Bulletin of the *Transilvania* University of Braşov Series VI: Medical Sciences • Vol. 18 (67) No. 1 – 2025 https://doi.org/10.31926/but.ms.2025.67.18.1.2

PERIOPERATIVE ANALGESIC STRATEGIES FOR LONG BONE FRACTURES. IS THERE A NEED FOR A STANDARDIZED PROTOCOL? A SCOPING REVIEW

M.S. MOLDOVAN^{1,2} A. MIRONESCU¹

Abstract: Acute perioperative pain that accompanies limb fractures and exceeds the threshold of tolerability has a high risk of becoming chronic. There are many controversies regarding current pain management options, like opioids and nonsteroidal anti-inflammatory drugs. This study aimed to comprehensively search the literature for ways to achieve perioperative analgesia in patients with long bone fractures. This research was a scoping review that included a systematic search of randomized controlled trials and observational studies in three international databases: MEDLINE, Scopus, and Web of Science. Ten thousand nine hundred forty-three articles were found and screened. After applying the inclusion and exclusion criteria, 77 articles were included in the final descriptive analysis. Peripheral nerve blocks play a significant role in perioperative multimodal analgesia; of the articles described in this review, 46.75% revolved around regional anesthesia. Other findings of pharmacologic agents that are of benefit in improving pain scores in surgically treated long bone fractures and need future research are Gabapentinoids, Magnesium sulphate, Vitamin C, Esmolol, and low-dose Ketamine.

Key words: Limb fractures, analgesia, peripheral nerve blocks, perioperative, pain scores

1. Introduction

It is known that orthopedic procedures are associated with a higher incidence of postoperative pain than non-orthopedic procedures [1]. Moreover, internal fixation of limb fractures is known to be painful on the first postoperative day, with a mean Numeric Rating Scale (NRS) score higher than 4.5 [2]. If NRS is a scale where a score of four out of ten is associated with moderate pain, and the patient requires rescue analgesia, we can consider that four out of ten is the limit of

¹ Faculty of Medicine, *Transilvania* University of Braşov

² Brasov County Clinical Emergency Hospital

^{*}Corresponding author: mara.tantau.mt@gmail.com

tolerability. Quantifying pain intensity, giving medication to the patient for analgesia, and optimizing functional status are fundamental elements of pain management [3]. There are many complications of inefficiently treated acute pain, such as thrombosis, immune suppression, a slowing in wound healing, hemodynamic changes, acute coronary syndromes. dvsfunction in bowel movements, and dysfunction of the respiratory system [4]. Even though different classes of analgesics administered via different routes are usually used to treat postoperative pain, the standard-of-care analgesic to treat acute fracture-related pain is opioidbased, opioids which are known to have other effects such as nausea and vomiting. prolonged sedation, and impeding recovery after surgery [1], [5]. Nonsteroidal anti-inflammatory drugs are also very controversial, as some published studies report that they inhibit bone healing [6].

It is known that regional anesthesia is associated with better postoperative analgesia in comparison with general anesthesia, facilitating earlier return of motion with better motor power [7].

Studies have demonstrated the superiority of multimodal analgesia in relieving pain [8].

The goal was to review literature for randomized controlled trials and observational studies examining various perioperative pain management strategies for limb fractures, to determine which are most effective in alleviating pain, and to investigate the necessity of a standardized opioid-sparing pain management protocol suitable for the opioid-naïve general population.

2. Materials and Methods

Because of the very diverse ways of managing initial pain of the fractured bones and then the subsequent pain that follows the surgical treatment of the limb fractures, a scoping review was chosen to comprehensively assess the best strategies for maintaining perioperative limb fracture analgesia.

In conducting this scoping review, we followed the Arksey and O'Malley framework and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) [9, 10].

Three databases (MEDLINE, Scopus, and Web of Science) were searched from their inception until April 21, 2025. The following terms and Boolean operators adapted were for each database: (Fractures OR "musculoskeletal injury" OR "musculoskeletal trauma" OR "orthopedic injury" OR "orthopedic trauma") AND ("pain management" OR analgesia) AND (perioperative OR postoperative OR preoperative OR intraoperative OR preemptive OR surgery).

Inclusion criteria were randomized controlled trials and observational studies in English about perioperative pain management in adult patients with limb fractures (shaft and distal part of long bones). The included articles rigorously examined the efficacy of the analgetic techniques with pain scores recorded at different time intervals perioperatively.

Exclusion criteria were: studies in which patients had proximal long bone fractures (to avoid the shoulder and hip joint region), animal studies, fractures in pathologic bone (metastasis, fragility fractures, osteoporosis), other musculoskeletal injuries (luxation, dislocation, ligament and tendons injuries, soft tissue injuries), articles on chronic pain (complex regional pain syndrome, chronic postsurgical pain) and in which pain was assessed after discharge, articles about the rehabilitation process, studies on specific populations (geriatric, opioid use disorder, dementia, diabetic, obese, pediatric etc.).

Articles about analgesic strategies for closed reductions in the ED or analgesia for positioning before spinal anesthesia were not included.

Other articles, such as case reports, case series, study protocols, conference presentations, reviews, systematic reviews, meta-analyses, letters to the editor, and notes, were also excluded from the study.

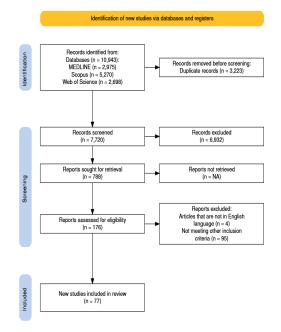


Fig. 1. PRISMA flow diagram

3. Results and Discussion

We screened 7,720 articles by title (Figure 1). Seven hundred eighty-eight articles passed this screening, and their abstracts were retrieved and reviewed. We further eliminated 612 articles that did not meet the inclusion criteria. One hundred seventy-six articles were read in full, and then we eliminated another 99 articles that did not meet the inclusion criteria from our study.

The final analysis included 77 articles.

The six appendices at the end of the article give brief information about the articles included in this study: the interventions, the control (if used), and the intervention's benefit in improving pain scores. The pain assessment tools used and the time interval of assessment were carefully documented.

In Figure 2, the distribution of articles according to the type of fracture studied can be observed.

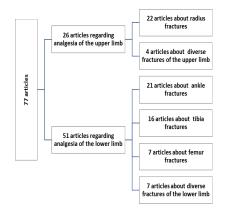


Fig. 2. Types of fractures studied

3.1. Lower limb 3.1.1. Tibia fractures

For tibial fracture perioperative analgesia, sixteen articles were found, with pain being controlled via regional anesthesia [11-15], intravenous and oral routes of administration [4, 5], [16-21] peri-fracture administered analgesia [22] and physical therapy and melotherapy [23, 24].

Five studies regarding lower limb fractures found that preemptive gabapentinoid administration improved pain scores [11], [14], [16,17], [21]. One study found that a single dose of 600 mg Gabapentin administered one hour before surgery significantly decreased pain scores six hours after surgery, more than Oxycodone and Diclofenac [5]. Another study found that preemptive administration of 300 mg of Gabapentin had similar efficacy to 1g of intravenously administered Paracetamol [19].

Gabapentinoids are anticonvulsants that act through central and peripheral mechanisms, have antihyperalgesic action, and prevent the release of many painrelated neurotransmitters [17], [19], [21].

Another promising finding was that administration of Ketorolac significantly decreased pain scores more than opioidbased analgesia at 24h after surgery [16].

In a study of 82 patients, intraoperative administration of a continuous infusion of Esmolol was found to be effective in reducing postoperative pain, opioid consumption, and prolonging the duration of analgesia [20]. It was the only article in our orthopedic population to study the analgesic effect of this short-acting betablocker. Perioperative administration of beta-blockers not only decreases the input of the central nervous system, but some animal studies showed that it reduces the cortical neuronal excitatory responses in the cingulate cortex [20].

Concerning peripheral nerve blocks as an anesthesia technique, the postoperative pain scores are lower when compared with general anesthesia [11], spinal [13] and epidural anesthesia [25].

Interestingly, there were two studies about intrathecal administration of Magnesium addition sulfate in to with benefits bupivacaine regarding postoperative pain scores, total analgesic requirements for 24 hours post-surgery, and prolongation of the sensory block [15], [26].

A study published in 2019 [27] on patients with tibia, fibula, and distal femur fractures who received Nitroglycerin in addition to Fentanyl showed that experienced pain levels were lower in that group of patients. Even though it is not recommended in hemodynamically unstable patients, Nitroglycerin has an analgesic effect induced by the nitric oxide release mechanism [27].

Two articles studied the effect of music as adjuvant therapy on 90 patients. According to these studies, listening to music can significantly reduce pain intensity after surgery [23], [28].

Physical therapy was not left out; a study published in 2018 showed that foot massage significantly reduced pain at 30 minutes and 2 hours after intervention [24].

3.1.2. Femur fractures

Only seven articles found studied exclusively femur shaft fractures [29-35].

To start with local anesthetic administration practices, an article dating from 1982 on 25 patients concluded that femoral nerve block helps reduce pain, with the mention that complete pain relief can be achieved when the fracture is located in the middle third of the femoral shaft [35].

Although it is not about the population included in this study, it is worth mentioning that a single-shot femoral nerve block is a preoperative recommendation for hip fracture patients, as it results from the PROSPECT (procedure-specific postoperative pain management) guideline published in 2024 [36].

