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Abstract: Metformin, widely used for T2D, is increasingly explored for off-
label use in both endocrine and non-endocrine conditions, showing promise 
for improving patient outcomes. In polycystic ovary syndrome, metformin 
has demonstrated efficacy in lowering anti-Müllerian hormone levels and 
improving hormonal and metabolic parameters, though its role in managing 
hirsutism, especially in adolescents, remains uncertain. In gestational 
diabetes mellitus, metformin effectively reduces maternal weight gain, 
lowers the risk of preeclampsia, neonatal hypoglycemia, and macrosomia, 
and improves glycemic control without affecting fetal neurodevelopment. 
Beyond endocrine disorders, metformin's broader applications are under 
investigation. Although early observational studies suggested that 
metformin reduces cancer risk in diabetics, subsequent analyses revealed 
significant biases, and randomized clinical trials found no anticancer benefit. 
This highlights the need for caution when interpreting observational data 
and the importance of robust randomized trials to assess metformin's true 
impact on cancer outcomes. In cardiovascular diseases, metformin shows 
promise in reducing mortality and adverse cardiovascular events. Research 
also suggests metformin's potential to protect against diabetic kidney 
disease and neurodegenerative conditions such as Alzheimer's and 
Parkinson's diseases. However, additional studies are needed to better 
understand and enhance metformin's clinical effectiveness across various 
patient groups. 
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1. Introduction 
 
Metformin acts as an oral 

antihyperglycemic medication, success-
sfully lowering both fasting and after-meal 
blood sugar levels in people with type 2 

diabetes (T2D). Metformin exerts its anti-
diabetic effects primarily by inhibiting 
hepatic gluconeogenesis, thereby 
lowering blood glucose levels and 
impacting lipid metabolism in the liver [1]. 
Metformin has many effects, including 
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reducing free fatty acid levels, increasing 
insulin-stimulated systemic glucose 
clearance (particularly in skeletal muscle), 
inhibiting lipid synthesis, and stimulating 
fatty acid oxidation [2–4]. Besides 
peripheral glucose elimination, metformin 
affects extra-hepatic locations, with gut 
studies underway [3]. Intestinal processes, 
including duodenal AMPK pathway 
modulation of GLP-1 levels and alterations 
in gut microbiota composition, enhance 
metformin's anti-hyperglycemic effects 
[4–6].  

Metformin possesses neuroprotective 
qualities and may provide therapeutic 
advantages for mild cognitive impairment 
and Alzheimer's disease (AD), while also 
enhancing cognitive function and 
decreasing the occurrence of dementia 
[7–10]. Moreover, it has been associated 
with advantageous outcomes in 
cardiovascular ailments. The 20-year 
UKPDS found that type 2 diabetics used 
metformin more, highlighting its 
cardiovascular advantages [11]. Research 
has shown that taking metformin orally 
every day can improve kidney fibrosis and 
restore normal kidney structure and 
function, suggesting potential advantages 
for renal health.  
 
2. Metformin Pharmacology 
 

Metformin's anti-diabetic effects occur 
mainly in the liver, where it improves 
glucose and lipid metabolism [1]. 
Metformin improves glucose metabolism 
by preventing gluconeogenesis and 
enhances insulin-stimulated glucose 
clearance in skeletal muscle [2,12,13]. 
Metformin does this via activating AMPK, 
a glucose and lipid metabolism regulator. 
AMPK activation suppresses hepatic 
gluconeogenesis and increases insulin 

sensitivity, muscular glucose uptake, and 
fatty acid oxidation [5,14].  It controls GLP-
1 levels via the duodenal AMPK pathway, 
which contributes to its anti-
hyperglycemic actions [2,4,5]. AMPK 
inhibitory phosphorylation inhibits PEPCK 
and G6Pase, two essential enzymes in 
gluconeogenesis, reducing glucose 
synthesis [14,15]. 

