {2, 3, 5, 7}, its right shift is {3, 5, 7, 2} and the 

difference is {3, 5, 7, 2} - {2, 3, 5, 7} = {1, 2, 2, 7} (computing modulo 12). Applying 

the same operation to the result, we find {1, 0, 5, 6}. After a few rounds we reach 

{8, 0, 4, 0}, and this initiates a periodic sequence with period 8. 

Vieru used this technique to produce numerous twelve-tone rows as 

compositional material. It can be compared with the séries proliférantes previously 

used by Jean Barraqué (for instance in his Sonate) who composed a row with itself 

considering it as a permutation of 12 elements. But Vieru's sequences can be much 

longer.
6
 As he had noticed, the behavior exemplified above is general [Andreatta 

2004]: after some time, the sequence gets periodic (for reasons similar to the 

preceding case). This is well known in general algebra:
7
 iteration of any linear 

process can be decomposed as a nilpotent part, which annihilates the transitory 

element of the initial signal after a finite number of iterations, and a permutational 

part, which rotates the periodic component of the signal in the finite case. 

 

3.2. Johnson's autosimilar melodies 

 

A last example of extracting a significant structure by iteration is provided by Tom 

Johnson's autosimilar melodies, such as the one in Figure 3.  

 

Fig. 3. Extracting one note out of five yields the same melody 

 

                                                
6
  (3, 2, 0, 6, 7, 1, 1) has period 22,568 modulo 15. A série proliférante cannot produce more than 60 

tone rows. 
7
  The most general statement is known as Fitting Lemma, see any textbook on commutative algebra. 
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Such a melody can be defined as self-invariant under a sieving operation.
8
 As 

mentioned in [Amiot 2008], they also appear as fixed points of the iteration of such 

an extraction applied to just any initial periodic melody. 

Systematically and even doggedly repeating the same computation allows 

structure and meaning to emerge from chaos, just like the sculptor chipping at a 

raw stone eventually produces his chef d'œuvre. 

 

 

4. Geometrical spaces in music  

 

The philosophy of stating an outside-time structure, or more generally a space of 

possible states/possibilities, can be related to geometry: instead of focusing on 

points (notes), the composer adopts a larger perspective, considering their sets, 

and their properties and relations, just as Euclide would consider triangles, circles, 

squares and how they intersect. This was of course reflected in the building and use 

of the UPIC machine, whose graphical user interface was ahead of time — consider 

that computer mouses were only produced by Apple in 1986 — perhaps because it 

was inspired by musical thinking, not desktop productivity. It is illuminating to 

compare with the X4, developed contemporarily in IRCAM, which was much more 

focused on sound events and generation than on geometric thinking. 

There is no doubt that the modern spirit of defining musical spaces (vector 

spaces, modules, cyclic groups) and singling out meaningful subspaces and their 

interactions, or operations on them, is inspired by Xenakis (see Figure 4 for an 

ordinary example taken from a pre-graduate class). This philosophy permeates all 

modern music theory, including all of the American school, with Babbitt, Forte, 

Lewin, Morris, Rahn [Rahn 1980], developing the deceivingly dubbed “Set Theory” 

which is more about groups of operations on pitch-class sets or rhythms
9
; there is 

also a revival of graph theory with Euler's Tonnetz [Cohn] and generalizations to 

other tonnetze [Bigo 2013] or to similar torii [Amiot 2013]; much tougher 

mathematics involve homology and topological algebra with Mazzola and his Topos 

[Mazzola 2018], gestures and hypergestures [Mazzola 2020], and the quotient 

homogeneous spaces like Callender, Quinn and Tymoczko's orbifolds [Callender 

2007] which model sets of pitches modulo diverse groups of operations like parts 

of continuous vector spaces twisted and folded. 

 

                                                
8
  Johnson called them selfsimilar. Historical examples abound, and can be found for instance in 

Scarlatti, Beethoven, Glen Miller… 
9
  Including the group T/I of transpositions and inversions, and the permutation group. 
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Fig. 4. The 7 C major triads form a Möbius strip on the torus of thirds. 

 

 

5. Stochastic processes  

 

After defining an outer-time structure by set operations, Xenakis often chose 

elements in it with a random process. I will stress the essential differences between 

this computerized process, where non-homogeneous distributions are used and 

modelized, and John Cage's use of Yi King sticks in Numbers and numerous other 

pieces, with uniform law (any result is just as good as any other) and human, by-hand 

sampling. In the former case, there is a thoughtful structuration of the material and 

extraction process. In the latter, Tout est art, meaning anything goes. Perhaps even 

worse were the Minuets and Waltzes obtainable at the throw of a pair of dice and 

composed by Mozart or Haydn, which were intended as pleasantries. 

Producing stochastic music was very much en vogue in the 70's and 80's and 

has perhaps lost momentum afterwards. However, the idea that mere chance was 

capable of modeling meaningful structures has pervaded our culture to an 

unpredictable level. For instance, Xenakis explicitly used the principle of a 

Markovian process, wherein the same transition probability matrix
10

 is applied 

repetitively — another nice example of iteration. With greatly improved capacities 

in data mining, our century has developed inverse Markovian analysis, where the 

probability matrix is inferred from the data (in music, see for instance [Shapiro 

                                                
10

  It is called a stochastic matrix. In the example on Fig. 4, the entries take values 0, 1 or ½. 
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2021] with references). This is how our mobile phones predict the text we are 

typing, or, more relevant to music, a way to check for authentication of works of 

art, and (allegedly) how pop hits are written. I include an example derived from Big 

Ben's chime of a Markovian automaton and its transition probabilities. It is 

caricatural but when it was first implemented in 1984 it was very much inspired by 

Xenakis's spirit. The arrows and figures mean that, for instance on reaching A there 

is an equal chance that the next note will be B or D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Example of a Markovian process. 

 

These probabilities provide a good chance (3%) to recreate the original chimes, 

together with any number of variants. 

 

 

6. Conclusion 

 

Xenakis dared to give mathematics an explicit and prominent place in his musical 

creation — true mathematics, not Kindergarten stuff. We have perhaps forgotten 

how shocking it appeared at the time. But the musical world was henceforth 

changed forever, with consequences that Xenakis could not have foreseen: 

although some of the concepts that he made use of may seem outdated nowadays, 

even more abstract and cutting-edge mathematics tools are used in music as a 

matter of course, and shape our vision of how music is made and perceived. The 

creation of the thriving Society for Mathematics and Computation in Music in 2007 

testifies to that. 
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