In two articles [30, 32] the effect of perineurally administered Dexmedetomidine via a femoral nerve block was found to be of benefit in terms of increasing the duration of postoperative analgesia and reducing intraoperative and postoperative opioid consumption.

At last, a randomized controlled study on 82 patients showed that an intraoperative post-fixation hematoma injection with Ropivacaine can significantly reduce postoperative pain scores [29].

for As intravenously administered analgesia, two articles were of interest [31, 34] . Low-dose Ketamine infusion (0.1 and 0.05 mg/kg/h) combined with a continuous infusion of Remifentanil significantly reduced postoperative pain scores. The explication is that low-dose Ketamine (at less than 10% of the anesthetic dose) can directly reduce and prevent opioid induced hyperalgesia and acute tolerance [34].

In a study on 135 patients [31] a multimodal regimen consisting of intravenous Acetaminophen, Diclofenac, Morphine, and oral Pregabalin administered 30 minutes preoperatively significantly reduced the need for peridural administered analgesia after surgery.

3.1.3. Ankle fractures

We documented 21 research articles on ankle fractures. Of these, nine involved peripheral nerve blocks [1, 37-44]. An observational study [39] of 96 patients with ankle fractures concluded that preoperative or postoperative administration of peripheral nerve blocks is associated with significantly lower Visual Analog Scale (VAS) pain scores and lower narcotic usage postoperatively when compared to no peripheral nerve block administration. А favorable conclusion came from a study that showed better recovery at 24 hours when using peripheral nerve blocks as opposed to intravenous analgesia only [45]. One study showed a modest decrease in opioid consumption when peripheral nerve blocks are used in patients with distal tibia and ankle fractures [46]. Another study showed that when compared with spinal anesthesia, anesthesia provided hv peripheral nerve blocks provides a superior postoperative pain profile [40]. Timing of the block is also essential, as preoperative blocking of the popliteal sciatic nerve and saphenous nerve is associated with lower pain scores than the same procedure being done postoperatively [1]. Also, rebound pain must be considered when planning a multimodal analgesic plan, as a study published in 2012 showed that after a popliteal nerve block, rebound pain was observed between 8 and 24 hours postoperatively [44]. In resolving this problem, another study concluded that a continuous infusion popliteal sciatic nerve block significantly reduces rebound pain and the need for oral opioid analgesia when compared to a single-shot block [42]. A recent study on 57 patients showed similar results, but for a continuous adductor canal block [37]. Based on the VAS pain scores in one study, postoperative pain peaks at 24 hours after surgery, which coincides with the maximal use of pain control medications. This is caused by a rebound pain as the effects of PNB diminish [47].

In one study, Dexamethasone, as an adjuvant to local anesthetics in sciatic and femoral nerve blocks, lowers pain scores more than Ketorolac via patient-controlled analgesia (PCA) [38]. Also, a study on 95 patients showed that peripheral nerve blockade in association with Ketorolac patient-controlled analgesia is superior in terms of postoperative pain control to peripheral nerve block with no PCA [41].

Regarding intravenously administered analgesics, studies of Ketorolac [48-50] showed a reduction in pain intensity on the first postoperative day. A study comparing analgesia obtained from the combination of Naproxen and Pregabalin to Naproxen alone showed similar efficacy between the groups [51]. As for the effect of the COX2 selective inhibitor Parecoxib, a study on 40 patients showed no better results in controlling pain than placebo [52].

Acetaminophen is not to be forgotten as part of multimodal analgesia, being effective in reducing pain scores when compared to placebo [53].

Administration of Vitamin C was found to reduce pain in the second week postoperatively, as it limits the tissue injury and acts as a neuroprotective and neuro-modulating agent [54].

The effect of surgical site injections is also studied, with four articles reporting mixed results[55-58].

When compared with a Placebo, one study found that Liposomal Bupivacaine significantly decreased pain scores [58],

while another study concluded that even though local infiltration of Ropivacaine, Epinephrine, and Morphine significantly reduced pain scores, the results were below the minimal clinically significant difference [57].

In a cohort of 89 patients, local infiltration analgesia with 0.5% Ropivacaine into the dermis and subcutaneous tissue surrounding the incision proved to be more efficient in reducing pain scores than patientcontrolled analgesia with Morphine [56].

In terms of pain management, the infusion of local anesthetic combined with adrenaline (WALLANT technique) into the syndesmosis space, subcutaneously, and in the hematoma at the fracture site was inferior to preemptive popliteal fossa nerve block [55].

Physical methods of alleviating pain by applying cold were also studied in one study, which showed a similar effect between evaporative coolants and ice packs [59].

3.2. Upper limb

3.2.1 Radial fractures

For the upper limb, articles about analgesia in surgically treated radial fractures were the most numerous.

Twelve of the twenty-two studies were about peripheral nerve blocks [8, 60-71], while three were about local infiltration analgesia [72-74].

A study on patients with fractures of the radius, the ulna, and both bones of the forearm compared the effect of Dexmedetomidine or Clonidine added to Levobupivacaine in axillary brachial plexus block, and the conclusion was that Dexmedetomidine is superior to Clonidine in terms of duration of analgesia [75].

Other studies about adjuvants to peripheral nerve blocks that showed improvement in postoperative pain scores are also using dexmedetomidine [63] and the combination of Fentanyl-Lidocaine [71].

For surgically treated radius fractures, peripheral nerve blocks significantly lower postoperative pain scores, even in a study where, at the end of the surgery, the patient received local anesthetic wound infiltration with Levobupivacaine [64], [67, 68]. Interestingly, in another study on 59 patients, nerves blocked distally assured the same level of pain control compared with surgical site infiltration, when using the same local anesthetic regimen [61].

comparing the efficacy When of different local anesthetics used perineurally, a significant reduction in pain scores is reported when using liposomal bupivacaine and not plain bupivacaine[60]. When comparing peripheral nerve blocks with Levobupivacaine and Ropivacaine, the results for achieving better postoperative analgesia favor Levobupivacaine. At the same time, Ropivacaine is preferred for faster recovery of motor function [65]. Another study obtained better results with the improvement of postoperative pain scores when using the short-acting local anesthetic Mepivacaine in comparison with Ropivacaine when practicing supraclavicular brachial plexus block; it seems that patients who received Supraclavicular block with Ropivacaine had worse pain progression after the block resolved [66].

The timing of the nerve block is also essential in blocks of the upper limb; a study published in 2017 [70] showed that infraclavicular brachial plexus block practiced preoperatively significantly reduces pain scores and results in lower analgesic consumption compared with a postoperative placed block.

When comparing single with continuous brachial plexus block, a study concluded that continuous block is effective in controlling rebound pain at postoperative hours 9 and 12 [62].

Four studies reported results about some intravenously administered medication[76-79], and two articles explored adjuvant analgesia techniques [80, 81].

A study that compared intravenous with perineural administration of Magnesium concluded that magnesium is more effective in reducing pain scores in the early postoperative period as an additive to ropivacaine in supraclavicular brachial plexus block [76].

Another study on 56 patients with radius fractures found that a 6-day Methylprednisolone taper significantly improves pain relief and reduces opioid consumption in the early postoperative period [77].

3.2.2. Humeral shaft fractures

Studies about analgesia in humeral shaft fractures were scarce. In this study, only two articles about humerus fractures that respected the inclusion criteria were found and included in our descriptive analysis [82, 83].

At last, a study was found about intravenous regional anesthesia with 0.5% Lidocaine and Atracurium in patients with fractures of the phalanges and metacarpal bones, and the conclusion was that the combination results in a significant reduction of pain during surgery and the postoperative period when compared with Lidocaine only [84].

In the end, pain evaluation in all these studies is an essential topic of discussion. It is known that there is high variability in evaluating pain in different studies [2]. There are different pain-assessing tools and timelines, and the moment of measuring pain (at rest, with movement, etc.) is variable.

It is important to note that pain assessment is challenging since pain is a subjective experience. Hence, it is essential to assess perceived pain with subjective scores. The purpose is to determine whether pain is tolerable, whether action is needed to increase analgesia, or whether the analgesic given is adequate.

In our study, pain scores were evaluated in most studies (57.14%) via the Visual Analog Scale score.

4. Future Directions and Recommendations

In our opinion, a more standardized approach is necessary to manage perioperative limb fracture pain better. It is essential to consider the benefit of analgesia via peripheral nerve blocks, but take the necessary precautions to prevent the appearance of rebound pain. The goal is not to abolish pain altogether but to maintain it under the patient's threshold of tolerability to enhance the recovery after surgery. There is a need for largerscale randomized studies so that a perioperative pain management plan can be documented for this population, a strategy that can manage the pain intensity under the tolerability threshold, and thus lessen the need for rescue analgesia such as opioids.

5. Conclusion

Pain management in long bone fractures of the limbs is complex, with multiple ways of achieving analgesia that are still being studied and need more research. Drugs like Gabapentinoids, Magnesium sulphate, Vitamin C, Esmolol, and lowdose Ketamine have improved pain scores in some studies, but more research is needed on bigger cohorts. There is a need for multimodal analgesia, meaning different pharmacologically active drugs administered in various ways to maintain pain under the tolerability threshold. Peripheral nerve blocks are essential in obtaining low postoperative pain scores, but intravenous and oral analgesics are critical to preventing rebound pain.