Whether AMPK activation is AMP-
dependent or AMP-independent depends 
on metformin concentration and target 
organelles like mitochondria or lysosomes 
[15,16]. Metformin affects glucose 
metabolism via both AMP-dependent and 
AMP-independent activation pathways; 
the former is defined by a low energy 
state with higher AMP to ATP ratios [6].  

Metformin also inhibits mitochondrial 
respiratory chain complex I, regulating cell 
energy metabolism [6,15]. This inhibition 
reduces ATP synthesis, increases AMP, 
and alters cellular redox potential [17]. 
Thus, suppressing ATP-dependent 
activities and altering the cytosolic redox 
state reduces glucose synthesis from 
gluconeogenic substrates [18]. 

Metformin reduces mitochondrial 
glycerol phosphate dehydrogenase 
activity, disrupting the glycerophosphate 
shuttle. This disruption affects hepatic 
glucose synthesis by changing the ratio of 
cytosolic NADH to NAD+ and decreasing 
mitochondrial NAD+ renewal [18–20]. 

Metformin activates AMP-kappa B, 
inhibits mitochondrial complex I, and 
alters cytosolic redox state and 
glycerophosphate shuttle activity to 
increase glucose metabolism and reduce 
hepatic gluconeogenesis [6]. Metformin's 
effects on complex biological systems and 
therapeutic efficacy vary, making it 
difficult to completely explain. 
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3. Potential mechanisms underlying 
metformin's beneficial effects beyond 
its primary indication 

 
It is at the prescribing doctor's discretion 

to decide if the off-label use of a 
medication constitutes a medical error, 
typically ensuring such usage remains 
controlled, except when it strays from 
approved indications [21]. Furthermore, if 
two disorders have comparable clinical or 
physiological features, a physician may 
choose to use a medicine that has been 
licensed for one of these conditions to 
treat both [22].  
 
3.1. Polycystic ovary syndrome 
 

Polycystic ovarian syndrome (PCOS) is a 
common metabolic disorder in 
reproductive-aged women. 
Hyperinsulinemia, insulin resistance, and 
hypothalamic-pituitary-ovarian 
abnormalities cause androgen excess. 
Hyperandrogenism, ovulatory dysfunction, 
and polycystic ovarian morphology are the 
Rotterdam Criteria's three diagnostic 
criteria [23–25]. Metabolic problems 
during pregnancy, obesity, diabetes, heart 
disease, and sleep apnea are all more 
common in PCOS patients [26–28]. 

The 2018 International Evidence-based 
Guidelines on PCOS recommend using 
metformin in addition to lifestyle 
management to address weight, hormone, 
and metabolic consequences [24,29]. 
Although the primary focus was on 
preventing weight gain, its efficacy for 
weight loss is acknowledged to be limited 
[30–32]. Given the major concern of 
weight gain in PCOS patients, there is an 
immediate need for alternative 
pharmaceutical treatments to aid in 
weight reduction. 

When comparing the efficacy of 
metformin and oral contraceptive pills 
(OCP) in reducing excessive facial and 
body hair in adult women with PCOS, 
metformin may have a lower impact for 
women with a body mass index (BMI) 
ranging from 25 to 30 kg/m2, and its 
efficacy is unclear for those with a BMI 
lower than 25 or higher than 30 kg/m2 
[29]. Metformin is more likely to cause 
gastrointestinal side effects (such as 
nausea, vomiting, and diarrhea) compared 
to OCP, but other side effects are less 
common. Combining metformin with OCP 
may be more effective than either alone 
for improving excessive hair growth, 
although the difference in severe adverse 
events remains uncertain [33]. There is 
limited high-quality information on the 
efficacy and safety of metformin 
compared to OCP or both in the treatment 
of hirsutism in teenagers [34]. 