References

- Alexander, J.C., et al., Comparison of Regional Anesthesia Timing on Pain, Opioid Use, and Postanesthesia Care Unit Length of Stay in Patients Undergoing Open Reduction and Internal Fixation of Ankle Fractures. Journal of Foot & Ankle Surgery, 2020. 59(4): 788-791.
- Gerbershagen, H.J., et al., Pain Intensity on the First Day after Surgery A Prospective Cohort Study Comparing 179 Surgical Procedures. ANESTHESIOLOGY, 2013. 118(4): 934-944.
- 3. Adharsh, K., et al., Role of Pregabalin in Pre-Operative and Post-Operative Pain Management of Lower Limb Orthopedic Surgeries. J Orthop Case Rep, 2024. **14**(10): 263-269.
- 4. Akhondzadeh, R., et al., *The Effect of Lidocaine Infusion on the Acute Pain after the Surgery of Tibia Fracture*

under General Anesthesia. Ambient Science, 2018. **5**: p. 4.

- Abrishami, R., et al., Comparing the effects of pre-emptive oxycodone, diclofenac, and gabapentin on postoperative pain after tibia fracture surgery: A randomized clinical trail. J West Afr Coll Surg, 2024. 14(3): 301-306.
- Hartman Budnik, J.V., et al., New paradigms in pain management after skeletal trauma: Orthopaedic Trauma Association's 2023 Basic Science Focus Forum Symposium. OTA Int, 2025. 8(2 Suppl): p. e352.
- Manoli, A., et al., Spinal Anesthesia Improves Early Pain Levels After Surgical Treatment of Tibial Plateau Fractures. Journal of Orthopaedic Trauma, 2017. 31(3): 164-167.
- Zangrilli, J., et al., A Multimodal Pain Management Regimen for Open Treatment of Distal Radius Fractures: A Randomized Blinded Study. Hand-American Association for Hand Surgery, 2022. 17(6): 1187-1193.
- Arksey, H. and L. O'Malley, Scoping Studies: Towards a Methodological Framework. International Journal of Social Research Methodology - INT J SOC RES METHODOL, 2005. 8: 19-32.
- Tricco, A.C., et al., PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med, 2018. 169(7): 467-473.
- Zhao, Y., H. Zhang, and M. Song, *Clinical Observation of Ultrasound-Guided Nerve Block Anesthesia on Postoperative Pain Control of Fracture Patients.* Journal of Healthcare Engineering, 2022. 2022.
- 12. Zhang, X., et al., Effect of Ultrasound Image-Guided Nerve Block on the Postoperative Recovery Quality of Patients with Tibial Fractures Using

the Concept of Enhanced Recovery after Surgery. Computational and Mathematical Methods in Medicine, 2022. **2022**.

- 13. Shokri, H. and A.A. Kasem, Sciatic obturator femoral technique versus spinal anaesthesia in patients undergoing surgery for fixation of open tibial fractures using Ilizarov external fixator. A randomised trial. BMC Anesthesiol, 2020. **20**(1): p. 4.
- 14. Cooke, M.E., et al., Are Continuous Femoral Nerve Catheters Beneficial for Pain Management After Operative Fixation of Tibial Plateau Fractures? A Randomized Controlled Trial. Journal of Orthopaedic Trauma, 2019. 33(12): E447-E451.
- 15. Mokaram Dori, M. and F. Foruzin, *The Analgesic Efficacy of Intrathecal Bupivacaine and Fentanyl with Added Neostigmine or Magnesium Sulphate.* Anesth Pain Med, 2016. **6**(6): e9651.
- Hess-Arcelay, H., et al., Opioid-Sparing Nonsteroid Anti-inflammatory Drugs Protocol in Patients Undergoing Intramedullary Nailing of Tibial Shaft Fractures: A Randomized Control Trial. J Am Acad Orthop Surg, 2024. 32(12): p. e596-e604.
- 17. Eraghi, A.S., S. Daneshmand, and S.M. Malakooti, *Controlling Post-operative Pain Intensity in Patients Undergoing Tibia Fracture Surgery: Pregabalin vs. Clonidine.* JOURNAL OF PHARMACEUTICAL RESEARCH INTERNATIONAL, 2019. **31**(6).
- Olapour, A.R., et al., The Effect of Intravenous Magnesium Sulfate Versus Intravenous Sufentanil on the Duration of Analgesia and Postoperative Pain in Patients with Tibia Fracture. Anesth Pain Med, 2017. 7(2): p. e44035.

- Khalili, M., et al., Premedication with Oral Gabapentin versus Intravenous Paracetamol for Post-operative Analgesia after Tibial Fracture Surgery. ADVANCES IN HUMAN BIOLOGY, 2017. 7(3): 115-118.
- Haghighi, M., et al., Effect of Intravenous Intraoperative Esmolol on Pain Management Following Lower Limb Orthopedic Surgery. Korean Journal of Pain, 2015. 28(3): 198-202.
- Panah Khahi, M., et al., Effect of preemptive gabapentin on postoperative pain following lower extremity orthopaedic surgery under spinal anaesthesia. Singapore Med J, 2011.
 52(12): 879-82.
- 22. Kellam, P.J., et al., Periarticular multimodal analgesia in decreasing perioperative pain in tibial plateau fractures: A double blind randomized controlled pilot study. Injury-International Journal of the Care of the Injured, 2022. 53(12): 4123-4128.
- 23. Ferraz, M.C.L., et al., Analgesic effect of music during wound care among patients with diaphyseal tibial fractures: Randomized controlled trial. Eur J Pain, 2021. **25**(3): 541-549.
- 24. Pasyar, N., M. Rambod, and F.R. Kahkhaee, The Effect of Foot Massage on Pain Intensity and Anxiety in Patients Having Undergone a Tibial Shaft Fracture Surgery: A Randomized Clinical Trial. Journal of Orthopaedic Trauma, 2018. **32**(12): p. E482-E486.
- 25. Samra, T., et al., Ultrasound-Guided Lumbar Plexus-Sciatic Nerve Blocks Versus Epidurals for Orthopaedic Surgeries: A Study to Compare the Competency of Novice Anaesthesiology Residents in a High-Volume Level 1 Trauma Centre. Cureus, 2024. 16(9): p. e69539.

- Khalili, G., et al., Effects of adjunct intrathecal magnesium sulfate to bupivacaine for spinal anesthesia: A randomized, double-blind trial in patients undergoing lower extremity surgery. Journal of Anesthesia, 2011.
 25(6): 892-897.
- Rahimzadeh, P., et al., The Effect of Nitroglycerine Infusion on Postoperative Pain in Lower Limb Surgery: A Clinical Double-Blind Study. Anesth Pain Med, 2019. 9(4): p. e93848.
- 28. Kwamboka, L., et al., *Music as an Adjuvant Therapy in Postoperative Pain and Physiologic Par ameters: Pre-Test, Post-Test Intervention Study.* Rwanda Journal of Medicine and Health Sciences, 2023.
- 29. Yue, R.A., et al., *Efficacy of Hematoma* Block After Intramedullary Rod Fixation of Femoral Shaft Fractures: A Prospective, Double-Blinded, Randomized Controlled Trial. Journal of Orthopaedic Trauma, 2023. **37**(9): 429-432.
- 30. Vinod, M., et al., Dexmedetomidine as an Adjuvant to 0.25% Bupivacaine in Ultrasound Guided Femoral Nerve Block for Preoperative Positioning and Postoperative Analgesia in Patients Undergoing Elective Surgery for Fracture Shaft of Femur. Anesth Essays Res, 2022. **16**(1): 98-103.
- 31. Makkar, J.K., et al., *Pre-emptive multimodal analgesic regimen reduces post-operative epidural demand boluses in traumatic shaft of femur fracture - A randomised controlled trial.* Indian J Anaesth, 2019. **63**(11): 895-899.
- 32. Memary, E., et al., *The Effect of Perineural Administration of Dexmedetomidine on Narcotic*

Consumption and Pain Intensity in Patients Undergoing Femoral Shaft Fracture Surgery; A Randomized Single-Blind Clinical Trial. Chonnam Med J, 2017. **53**(2): 127-132.

- 33. Pan, Z., et al., Intravenous morphine titration as a rapid and efficient analgesia for adult patients with femoral shaft fractures after injury. American Journal of Emergency Medicine, 2016. **34**(11): 2107-2111.
- 34. Deng, G.F., et al., Remifentanil combined with low-dose ketamine for post-operative analgesia of lower limb fracture: A double-blind, controlled study. Chinese Journal of Traumatology - English Edition, 2009. 12(4): 223-227.
- Tondare, A.S. and A.V. Nadkarni, *Femoral nerve block for fractured shaft* of femur. Can Anaesth Soc J, 1982. 29(3): 270-1.
- 36. Pissens, S., et al., Pain management after hip fracture repair surgery: a systematic review and procedurespecific postoperative pain management (PROSPECT) recommendations. Acta Anaesthesiologica Belgica, 2024. 75(1): 15-31.
- Park, Y.U., et al., Analgesic effectiveness of continuous versus single-injection adductor canal block in addition to continuous popliteal sciatic nerve block for bimalleolar and trimalleolar ankle fracture surgery: Prospective randomized controlled trial. J Orthop Sci, 2025. 30(1): 159-163.
- Lee, J.K., et al., A Comparative Analysis of Pain Control Methods after Ankle Fracture Surgery with a Peripheral Nerve Block: A Single-Center Randomized Controlled Prospective Study. Medicina-Lithuania, 2023. 59(7).

- 39. Samineni, A.V., et al., Peripheral Nerve Blocks Associated With Shorter Length of Stay Without Increasing Readmission Rate for Ankle Open Reduction Internal Fixation in the Outpatient Setting: A Propensity-Matched Analysis. Journal of Foot & Ankle Surgery, 2022. 61(6): 1165-1169.
- 40. Sort, R., et al., *Peripheral nerve block* anaesthesia and postoperative pain in acute ankle fracture surgery: the AnAnkle randomised trial. Br J Anaesth, 2021. **126**(4): 881-888.
- 41. Lee, J.K., et al., An Innovative Pain Control Method Using Peripheral Nerve Block and Patient-Controlled Analgesia With Ketorolac After Bone Surgery in the Ankle Area: A Prospective Study. Journal of Foot and Ankle Surgery, 2020. **59**(4): p. 698-703.
- 42. Ding, D.Y., et al., *Continuous popliteal* sciatic nerve block versus single injection nerve block for ankle fracture surgery: A prospective randomized comparative trial. Journal of Orthopaedic Trauma, 2015. **29**(9): 393-398.
- 43. Lee, K.T., et al., *Femoral and sciatic nerve block for hindfoot and ankle surgery.* Journal of Orthopaedic Science, 2014. **19**(4): 546-551.
- Goldstein, R.Y., et al., Efficacy of Popliteal Block in Postoperative Pain Control After Ankle Fracture Fixation: A Prospective Randomized Study. JOURNAL OF ORTHOPAEDIC TRAUMA, 2012. 26(10): 557-561.
- 45. Elkassabany, N., et al., Does Regional Anesthesia Improve the Quality of Postoperative Pain Management and the Quality of Recovery in Patients Undergoing Operative Repair of Tibia and Ankle Fractures? Journal of

Orthopaedic Trauma, 2015. **29**(9): 404-409.

- 46. Lantieri, M.A., W.M. Novicoff, and S.R. Yarboro, Regional anesthesia provides limited decreases in opioid use following distal tibia and ankle fracture surgery. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY, 2023. 33(6): 2633-2638.
- 47. Jeong-Kil, L., et al., An Innovative Pain Control Method Using Peripheral Nerve Block and Pat ient-Controlled Analgesia With Ketorolac After Bone Surgery in the Ank le Area: A Prospective Study. Journal of Foot and Ankle Surgery, 2020.
- Ortiz, M.I., et al., Effectiveness of diclofenac, ketorolac and etoricoxib in the treatment of acute pain from ankle fracture. Proc West Pharmacol Soc, 2010. 53: 46-8.
- Norman, P.H., M.D. Daley, and R.W. Lindsey, *Preemptive analgesic effects* of ketorolac in ankle fracture surgery. Anesthesiology, 2001. 94(4): 599-603.
- 50. Elizabeth, L.M.B., et al., *How Does Perioperative Ketorolac Affect Opioid Consumption and Pain Ma nagement After Ankle Fracture Surgery?* Clinical Orthopaedics and Related Research, 2019.
- 51. Choi, G.W., et al., *Is perioperative use* of a combination of pregabalin and naproxen superior to naproxen only in reducing pain in ankle fractures? A prospective, randomized, multicenter study. J Orthop Surg Res, 2024. **19**(1): p. 882.
- 52. Angthong, C., et al., Efficacy of intravenous perioperative parecoxib administration in the surgical fixation of unstable ankle fracture: a prospective, double-blinded,

randomized, placebo-controlled trial. Eur Rev Med Pharmacol Sci, 2021. **25**(14): 4779-4784.

- 53. Schug, S.A., et al., *Acetaminophen as an adjunct to morphine by patient-controlled analgesia in the management of acute postoperative pain.* Anesth Analg, 1998. **87**(2): 368-72.
- 54. Jain, S.K., et al., Role of anti-oxidant (vitamin-C) in post-operative pain relief in foot and ankle trauma surgery: A prospective randomized trial. Foot Ankle Surg, 2019. **25**(4): 542-545.
- 55. Çağlar, C., et al., *Comparison of the WALANT and the PFNB techniques in the surgical treatment of unimalleolar fractures: a prospective study.* Acta Orthopaedica Belgica, 2022. **88**(2): 359-367.
- 56. Li, B.L., et al., Local Infiltration Analgesia with Ropivacaine Improves Postoperative Pain Control in Ankle Fracture Patients: A Retrospective Cohort Study. Pain Research & Management, 2020. 2020.
- 57. Hancock, K.J., et al., Efficacy of Multimodal Analgesic Injections in Operatively Treated Ankle Fractures A Randomized Controlled Trial. Journal of Bone and Joint Surgery-American Volume, 2019. 101(24): 2194-2202.
- 58. Davidovitch, R., et al., The Use of Liposomal Bupivacaine Administered With Standard Bupivacaine in Ankle Fractures Requiring Open Reduction Internal Fixation: A Single-Blinded Randomized Controlled Trial. J Orthop Trauma, 2017. **31**(8): 434-439.
- 59. Park, Y.H., et al., Comparison of the use of evaporative coolants and ice packs for the management of preoperative edema and pain in ankle fractures: a prospective randomized controlled

trial. Arch Orthop Trauma Surg, 2019. **139**(10): 1399-1405.

- Chan, T.C.W., et al., Addition of Liposomal Bupivacaine to Standard Bupivacaine versus Standard Bupivacaine Alone in the Supraclavicular Brachial Plexus Block: A Randomized Controlled Trial. Anesthesiology, 2024. 141(4): 732-744.
- 61. Sciard, D., et al., Postoperative analgesia after surgical repair of distal radius fracture: a randomized comparison between distal peripheral nerve blockade and surgical site infiltration. Minerva Anestesiol, 2023. **89**(10): 876-883.
- 62. Lee, J.H., et al., Does intravenous patient-controlled analgesia or continuous block prevent rebound pain following infraclavicular brachial plexus block after distal radius fracture fixation? A prospective randomized controlled trial. Korean J Anesthesiol, 2023. **76**(6): 559-566.
- 63. Ahmed, M., et al., *Efficacy of Dexmedetomidine Combined with Bupivacaine in Supraclavicular Block Versus Bupivacaine alone in Upper Limb Surgery.* Pakistan Armed Forces Medical Journal, 2023. **73**(3): 763-766.
- 64. Nho, J.H., et al., General versus Brachial Plexus Block Anesthesia in Pain Management after Internal Fixation in Patients with Distal Radius Fracture: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 2022. **19**(15).
- 65. Shahid, R., et al., A prospective randomized study to compare levobupivacaine and ropivacaine in ultrasound-guided supraclavicular brachial plexus block for forearm orthopedic surgery. Anaesthesia, Pain

and Intensive Care, 2021. **25**(5): 613-619.

- 66. Sellbrant, I., et al., Supraclavicular block with Mepivacaine vs Ropivacaine, their impact on postoperative pain: a prospective randomised study. BMC Anesthesiol, 2021. 21(1): p. 273.
- 67. Wong, S.S., et al., *Infraclavicular nerve* block reduces postoperative pain after distal radial fracture fixation: a randomized controlled trial. Bmc Anesthesiology, 2020. **20**(1).
- Johnson, P., et al., Improvement in Postoperative Pain Control and Length of Stay with Peripheral Nerve Block Prior to Distal Radius Repair. Orthopedics, 2020. 43(6): p. E549-E552.
- 69. Ganta, A., et al., Continuous Infraclavicular Brachial Block Versus Single-Shot Nerve Block for Distal Radius Surgery: A Prospective Randomized Control Trial. J Orthop Trauma, 2018. **32**(1): 22-26.
- 70. Holmberg, A., et al., *Pre-operative* brachial plexus block compared with an identical block performed at the end of surgery: a prospective, doubleblind, randomised clinical trial. Anaesthesia, 2017. **72**(8): p. 967-977.
- 71. Akhondzadeh, R., et al., Comparison of the ketamine-lidocaine and fentanyllidocaine in postoperative analgesia in axillary block in upper limb fractures by ultrasound guidance. Anesthesiology and Pain Medicine, 2019. 9(6).
- 72. Jung, H.S., et al., *Does Surgical-site Multimodal Drug Injection After Palmar Plating of Distal Radius Fractures Improve Pain Scores?* Clin Orthop Relat Res, 2020. **478**(11): 2663-2669.

- 73. Alter, T.H., F.E. Liss, and A.M. Ilyas, A Prospective Randomized Study Comparing Bupivacaine Hydrochloride Versus Bupivacaine Liposome for Pain Management After Distal Radius Fracture Repair Surgery. J Hand Surg Am, 2017. 42(12): 1003-1008.
- 74. Chung, M.S., et al., Evaluation of early postoperative pain and the effectiveness of perifracture site injections following volar plating for distal radius fractures. J Hand Surg Am, 2010. 35(11): 1787-94.
- Kumar, V.A., et al., A comparative study of clonidine and dexmedetomidine with 0.5% levobupivacaine in ultrasoundguided axillary brachial plexus block for upper limb surgeries. Journal of Cellular and Molecular Anesthesia, 2021. 6(3): 249-258.
- 76. Ramegowda, S., et al., A Comparative Analysis of Magnesium Sulfate Administered Intravenously Versus Perineurally as an Additive to Ropivacaine in Supraclavicular Brachial Plexus Block Under Ultrasound Guidance: A Randomized Clinical Trial. Cureus, 2024. 16(11): p. e72944.
- 77. Gottschalk, M.B., et al., A Prospective Randomized Controlled Trial of Methylprednisolone for Postoperative Pain Management of Surgically Treated Distal Radius Fractures. J Hand Surg Am, 2022. 47(9): 866-873.
- 78. Moradkhani, M., S. Shabaninia, and S. Vahabi, Comparison between ketamine and propofol combined against propofol alone for brachial plexus

nerve block in open fixation of forearm fracture: A randomized controlled trial. INTERNATIONAL JOURNAL OF SURGERY OPEN, 2020. **27**: 136-139.