A 2020 Cochrane meta-analysis 
compared metformin to placebo or no 
therapy in PCOS patients before or during 
in vitro fertilization or intracytoplasmic 
sperm injection [35]. Metformin did not 
increase live birth rates, according to the 
analysis. Metformin may reduce live birth 
rates when used with a short-protocol 
GnRH-antagonist but not with a long-
protocol [35]. For long-term GnRH-
agonists, metformin increases clinical 
pregnancy rates, but for short-term GnRH-
antagonists, it is unknown. Metformin can 
reduce ovarian hyperstimulation 
syndrome but may increase side effects. 
Uncertain impact on miscarriage 
frequency [35]. 
 
3.2. Gestational diabetes 
 

Diabetes – pregestational and 
gestational – is the most common 
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antenatal complication [36]. The US has 
seen an abrupt increase in gestational 
diabetes [37,38]. About 1–2% of pregnant 
women have pre-existing diabetes, and      
1–14% have GDM [39]. Diabetes during 
pregnancy increases the risk of gestational 
hypertension, preeclampsia, and 
hypoglycemia, which can lead to T2D [40]. 
They also have a higher risk of cesarean 
section and premature delivery. Diabetes 
during pregnancy can cause macrosomia, 
tiny newborns, hypoxia, hypoglycemia, 
congenital malformations, prematurity, 
preterm delivery, and neonatal respiratory 
distress [41]. Women with T2D planning to 
become pregnant are recommended to 
take insulin and metformin, as the effects 
of other anti-diabetic medications on 
embryogenesis are unknown [38]. It has 
not been shown that prenatal exposure to 
metformin negatively impacts brain 
development in children up to the age of 
fourteen [42]. 

Randomized controlled trials have 
shown metformin's efficacy in overweight 
pregnant women varies. Ethnicity, median 
BMI, and metformin dose may affect 
study results. Metformin reduced weekly 
average gestational weight increase in 
obese women with a median BMI of 32.3 
kg/m² against placebo in the GROW trial, 
but macrosomia rates did not change [43]. 
The metformin and placebo groups had 
similar maternal weight increases, 
newborn weights, and GDM risks. In 
contrast, the EMPOWAR study included 
obese women with a median BMI of 37.8 
kg/m² [44]. The MOP study found that 
metformin reduced GWG and 
preeclampsia risk in women with a median 
BMI of 38 kg/m² compared to placebo 
[45]. Two meta-analyses found that 
metformin somewhat decreased 
gestational weight growth and the risk of 

gestational diabetes [46,47].  
Metformin reduced maternal 

gestational weight gain, maternal 
hypoglycemia, neonatal hypoglycemia, 
and low birth weight better than insulin in 
a meta-analysis of 38 randomized 
controlled trials with 6086 women [48]. In 
another meta-analysis of 8038 women, 
metformin reduced preeclampsia risk 
more than other therapies. [49]. A meta-
analysis of RCTs found metformin reduced 
macrosomia, NICU hospitalizations, and 
newborn hypoglycemia compared to 
insulin [50]. In the MITy randomized 
controlled trial, pregnant women with T2D 
who received metformin or placebo had 
similar fetus and newborn outcomes. 
Metformin users had lower third trimester 
hemoglobin A1c levels, met glycemic goals 
better, needed less insulin, and had fewer 
cesarean sections [51]. 
 
3.3. Obesity 
 

Metformin induces weight loss by 
reducing insulin requirements and 
triggering gastrointestinal side effects 
such as nausea, diarrhea, and taste 
alterations [52]. Recent study reveals that 
gut flora and hypothalamic appetite 
regulatory modifications facilitate 
numerous pathways that cause this effect. 
These mechanisms may involve the gut-
brain axis [52]. 

Metformin's weight loss or primary 
therapy efficacy in non-diabetic obese 
people is unclear. The ADA advises 
metformin for high-risk individuals, such 
as those with a BMI over 35 kg/m² and 
other risk factors, based on the Diabetes 
Prevention Program's findings of impaired 
glucose tolerance (IGT) and fasting plasma 
glucose levels of 95-125 mg/dL [53]. In a 
2-year, double-blind trial, metformin 
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reduced weight, waist circumference, and 
T2D by 31% compared to placebo. These 
benefits lasted over 15 years [54]. 
According to Hostalek et al., who 
conducted extensive research and 
presented solid evidence from many 
clinical trials and clinical experience, 
metformin prevents diabetes safely and 
effectively [55].  

Literature reviews show that metformin 
may help with metabolic syndrome 
symptoms beyond obesity and prediabetes. 
Studies show that metformin alone can 
improve dyslipidemia in newly diagnosed 
T2D patients without statins [56].  
 
3.4. Anticancer properties 
 

Initial 2005 observational studies 
showed metformin reduced cancer risk in 
diabetics, spurring further research into its 
anticancer properties. [57]. Metformin 
may reduce cancer cell growth by 
affecting insulin-dependent and insulin-
independent pathways, according to lab 
studies. These pathways include AMPK 
activation, which inhibits the carcinogenic 
mTOR signaling pathway [58]. 

In observational studies before 2012, 
metformin reduced cancer incidence or 
mortality in breast, colorectal, prostate, 
liver, lung, urothelial, and bone cancers 
[59–62]. Metformin users had a 30% lower 
total cancer incidence, according to a 
meta-analysis [63]. Many observational 
studies have been criticized for biases, 
including the immortal time bias, which 
occurs when exposure is misclassified and 
artificially prolongs cancer incidence or 
death, giving the impression of a 
protective effect [64]. A cohort analysis of 
colorectal cancer incidence showed that 
metformin's preventive effect 
disappeared after correcting for immortal 

time bias [65]. Meta-analyses that 
excluded this bias found no association 
between metformin use and pancreatic 
cancer mortality. Those with this bias 
were asymmetrically protective [66]. 

After promising initial results, 
randomized clinical trials, the gold 
standard for evidence, found no 
anticancer effects of metformin [64]. 
Metformin did not increase cancer risk in 
a meta-analysis of seven randomized 
studies of T2D treatment [67]. Studies like 
the ADOPT and RECORD trials also indicated 
that metformin did not reduce cancer risk 
compared to other diabetes treatments 
[68]. A meta-analysis of nine phase 2 trials 
and other randomized studies evaluating 
metformin as an adjuvant treatment for 
different types of cancer found no 
substantial improvement in tumor 
response, progression-free survival, or 
overall survival [69]. Additionally, there was 
no statistically significant difference in 
invasive disease-free survival or death rates 
between the metformin and placebo 
groups in a big 5-year phase 3 trial included 
3,649 women with high-risk nonmetastatic 
breast cancer [70]. 

In conclusion, time-related biases, 
particularly eternal time bias, can 
overstate metformin's protective effects, 
and randomized clinical trials have 
unexpectedly failed to show significant 
benefits [66].  
 
3.5. Cardiovascular diseases 
 

Metformin shows promise in 
safeguarding against cardiovascular 
illnesses and related mortality in patients 
with a diagnosis of T2D [71]. Metformin 
modifies HDL function, decreases reactive 
oxygen species formation, and inhibits the 
synthesis of advanced glycation end 
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products, among other mechanisms, 
which may explain its possible 
cardiovascular advantages [72]. 
Metformin may affect HDL function by 
activating AMPK to maintain paraoxonase-
1 activity and prevent alpha-dicarbonyl-
induced apolipoprotein changes. This 
reduces HDL dysfunction and LDL damage 
[73,74]. 

Metformin may also help heart failure 
patients by regulating heart muscle energy 
metabolism. By activating AMPK and 
increasing nitric oxide, metformin may 
reduce interstitial fibrosis, cardiomyocyte 
death, and cardiac remodelling. This helps 
maintain left ventricle systolic and 
diastolic functions, reducing heart failure 
risk [75–77]. 