- Abbasivash, R., et al., The effect of nitroglycerin as an adjuvant to lidocaine in intravenous regional anesthesia. Middle East J Anaesthesiol, 2009. 20(2): 265-269.
- Nazari, M., et al., On the investigation of the effect of aromatherapy on pain after orthopedic surgery: Clinical trial. Acta Medica Mediterranea, 2016.
 32(SpecialIssue4): 1513-1519.
- 81. Lee, C.H., et al., Single-Blinded, Randomized Preliminary Study Evaluating Effect the of Transcutaneous Electrical Nerve Stimulation on Postoperative Pain in Patients with Colles' Fracture. J Altern Complement Med, 2015. 21(12): 754-758.
- Kumar, N., et al., Analgesic efficacy of pre-operative stellate ganglion block on postoperative pain relief: a randomised controlled trial. Anaesthesia, 2014. 69(9): 954-660.
- 83. Bedi, V., et al., *Perineural versus intravenous clonidine as an adjuvant to Bupivacaine in supraclavicular Brachial plexus block.* Egyptian Journal of Anaesthesia, 2017. **33**(3): 257-261.
- Elhakim, M. and R.A. Sadek, Addition of atracurium to lidocaine for intravenous regional anaesthesia. Acta Anaesthesiologica Scandinavica, 1994.
 38(6): p. 542-544.

Nr. Crt.	Author, year	Type of study	No	ASA grade	Intervention	Control	Pain assessmen t tool	Benefits of the intervention regarding pain scores
1.	Hess- Arcelay et al., 2024 [16]	RCT	96	Not Speci- fied (NS)	Oral acetaminophen and intravenous ketorolac	Opioid based	VAS (12,24,36, 48h after surgery)	Significant decrease in pain scores at 24h after surgery in the intervention group
2.	Abrisha mi et al., 2024 [5]	RCT	11 1	NS	Oxycodone/ Gabapentin/ Diclofenac	NS	VAS (2, 4, 6, 12, and 24 hours after surgery)	Gabapentin significantly decreased pain scores more than Oxycodone and Diclofenac at 6h after surgery
3.	Zhang et al., 2022 [12]	Retro- spec- tive observ ational	17 7	1-11	- Ultrasound- guided nerve block (sciatic, popliteal, and femoral nerve block) combined with general anesthesia	General anesthesia only/ Spinal- epidural anesthesia with nerve block/ Spinal- epidural anesthesia only	VAS (12, 24, 26h after surgery)	Significantly higher pain scores in the intervention group
4.	Kellam et al., 2022 [22]	RCT	28	NS	Perifracture deep (Morphine, Clonidine, Ketorolac) and superficial (Morphine/epinep hrine) multimodal analgesia via gel foam sponges.	Placebo	VAS (immediat ely post- surgery, 4, 8, 12, 16, 20, and 24 h)	Significantly decreased pain scores at 4, 8, and 12 hours post-surgery in the intervention group
5	Zhao et al., 2022 [11]	RCT	12 8	1-11	Ultrasound-guided nerve block anesthesia using GELOGIQ E9 color Doppler ultrasound diagnosis system with ropivacaine for femoral and sciatic nerve block after induction of general anesthesia	Conventional general anesthesia	VAS at 6, 12, 24 h post- surgery.	The ultrasound- guided group had significantly lower post-surgical pain scores at 6, 12, and 24 hours after surgery.

Appendix 1. Tibia Fractures

Nr. Crt.	Author, year	Type of study	No	ASA grade	Intervention	Control	Pain assessmen t tool	Benefits of the intervention regarding pain scores
6.	Ferraz et al., 2021 [23]	RCT	70	NS	Listening to music for 30 minutes (15 minutes before and 15 minutes during the dressing change)	intravenous sodium dipyrone, intravenous tramadol hydrochloride and intravenous ketoprofen	NRS Before and after the patient put on headphon es	Patients in the intervention group presented significantly lower pain scores.
7.	Shokri et al., 2020 [13]	RCT	10 7	1-11	SOFT block: femoral, obturator and sciatic nerve block with Bupivacaine	Spinal anaesthesia with bupivacaine	VAS (1, 3, 6, 12, 18, 24 hours post- surgery)	Pain scores were significantly lower in the SOFT group at 3, 6, and 12 hours after surgery.
8.	Eraghi et al., 2019 [17]	RCT	50	NS	Clonidine one hour before and after surgery/ Pregabalin administered one hour before and one hour after surgery.	NS	VAS (6, 12, 24 hours post- surgery)	At 6 h after surgery, pain scores were significantly lower in the pregabalin group than in the clonidine group, but Clonidine showed a statistically significant analgesic effect compared to pregabalin overall.
9.	Cooke et al., 2019 [14]	RCT	42	NS	Continuous infusion femoral nerve block (bupivacaine) placed before induction of general anesthesia; used in addition to IV morphine PCA pump and breakthrough medications.	-IV morphine PCA pump -breakthrough IV dilaudid, morphine, fentanyl, PO oxycodone, acetaminophe n as needed and an intraoperative dose of Toradol as needed.	VAS (4, 8, 12, 24, 36, 48, and 72 hours after surgery)	No benefit, no significant difference in pain scores
10.	Pasyar et al., 2018 [24]	RCT	66	NS	Foot massage 20 hours post- surgery, performed for 10 minutes (5 minutes per leg), using sweet almond oil, including feet, legs, heels, and toes, and routine care.	The control group received routine care without the foot massage intervention.	NRS Before interventio n, 30 minutes and 2 hours after interventio n	Foot massage significantly reduced pain at both time intervals

Nr. Crt.	Author, year	Type of study	No	ASA grade	Intervention	Control	Pain assessmen t tool	Benefits of the intervention regarding pain scores
11.	Akhond zadeh et al., 2018 [4]	RCT	48	1-11	Intravenous lidocaine: bolus followed by continuous infusion terminated at the end of surgery.	Placebo	VAS (1, 2, 4, 12, 16, 20, and 24 hours after surgery)	Significantly reduced post-surgical pain scores in the intervention group
12.	Olapour et al., 2017 [18]	RCT	70	1-11	Intravenous magnesium sulfate infused starting 1 hour after sensori- motor blockade/ Intravenous sufentanil infused starting 1 hour after sensorimotor blockade.	NS	VAS (0, 1, 4, 8, 16, and 24 hours after the end of anesthesia)	Sufentanil was more effective than magnesium sulfate in reducing post- surgical pain and delaying the need for additional narcotics.
13.	Khalili et al., 2017 [19]	RCT	96	1-11	Oral gabapentin half an hour before surgery/ Intravenous paracetamol half an hour before surgery.	Placebo	VAS (2, 4, and 6 hours after operation)	Significant reduction in pain scores in both the gabapentin and paracetamol groups.
14.	Mokara m et al., 2016 [15]	RCT	21 0	1-11	Group N: neostigmine added to bupivacaine and fentanyl/ Group M: magnesium sulfate added to bupivacaine and fentanyl	Group F: received bupivacaine and fentanyl as intrathecal drugs for spinal anesthesia	NRS (During surgery: every 20 minutes and 6 and 12 hours after surgery)	The addition of magnesium sulfate to intrathecal bupivacaine-fentanyl significantly reduced post-surgical pain scores.
15.	Haghigh i et al., 2015 [20]	RCT	82	1-11	Esmolol: Loading dose before anesthesia induction, followed by a maintenance dose until the closure of the incision.	Placebo	VAS (Entering the recovery unit, 3 and 6 hours after surgery)	Intravenous intraoperative esmolol is effective in reducing post- surgical pain.
16.	Panah Khahi et al., 2011 [21]	RCT	64	1-11	Gabapentin administered two hours before surgery	Placebo	VAS (2,12,24h after surgery)	Gabapentin significantly decreases post- surgical pain two hours after surgery.