Zhang et al. conducted a meta-analysis 
in 2020 that found a decreased risk of 
mortality and serious cardiovascular 
events among 701,843 patients with T2D 
who were treated with metformin [78]. A 
separate meta-analysis conducted by Han 
et al. shown that metformin effectively 
decreased both overall mortality and 
mortality related to cardiovascular issues 
in individuals diagnosed with coronary 
artery disease [79]. The "MetCool ACS" 
trial (NCT05305898) is expected to finish 
in 2025 and will determine if metformin is 
useful in preventing cardiovascular 
diseases in non-diabetic people with acute 
coronary syndrome. 
 
3.6. Diabetic kidney disease 
 

Diabetic kidney disease is characterized 
by important pathophysiological 
processes, such as the loss of podocytes, 
increase of mesangial cells, and fibrosis in 
the tubulointerstitial area [80,81]. Due to 
its diverse pharmacological effects, 
metformin has been extensively studied 

for its nephroprotective effects, including 
reducing mortality and cardiovascular 
disease risk in diabetic ketoacidosis (DKD), 
delaying end-stage renal disease 
progression, and reducing renal oxidative 
stress, inflammation, and fibrosis [82–85]. 

Metformin therapy was associated with 
a significant reduction in mortality in 
individuals with stage G3 chronic kidney 
disease (CKD), according to Rousse et al 
[86]. Swedish researchers examined 
National Diabetes Register data and found 
that metformin-based regimens reduced 
mortality risk in stage G3a chronic kidney 
disease (CKD) patients but not in stage 
G3b patients [87]. Another study that 
looked at US veterans confirmed this 
finding [82]. 

Evidence suggests that metformin may 
reduce the likelihood of mortality and 
serious adverse cardiovascular events 
[81]. Metformin use is independently 
linked to a lower risk of death from any 
cause, cardiovascular events, and renal 
disease composite, according to studies 
[83,84]. Whitlock’s research and Crowley's 
systematic analysis showed that 
metformin improved clinical outcomes in 
mild chronic kidney disease patients 
[85,88]. 
 
3.7. Cognitive disfunction 

 
Neurodegeneration encompasses 

complex processes involving multiple 
signalling pathways, with aging playing a 
significant role in increasing oxidative 
stress and inflammation [89]. Metformin 
has been studied for its potential gero-
suppressive effects by activating AMPK, 
which inhibits the mTOR pathway, which 
causes aging, cancer, and 
neurodegenerative diseases [89]. 
Metformin may reduce insulin levels and 
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oxidative stress, but its effects on 
neurodegeneration and specific conditions 
like Alzheimer's and Parkinson's are still 
being studied [15,90,91] 

Brain imaging shows structural changes, 
including a decrease in grey matter 
volume, due to diabetes-related cognitive 
loss caused by hyperglycemia and insulin 
resistance. [92,93]. The neuroprotective 
effects of metformin may be due to its 
actions in enhancing insulin sensitivity, 
decreasing inflammation, and promoting 
autophagy [92,94,95]. Metformin reduces 
dementia in older veterans, according to a 
meta-analysis [96]. However, other 
research suggests a worsening of cognitive 
impairment in older Korean patients. [97]. 

Studies suggest that metabolic 
abnormalities like hyperglycemia, 
hyperinsulinemia, and obesity contribute 
to AD progression, particularly in 
individuals with T2D [8]. 

The effects of metformin on AD, which is 
marked by neurofibrillary tangles and 
amyloid plaques, have been inconsistent 
[98]. While some animal studies show that 
metformin can prevent amyloid-beta 
aggregation, promote neurogenesis, and 
improve mitochondrial function [99–103], 
other studies suggest that metformin 
might increase amyloid-beta levels and 
worsen AD symptoms [104]. There has 
been conflicting evidence in clinical trials 
that have looked at the link between 
metformin and AD [105–108]. 
Metformin's effects on AD are mixed. 
Some studies show a preventive benefit, 
while others show no effect or even side 
effects like cognitive impairment [109–
111].  These different results can be due 
to factors including dose, exposure time, 
and patient characteristics. 