APPENDIX 2. Articles that studied analgesia in groups of different types of fractures of the lower limb

Nr. Crt.	Authors	Study	Type of fracture	No	Intervention	Control	Pain asses-	Benefit of the intervention
1.	Comro	type RCT	Tibia and	92	Dual	Faidural	sment NRS (At	
1.	Samra et al.,	NC1	fibula	92	ultrasound	Epidural anaesthesia	NRS (At admission to	Post-surgical
	2024		libula		and nerve	andestnesid	PACU, at 6,	pain
	[25]				stimulator-			management was better with
	[25]				guided lumbar		12, 24 h post-	DUNLuPS.
					plexus-sciatic		surgery)	DUNLUP3.
					nerve block			
					(DUNLuPS)			
2.	Adhars	RCT	Tibial and	60	Pregabalin 2	Placebo	VAS (at 6, 12,	Pre-operative
۷.	h et al.,	NC1	femoral	00	hours before	Thatebo	24, 48 hours	pregabalin
	2024		shaft		surgery		after surgery)	significantly
	[3]		311011		Surgery		arter surgery)	reduced post-
	[5]							surgery pain
								scores
								compared to a
								placebo
3.	Lantieri	Obser-	Distal tibia	723	Single-shot	Patients	VAS (DAY 1, 2	Patients who
5.	et al.,	vational	and ankle	/25	peripheral	who did not	and 3 post	received
	2023	retro-	fractures,		nerve blocks	receive	surgery)	peripheral
	[46]	spective	including		targeting the	peripheral	Surgery	nerve blocks
	[40]	cohort	pilon		sciatic and	nerve blocks		showed modest
		study	fractures		saphenous			reductions in
		Study	nuctures		nerves.			opioid use and
					inci vesi			pain scores on
								postoperative
								day 1.
4.	Kwamb	RCT	Tibia and	20	Music played	Conventiona	VAS before	- Music therapy
	oka et	_	fibula		for 20 minutes	l pain	intervention	significantly
	al.,		fractures		at a self-	managemen	(0 minutes)	reduced pain
	2023				preferred	t therapy	and 25	levels in the
	[28]				volume level,	without	minutes after	intervention
					administered	music	conventional	group
					once on day-3		therapy.	compared to
					after surgery			the control
					to the			group
					intervention			
					group			
5.	Rahimz	RCT	Tibia,	75	- Group B:	Fentanyl	VAS (prior to	Patients
	adeh et		fibula, and		Fentanyl 10	10mc/kg +	putting the	receiving a
	al.,		distal femur		mc/kg +	Placebo	pain pump	higher dose of
	2019		fracture		Nitroglycerin		and at 4, 8,	nitroglycerin
	[27]				500 mc, Group		12, 24, 48	experienced
					C: Fentanyl 10		hours post-	lower pain
					mc/kg +		surgery)	levels.
					Nitroglycerin			
					1000 mc.			
6.	Elkassa	Prospec	Tibia and	93	Administration	Patients	Revised	Patients
	bany et	tive	ankle		of popliteal	received	American	receiving
	al.,	cohort			and	only	Pain Society	regional

Nr.	Authors	Study	Type of	No	Intervention	Control	Pain asses-	Benefit of the
Crt.		type	fracture				sment	intervention
	2015	study			saphenous	systemic	Patient	anesthesia
	[45]				nerve blocks	analgesia	Outcome	demonstrated
							Questionnaire	better quality of
							24h after	recovery at 24
							surgery	hours.
7.	Khalili	RCT	Tibia	79	MgSO4 plus	Isobaric	Verbal rating	- The addition
	et al.,		and/or		isobaric	bupivacaine	scale 5	of MgSO4 to
	2011		fibula		bupivacaine	combined	minutes	bupivacaine
	[26]				administered	with normal	before	without opioids
					intrathecally	saline	injection,	resulted in
					once as part of	intrathecally	after the start	prolonged
					spinal		of surgery,	sensory block
					anesthesia.		and every 15	duration and
							minutes until	reduced post-
							surgery was	surgery
							completed.	analgesic
								consumption
								without
								additional side
								effects.

No.	Authors	Type of study	No	ASA status	Intervention	Control	Pain assessment	Benefits of intervention
1	Yue et al., 2023 [29]	RCT	82	NS	Post-surgery hematoma injection with ropivacaine	Standard multimodal pain regimen	VAS 0,8,16,24 h post-surgery	Reduced post- surgery pain score in the interven- tion group
2	Vinod et al., 2022 [30]	RCT	70	1-11	Ultrasound- guided femoral nerve block with Bupivacaine + Dexmedetomidine and Subarachnoid block with heavy Bupivacaine	Ultrasound- guided FNB with Bupivacaine + Normal Saline and Subarachnoid block with heavy Bupivacaine	NRS (Before and after the block, post- surgery every 2 hours until 24 hours)	The addition of Dexmedetomidine significantly increased the duration of post- surgery analgesia compared to FNB alone.
3	Makkar et al., 2019 [31]	RCT	135	1-11	Intravenous acetaminophen, diclofenac, morphine, and oral pregabalin were administered 30 minutes pre- operatively	The control group received intravenous saline and a placebo in the preoperative period.	VAS (Immediately upon shifting to recovery, then at 30 min, 1, 2, 4, 8, 12, 24, and 48 h)	Preemptive multimodal analgesic regimen significantly reduced the number of patient-controlled Epidural Analgesia boluses required post-surgery.
4	Memary et al., 2017 [32]	RCT	62	1-11	Dexmedetomidine is administered via a femoral nerve block	Did not receive femoral nerve block	VAS (Immediately post-surgery, and at 6, 12, and 24 hours after surgery)	Perineural administration of dexmedetomidine significantly reduced intraoperative and post-surgery narcotic consumption.
5	Pan et al, 2016 [33]	RCT	314	NS	Intravenous morphine titration: 3-mg increments every 5 minutes until VAS ≤ 3	Intravenous ibuprofen: 800 mg once after hospitalization when VAS > 7	VAS every 5 minutes after the first injection	Intravenous morphine titration provided a faster and greater reduction in pain scores compared to intravenous ibuprofen within the first hour.
6	Deng et al., 2009 [34]	RCT	200	NS	Ketamine: - Group A initial dose, then 0.1 mg/kg/h for 24 hours/ Group B initial dose, then 0.05	Group D, which received an equivalent volume of normal saline	VAS (every 4 hours for 24 hours)	VAS scores in groups A and B were significantly lower than in groups C and D

APPENDIX 3. Femur fractures

No.	Authors	Type of study	No	ASA status	Intervention	Control	Pain assessment	Benefits of intervention
					mg/kg/h for 24 hours/ Group C initial dose, then 0.01 mg/kg/h for 24 hours	only.		
7	Tondare et al., 1982 [35]	RCT	25	NS	Femoral nerve block using Labat's technique with lidocaine hydrochloride 1% and adrenaline	NS	Subjective and objective assessment of the movement of the fracture site, rotation of, and traction on the injured limb before and after giving the nerve block.	Femoral nerve block was useful for transportation and immobilization of patients with the fractured femur shaft

Nr	Author	Type of	Ν	ASA	Intervention	Control	Pain	Benefits of
crt		study		-			assessment	intervention
1	Park et al.,	RCT	57	NS	Continuous	Continuous	VRS (4, 8, 12,	cACB provided
	2025 [37]				sciatic nerve	sciatic nerve	24, 48, and 72	significantly
					block and	block and	hours after	better post-
					continuous	single-	surgery)	surgery pain
					adductor canal	injection		control than
					block (cACB)	adductor canal		sACB at 12, 24,
						block (sACB),		48, and 72 hours
								after surgery.
2	Choi et al.,	RCT	70	NS	Naproxen with	Naproxen	VAS	The study found
	2024 [51]				pregabalin	(Group A)	(6,12,24,48,72h	comparable pain
					(Group B), ad-	administered	after surgery)	reduction
					ministered 2	2 hours before		between Group
					hours before	surgery and		A and Group B
					surgery and then	then every 12		
					every 12 hours	hours for 14		
					for 14 days	days		
3	Lee et al.,	RCT	60	NS	Group B: sciatic	Group A:	VAS (6, 12, 18,	Pain scores were
	2023 [38]				and femoral	Patient-	24, 32, 40, 48,	significantly
					nerve blocks	controlled	and 60 hours	lower in the
					with	analgesia with	after PNB)	group receiving
					ropivacaine	ketorolac		peripheral nerve
					combined with	initiated		blocks with
					dexamethasone	approximately		ropivacaine
					disodium	10 hours after		combined with
					phosphate,	peripheral		dexamethasone
					epinephrine	nerve block		and epinephrine
						(PNB)		compared to the
						induction with		group receiving PCA.
4	Samineni	Observational	96	NS	Popliteal sciatic	ropivacaine. No peripheral	VAS (at 0, 8, 16,	PCA. PNBs are
4	et al., 2022	retrospective	50	113	nerve blocks	nerve block	24 hours after	associated with
	[39]	cohort study			administered	Herve block	surgery)	significantly
	[33]	conort study			either preoper-		Surgery	lower VAS pain
					atively, within			scores and lower
					30 minutes			total narcotic
					before surgery			usage during the
					or post-surgery,			post-surgery
					within 30			period.
					minutes of en-			
					tering the PACU			
5	Caglar et	Prospective,	40	NS	WALANT	Peripheral	VAS (-	The peripheral
	al., 2022	non-			technique:	nerve block	-	nerve block
	[55]	randomized			Mixture of	technique:	Every 10	technique was
					lidocaine,	Mixture of	minutes	more successful
					epinephrine,	bupivacaine	Post-surgically:	in pain
					and NaHCO3.	and lidocaine		management for
					Administered in	in a 1:1 ratio,	5 hours)	unimalleolar
					three steps:	approximately		fractures, with
					haematoma	30 minutes		lower mean
					block,	before		intrasurgical and

APPENDIX 4. Ankle fractures

Nr	Author	Type of	Ν	ASA	Intervention	Control	Pain	Benefits of
crt		study					assessment	intervention
					subcutaneously,	surgery.		postsurgical VAS
					and at the			scores.
6	<u> </u>	D.CT	1.00	NIC	fracture site.			
6	Sort et al.,	RCT	160	NS	Ultrasound-	Spinal	NRS from	Peripheral nerve
	2021 [40]				guided popliteal	Anaesthesia	administration	block anaesthe-
					sciatic and	with	of anesthesia	sia provided a
					saphenous	hyperbaric	until 27 hours	superior post-
					blocks with	bupivacaine	post-anesthesia	surgery pain
					ropivacaine.			profile com-
								pared to spinal anaesthesia.
7	Anathona	RCT	40	NS	Parecoxib	Placebo	Verbal	
/	Angthong	RCI	40	IN S		Ріасеро		The
	et al., 2021				before surgery		Numerical	perioperative
	[52]				and then every 12 h for the		Rating Score for	administration
					initial 48 h post-		pain intensity, Verbal	of parecoxib did
					surgery		Numerical	not significantly
					surgery			improve post-
							Rating Percentage for	surgery pain control or
							pain relief 0, 4,	
							12, 24, and 48	reduce opioid requirements
							hours after	compared to
								placebo.
8.	McDonald	RCT	106	NS	Intravenous	Administration	surgery VAS POD 1-7	Ketorolac
0.	et al., 2020	NC1	100	113	ketorolac intra-	of opioids	VAS FOD 1-7	reduced pain,
	[50]				operatively and	alone without		particularly on
	[50]				every 6 hours.	ketorolac and		the first day
					Perioperative	peripheral		after surgery,
					regional	nerve block		and had mixed
					anesthesia	nerve block		effects on other
					(popliteal and			post-surgery
					saphenous			days.
					nerve blocks)			,
9.	Li et al.,	Retrospective	89	NS	Local infiltration	Intravenous	VAS (Every	Local infiltration
_	2020 [56]	observational			analgesia with	patient-	eight hours	analgesia
		cohort study			ropivacaine	controlled	from 8 hours to	significantly
					injected into	analgesia with	48 hours after	reduces early
					the dermis and	morphine	surgery)	post-surgery
					subcutaneous		0 ,,	pain
					tissue			
					surrounding the			
					incision.			
10	Lee et al.,	RCT	95	NS	Peripheral	PNB with no	VAS (6, 12, 18,	There was a
	2020 [41]				nerve block	PCA	24-, 36-, 48-,	significant
					(PNB) for all		and 72-hours	difference in
					participants;		post-surgery)	VAS pain scores
					Patient-		,	at 24 hours post-
					controlled			surgery between
					analgesia (PCA)			the treatment
					with ketorolac			and control
								groups.
								-

Nr	Author	Type of	Ν	ASA	Intervention	Control	Pain	Benefits of
crt		study					assessment	intervention
11	Alexander	Retrospective	302	NS	Preoperative	No block	NRS	Patients
	et al., 2020	cohort			popliteal sciatic		(Preoperatively,	receiving
	[1]	observational			nerve block		upon arrival to	preoperative
		study			with		the PACU, and	nerve blocks had
					Ropivacaine/		upon discharge	significantly
					Preoperative		from the PACU)	lower pain
					adductor canal			scores than
					block with			those receiving
					Ropivacaine/			post-surgery
					Post-surgery			blocks or no
					popliteal sciatic			blocks.
					and adductor			
					canal blocks			
12	Park et al.,	RCT	63	NS	Evaporative	Ice packs:	VAS post-	Evaporative
	2019 [59]				coolants: Re-	Applied for 10	operative day	coolants exhib-
					soaked	minutes, fol-	1-5	ited comparable
					compression	lowed by a 10-		efficacy to ice
					bandage with	minute rest		packs in reduc-
					spray coolant	period, re-		ing preoperative
					every 2 hours	peated every		edema and pain
					for 12 hours a	2 hours for 12		in patients with
					day over 5 days.	hours a day		ankle fractures.
						over 5 days.		
13	Jain et al.,	RCT	60	NS	Vitamin C for 6	Placebo	VAS (Week 1, 2,	Vitamin C
	2019 [54]				weeks/		6, 3 months)	supplementation
					Diclofenac			improved VAS
					sodium twice a			scores at the
					day for 5 days, with additional			second- and
					use as needed			sixth-week follow-ups.
14	Hanacock	RCT	100	NS	Ropivacaine,	No	VAS every 4h	Intervention sig-
14	et al., 2019	NC1	100	145	Epinephrine,	intervention	for the first 48h	nificantly re-
	[57]				Morphine and	intervention	post-surgery	duced immedi-
	[37]				Saline solution.		post surgery	ate in-hospital
					Sume Solution.			pain scores, but
								below the
								minimal clini-
								cally important
								difference
15	Davidovitch	RCT	84	NS	Liposomal	Placebo	VAS (4, 24, 48,	Pain scores were
	et al., 2017				bupivacaine and		72 hours, and	significantly
	[58]				bupivacaine in-		336 hours (14	lower in the
					jecttion adminis-		days))	interventional
					tered intraoper-			group versus
					atively and			control at each
					injected into			time point
					periosteal,			assessed.
					peritendinous,			
					surrounding			
					muscles, and			
					subcutaneous			
					tissue			

Nr	Author	Type of	Ν	ASA	Intervention	Control	Pain	Benefits of
crt		study					assessment	intervention
16	Ding et al.,	RCT	50	NS	Continuous	Single-shot	Before	Pain scores were
	2015 [42]				infusion	popliteal	discharge from	significantly
					popliteal sciatic	sciatic nerve	PACU (VAS)	lower in the On
					nerve block	block	- 8, 12, 24, 48,	Q group at 12
					through an On		and 72 hours	hours and 2
					Q pump (On Q		after surgery	weeks post-
					group)		(NRS)	surgery
							- 2, 6, and 12	Continuous infu-
							weeks after	sion significantly
							surgery (VAS	reduced
							and NRS)	"rebound pain" .
17	Lee et al.,	Prospective	58	NS	Double block -	Sciatic nerve	VAS during	The double
	2014 [43]	observational			femoral and	block alone	operation, im-	block offers
		study			sciatic nerve		mediately after	good post-
					blocks		surgery, 2 hours	surgery pain
							post-surgery, 1	control for
							day post-	patients with
							surgery, 2 days	hindfoot and
							post-surgery	ankle disease.
18	Goldstein	RCT	51	1-111	Popliteal block,	The control	VAS 2, 4, 8-, 12-	Popliteal blocks
	et al., 2012				Saphenous block.	group consists	, 24-, and 48-	provided supe-
	[44]					of patients	hours post-	rior pain control
					Narcotic pain medication	who received	surgery	compared to
					post-surgery:	general anesthesia		general anesthesia alone
					intravenous	without any		for up to eight
					Morphine via	regional		hours post-
					PCA pump.	anesthesia		surgery.
19	Ortiz et al.,	RCT	60	NS	Ketorolac orally	NS	VAS 0, 2, 4, 8,	All three
	2010 [48]				twice daily/		12, and 24	treatments
					Etoricoxib twice		hours	showed similar
					daily/			efficacy in pain
					Diclofenac			reduction.
					twice daily			
20	Norman et	RCT	54	1-11	Intravenous	Intravenous	VAS	Intravenous
	al., 2001				ketorolac	ketorolac	Preoperatively	ketorolac has
	[49]				administered	administered	and post-	preemptive
					before	after	surgery at 2, 4,	analgesic effects
					tourniquet	tourniquet	6, 8, 10, 12, and	when
					inflation	inflation.	24 hours after	administered
							tourniquet	before
							inflation	tourniquet
								inflation in ankle
	<u> </u>		<i>c</i> ·					fracture surgery.
21	Schug et	RCT	61	1-11	Oral	Placebo as an	NRS Daily	Patients
	al., 1998				acetaminophen.	adjuvant to	assessment for	receiving
	[53]				Morphine via	morphine by	72 hours or	acetaminophen
					PCA 72 hours or	patient-	until PCA	had lower pain
					until PCA	controlled	discontinuation	scores on Day 1
					discontinuation	analgesia (PCA) post-		compared to those receiving a
								placebo.
			L	l		surgery.		piacebu.

Nr crt	Author	Type of	N (i/c)	ASA	Intervention	Control	Pain assessment	Benefit of intervention
cit		study	(1/ 0/				ussessment	
1.	Ramegowda et al., 2024 [76]	RCT	50	-	Ropivacaine peri- neurally + magne- sium sulfate in 100 ml isotonic saline IV /Ropivacaine peri- neurally + magne- sium sulfate perineurally	-	VAS 0, 4, 8, 12, 24 post- surgery	Pain scores were significantly lower in the perineurally administered Magnesium group
2.	Chan et al., 2024 [60]	RCT	80	1-111	Plain bupivacaine + liposomal bupivacaine	Plain bupivacaine	NRS - post- surgery day 0: 4, 8, and 12 hours after surgery Post-surgery day 1: 8:30 am, 12:00 noon, and 4:00 pm post-surgery days 2 to 7: Once a day	liposomal bupivacaine to standard bupivacaine in the supraclavicular brachial plexus block significantly reduced post-
3.	Sciard et al., 2023 [61]	RCT	59	NS	median and radial nerves block with ropivacaine at the end of the surgery	injection with	,	both techniques gave comparable level of pain control during the first 48 hours after surgery
4.	Lee et al., 2023 [62]	RCT	66	NS	Single Infra- clavicular brachial plexus block for all groups/ IV PCA group: Fentanyl citrate IV PCA with doses based on body/ Continuous block group: Continuous infraclavicular BPB with ropivacaine.	BPB only group	VAS 4, 6, 9-, 12-, 24-, and 48-hours post- surgery, as well as two weeks after the operation	Continuous infraclavicular BPB did not reduce total opioid consumption compared to BPB only but was effective in controlling rebound pain at 9 and 12 hours after surgery
5	Ahmed et al., 2022 [63]	RCT	40	1-11	Dexmedetomidine: 1ug/kg (Group-B only)	Group-A received only Bupivacaine	VAS Immediately after recovery post- extubation and at the first demand of rescue analgesia	The visual analogue scores for pain were comparable immediately post- extubation but significantly lower in the Dexmedetomidine group at the time of first rescue analgesia.