Despite conflicting evidence, metformin 
and AD research continues. Clinical trials 

like the Metformin in Alzheimer's 
Dementia Prevention (MAP) study aim to 
determine metformin's AD prevention 
potential 
(https://classic.clinicaltrials.gov/ct2/show/
NCT04098666). Metformin may reduce AD 
risk, but more research is needed to 
determine its limits and optimal use. 

Parkinson's disease is characterized by 
dopaminergic neuron degeneration and 
Lewy bodies [112]. Metformin has been 
studied for its potential benefits, including 
reducing inflammation, improving 
mitochondrial dysfunction, preventing 
neuron loss, and inhibiting α-synuclein 
phosphorylation [113–117]. The results 
are inconsistent, however; some research 
has shown a preventive benefit against 
PD, while other investigations have shown 
either no link or an increased risk [15]. 
Since metformin is linked to lower blood 
vitamin B12 levels, the potential 
association between low levels of this 
vitamin and PD is cause for worry [118–
120]. To learn more about metformin's 
effect on PD risk, we need clinical studies 
with people who do not have diabetes. 
 
3.8. Antiaging 

 
Metformin's complex effect on stem cell 

exhaustion pathways may slow age-
related stem cell function reduction 
[121,122]. Biguanides like metformin, 
geroprotectors since the 1980s, may 
lengthen life and postpone aging [123].  

Campbell et al. found that metformin 
decreased all-cause mortality in 
accelerated-aging illnesses including 
cancer and cardiovascular disease as well 
as diabetes in 53 investigations. 
Metformin may improve health and 
longevity in age-related illness patients 
without managing diabetes [124]. 
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Podhorecka and Kumari studied 
metformin's health and lifespan 
advantages [125,126]. 

Metformin stimulates AMPK, slowing 
ATP production and consumption to save 
energy. Metformin influences PPAR co-
activator, which may boost mitochondrial 
biosynthesis. AMPK activated by 
metformin improves autophagy and cell 
health [127]. Through the IGF-1 signalling 
route, metformin may lower blood 
glucose, prevent aging, and extend 
longevity [128,129]. 
 
4. Conclusion 

 
In conclusion, off-label metformin use in 

endocrine disorders may improve patient 
outcomes beyond T2DM. Metformin helps 
manage hormonal imbalances, insulin 
sensitivity, and metabolic complications in 
PCOS, gestational diabetes, and obesity. It 
may help manage weight and reduce 
PCOS symptoms like hyperandrogenism 
and irregular menstrual cycles, according 
to clinical evidence. Studies show that 
metformin can improve maternal glycemic 
control and reduce neonatal 
complications in gestational diabetes. 
Metformin's ability to improve insulin 
sensitivity and promote modest weight 
loss in obesity suggests it may be a 
treatment option for people at risk of T2D 
or with comorbid metabolic conditions. 
Metformin's off-label endocrinology uses 
demonstrate its versatility as a 
pharmacological agent and the need for 
more research to optimize its clinical use 
in diverse patient populations. 

Metformin's off-label use in cancer, 
cardiovascular disease, diabetic kidney 
disease, cognitive dysfunction, 
Alzheimer's, Parkinson's, and antiaging 
interventions has many potential benefits. 

Metformin may improve patient outcomes 
beyond T2D mellitus, despite mixed 
results and ongoing research. AMPK 
activation, metabolic pathway 
modulation, and anti-inflammatory 
properties demonstrate its 
pharmacological versatility. Further 
research is needed to optimize its clinical 
utility, resolve conflicting evidence, and 
clarify its role in different disease 
contexts. The breadth of evidence 
supporting metformin's efficacy in diverse 
conditions emphasizes its potential to 
improve patient care and the need for 
continued research into its off label uses. 
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