APPENDIX 5. Radius fracture

Nr	Author	Туре	Ν	ASA	Intervention	Control	Pain	Benefit of
crt		of	(i/c)				assessment	intervention
		study						
6.	Zangrilli et al., 2022 [8]	RCT	43	NS	Preop.: Supracla- vicular brachial plexus block+ Pregabalin+ celecoxib+ Acetaminophen Post-surgery day 1- 3: Pregabalin and Celecoxib daily, Acetaminophen every 6 hours, Oxycodone every 4- 6 hours PRN breakthrough pain POD 4 until 6 weeks: Acetaminophen every 6 hours PRN pain Oxycodone every 4- 6 hours PRN	Preop.: upper extremity block Post-surgery: Acetaminophen as needed and Oxycodone q4-6 hours PRN break through pain	Vas preoperatively and post- surgery on post-surgery day 1 and 3, and at weeks 1, 2, and 6.	A multimodal pain control regimen used for patients undergoing elective outpatient wrist fracture surgery showed similar pain control compared to conventional methods. A rebound narcotic requirement was noted after the multimodal protocol was discontinued.
7.	Nho et al., 2022 [64]	RCT	72	1-11	breakthrough pain Ultrasound-guided axillary block with ropivacaine, lidocaine and dexamethasone	General anesthesia	VAS scores at 2, 4, 6, 12, and 24 h after surgery	BPB resulted in lower pain scores at all time points up to 24 hours post- surgery.
8.	Gottschalk et al., 2022 [77]	RCT	56	NS	Intravenous dexamethasone at the time of surgery and oral methylprednisolone taper.	Received intravenous dexamethasone at the time of surgery.	VAS recorded three times a day (morning, afternoon, and evening) for the first 7 days post- surgery.	Methylprednisolone significantly improved pain relief and reduced opioid consumption
9.	Shahid et al., 2021 [65]	RCT	56	1-11	Group R: Ropivacaine administered under ultrasound guidance/ Group L: Levobupivacaine administered under ultrasound guidance	-	VAS scores were rec- orded every 5 minutes for the first 30 minutes after block admin- istration, and then every hour until the score reached 4.	Levobupivacaine had a faster onset of sensory and motor blocks compared to ropivacaine Levobupivacaine provided a longer duration of analgesia compared to ropivacaine.
10.	Sellbrant et al., 2021 [66]	RCT	90	-	Supraclavicular block with mepivacaine/	General anesthesia	NRS before surgery, 2, 24, 48, 72 hours	The mepivacaine group had significantly lower

Nr	Author	Туре	Ν	ASA	Intervention	Control	Pain	Benefit of
crt		of	(i/c)				assessment	intervention
		study			Supraclavicular block with ropivacaine		after surgery, and at block resolution	post-surgery pain scores and opioid consumption compared to the ropivacaine group.
11	Wong et al., 2020 [67]	RCT	52	1-111	Infraclavicular nerve block with local anesthetic solution lignocaine with 1:200,000 adrenaline and ropivacaine. Sedation with propofol infusion during surgery Post- surgery: Regular oral paracetamol every 6 h for 3 days or until discharge		NRS upon arrival to PACU, 1 hour, 2 hours, 24 hours, 48 hours, and at 3 and 6 months after surgery	Regional anesthesia significantly reduced post- surgery pain scores at rest and with
12	Moradkhani et al., 2020 [78]	RCT	64	1-11	Propofol and Ketamine administered as a bolus, with additional doses given as needed until complete immobility was achieved. – Sufentanil administered as needed.	Received only propofol	time of block and every 5 minutes during surgery	The combination of ketamine and propofol did not significantly differ from propofol alone in terms of pain, nausea, vomiting, hallucinations, and patient satisfaction.
13	Jung et al., 2020 [72]	RCT	101	NS	Surgical-site multimodal drug injection with ropivacaine, morphine sulphate, ceftezole, and normal saline solution, admin- istered to periosteal area and pronator quadratus muscle, and to subcutane- ous area and skin.	multimodal drug injection	VAS 1 hour before surgery and at 4, 8, 24, and 48 hours after surgery.	Patients who received a surgical- site multimodal analgesic injection after palmar plating for distal radius fractures had no clinically important reduction in pain scores.
14	Johnson et al., 2020 [68]		80		PNB	GA		Patients in the nerve block only group showed a statistically significant decrease in pain at discharge

Nr	Author	Туре	Ν	ASA Intervention		Control	Pain	Benefit of
crt		of	(i/c)				assessment	intervention
15	Akhondzadeh et al., 2019 [71]	study RCT	60	1-11	- Group F: lidocaine 1% and fentanyl - Group K: lidocaine 1% and ketamine	-	VAS at 15 minutes, 30 minutes, 1, 2, 3, 4, 5, 6, 9, 12 and 24 hours after the block	Fentanyl-lidocaine resulted in significantly lower pain intensity and opioid consumption compared to ketamine-lidocaine.
16	Ganta et al., 2018 [69]	RCT	50	NS	Continuous infusion through an OnQ pump: 0.2% ropivacaine for 48 hours (OnQ group).	0	VAS 8, 12-, 24- , 48-, and 72- hours post- surgery	- The OnQ pump did not provide statistically improved post- surgery pain control compared to a single nerve block for distal radius fractures.
17	Holmberg et al., 2017 [70]	RCT	52	1-11	Preoperative Ultrasound-guided infraclavicular brachial plexus block with ropivacaine 0.75%	Post-surgery block	NRS 30 min, 1 h, 2 h, 4 h, 8 h, and 24 h after surgery.	The preoperative block significantly reduced pain scores and resulted in lower analgesic consumption at one-week post- surgery.
18	Alter et al., 2017 [73]	RCT	41	NS	Liposomal Bupivacaine (Exparel) before incision.	Plain bupivacaine	NRS POD 0-5	Exparel resulted in significantly lower pain levels and fewer opioid pills consumed on the day of surgery compared to Marcaine.
19	Nazari et al., 2017 [80]	RCT	82	NS	Inhaled aromatherapy with pure essential oil of lemon: 2 drops per non-absorbent cloth pinned to the collar for 30 minutes; dose based on 1 drop per 20 kg body weight; applied before surgery and at 8- and 16-hours post- surgery.		surgery and at	Inhaled aromatherapy reduced pain in patients undergoing orthopedic surgery for distal radius fractures. - The recovery rate was higher in the treatment group compared to the control group, indicating a faster recovery from pain.

Nr	Author	nor Type N A		ASA	Intervention	Control Pain		Benefit of
crt		of	(i/c)				assessment	intervention
		study						
20	Lee et al., 2015 [81]	RCT	36	NS	- TENS: 50 Hz, 15 min/day, continuously for 5 days	Sham TENS group, where the method was identical to that of the real TENS group but no electrical stimulus was applied.	TENS (pre- TENS period) and 5 minutes after completion of TENS (post-	sham TENS groups before treatment, but were lower in the real TENS group post-treatment.
21	Chung et al., 2010 [74]	RCT	44	NS	Perifracture site injections with a local anesthetic mixture consisting of ropivacaine, morphine, and epinephrine	Intravenous PCA alone after axillary nerve block		Perifracture site
22	Abbasivash et al., 2009 [79]	RCT	46	1-11	IVRA with 200 μg NTG and lidocaine diluted in saline.	lidocaine diluted with saline	tourniquet	sensory and motor blocks, enhancing anesthesia quality NTG reduced tourniquet pain and decreased the need for intraoperative

Nr crt	Author, year	Type of fracture	Type of study	N	Intervention	Control	Pain assessment	Benefit of intervention
1	Kumar et al., 2021 [75]	Fractures of the radius, fractures of the ulna, and both bone fractures of the forearm	RCT	80	Ultrasound-guided axillary brachial plexus block with Levobupivacaine and Dexmedetomidine.	Ultrasound- guided axillary brachial plexus block with Levobupivacai ne and Clonidine.	VAS every 30 minutes	Dexmedetomid ine provided a longer duration of sensory and motor blocks than Clonidine.
2	Kumar et al., 2014 [82]	Fractured shaft of humerus - Fractures of radius and ulna	RCT	30	Pre-operative stellate ganglion block with lidocaine under ultrasound guidance at the C7 vertebra level. General anesthesia	Received 3 ml of 0.9% saline during ultrasound- guided stellate ganglion block. General anesthesia		There were significant differences in pain visual analogue scale scores at rest between the lidocaine and saline groups at certain time points.
3	Bedi et al., 2017 [83]	Lower end of humerus	RCT	93	Clonidine added to 0.5% bupivacaine for brachial plexus block/ Clonidine administered intravenously.	Bupivacaine with 2 ml of NS in the block and 10 ml of NS intravenously as placebo.	,	Addition of clonidine to bupivacaine in brachial plexus blocks results in longer post- surgery pain relief compared to bupivacaine alone.
4.	Elhakim et al., 1994 [84]	Fractures of the phalanges and metacarpa I bones of the hand	RCT	40	IVRA -lidocaine with 2 mg atracurium (given to one group of patients)	Received lidocaine	VAS during surgery, immediately after tourniquet deflation, 5 minutes after deflation, 15 minutes after deflation	There was a significant decrease in pain during surgery and after surgery in the intervention group.

APPENDIX 6. Upper limb