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Abstract: The article analyses the use of logical variables in economic 
models solved by linear programming. Focus is given to the presentation of 
the way logical constraints are obtained and of the definition rules based on 
predicate logic. Emphasis is also put on the possibility to use logical 
variables in constructing a linear objective function on intervals. Such 
functions are encountered when costs or unitary receipts are different on 
disjunct intervals of production volumes achieved or sold. Other uses of 
Boolean variables are connected to constraint systems with conditions and 
the case of a variable which takes values from a finite set of integers.        
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1. Introduction 
 

A wide class of optimization models in 
economics are solved by means of linear 
programming. The linear programming 
problem is comprised within the general 
mathematical programming models and is 
characterized by the fact that both the 
objective function and the constraints are 
expressed mathematically by linear 
functions [2]. 

The general form of the linear 
programming problem (LPP) in matrix 
notation is: 

Max [Min] ( ) XCXf t ⋅=  
 

BXA ≤⋅               (1) 
0≥X  

 

where:  
( )nmA ,  – is the matrix of coefficients of 

the constraint system  

( )1,mB    – is the column vector of free 
terms 

( )1,nX   – is the column vector of the n 
variables 

( )nCt ,1  – is the transposed column 
vector (whose components 
determine the unknown 
coefficients of the objective 
function). 

 
In the general form of the LPP, it is 

considered that variables are real numbers.  
There are many economic applications of 

great importance which lead to models 
which also impose other conditions on 
variables. 

If the unknowns are Boolean variables, 
i.e. the final solutions for the linear 
programming problem is 0/1, a Boolean 
linear programming problem is obtained. 
There is also the possibility that only some 
of the variables are Boolean. 
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These problems are encountered in 
models where the user wants, for example, 
to select projects out of a given set, to 
select certain courses of action out of a 
given set etc.   

 
2. Logical constraints in linear program-

ming models 
 
A general model for choosing investment 

projects is considered. There are n 
investment projects whose ensuing benefits 
as a result of the implementation are 
known [4], [5].  

We note:    
 ,1=ix  if the project i is accomplished 
 ,0=ix  if the project i is not 

 accomplished 
The question is to determine the 

investment projects to be performed so that 
the total benefit should be maximum. We 
further consider introducing constraints on 
some logical operations. 

The following logical symbols will be 
used: x  (negation, not), yx ∨  
(disjunction, or), yx ∧  (conjunction, and), 

yx ≡  (equivalence), yx ⇒ (implication). 
The shift from logical formalism to 

algebraic formalism can be achieved by 
replacing terms of the form ( )1=x  by the 
variable x and the conditions of the form 
( )1=x  by ( )x−1 . 

The logical operator or is replaced by the 
addition operator “+”, and the logical 
operator and is replaced by the 
multiplication operator "." . 

The logical truth condition requires that 
the algebraic expression obtained be 
greater than or equal to 1.  

 
a) Incompatibility 

Two projects are incompatible when they 
cannot be accomplished at the same time; 
only one or neither can be accomplished 
(the projects involve the use of the same 

limited resources, or are technical variants 
having the same purpose). 

The truth table corresponding to the 
incompatibility situation is: 

 
 
 
 
 

Analysing the table, one can see that this 
leads to the constraint: 

1≤+ ji xx               (2). 
 
Constraint (2) may be deduced using 

algebraic methods. The incompatibility 
condition is expressed by means of the 
logical condition: 
( ) ( )11 =∧= ji xx  which must be true.  

 

We have:   
 

( ) ( ) ( ) ( )⇔=∨=≡=∧= 1111 jiji xxxx  
( ) ( ) 1111 ≤+⇔≥−+−⇔ jiji xxxx  

 

(De Morgan’s law has been applied 
YXYX ∨=∧ ) 

Generalization: 
• out of n projects, one or none can be 

accomplished:  ∑
=

≤
n

i
ix

1
1  

• out of n  projects, at most m projects 

can be accomplished:  ∑
=

≤
n

i
i mx

1
 

 
b) Disjunction (or) 
At least one of the projects i or j must be 

accomplished.  
The truth table corresponding to this 

situation is: 

 

 0=jx  1=jx  

0=ix  True True 

1=ix  True False 

  0=jx  1=jx  

0=ix  False True 
1=ix  True True 
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Analysing the table, one can see that this 
leads to the constraint: 

 
1≥+ ji xx               (3) 

 
Constraint (3) may be deduced using 

algebraic methods as follows: 
- the disjunction condition “at least one 

of the projects i or j must be 
accomplished” is expressed by means of 
the logical condition: 
( ) ( )11 =∨= ji xx  which must be true 
We have:    
( ) ( ) 111 ≥+⇔=∨= jiji xxxx  
Generalization: 
• out of n projects, at least one must be 

accomplished:  ∑
=

≥
n

i
ix

1
1  

• out of n projects, at least m must be 

accomplished:  ∑
=

≥
n

i
i mx

1
 

 
c) Alternative (xor) 
It involves that, given two projects, 

either of them should be accomplished, but 
not both. 

The truth table corresponding for this 
situation is: 

 

 
Analysing the table, one can that this 

leads to the constraint: 
 

1=+ ji xx               (4) 
 
The alternative (xor) is expressed by 

means of the logical condition: 
 ( ) ( )( ) ( ) ( )( )1111 =∧=∨=∧= jiji xxxx  

which must be true. 

 We have: 
( ) ( )( ) ( ) ( )( )⇔=∧=∨=∧= 1111 jiji xxxx

 ( ) ( ) ⇔≥⋅−+−⋅⇔ 111 jiji xxxx  
 ⇔≥⋅−+⋅− 1jijjii xxxxxx  

 jiji xxxx ⋅⋅+≥+⇔ 21  
Because the situations 0== ji xx  and 

1== ji xx  are excluded, it results:  

1=+ ji xx  and   jiji xxxx ⋅⋅+≥+ 21  
are equivalent. 

 
In optimization models leading to the 

LPP, the constraint will be expressed 
under the linear form given by (4). 

Generalization: 
• out of n projects, only one must be 

accomplished:  ∑
=

=
n

i
ix

1
1 

• out n projects, m  projects must be 

accomplished:  ∑
=

=
n

i
i mx

1
 

 
d) Implication  
If project i involves project j, project i 

cannot be accomplished without project j 
being accomplished. 

But, if project i is not accomplished, 
project j can be accomplished or not. 

The truth table corresponding for this 
situation is: 

 0=jx  1=jx  

0=ix  True True 
1=ix  False True 

 
Analysing the table, one can see that this 

leads to the constraint: 
 

ji xx ≤                (5) 
 
Constraint (5) may be deduced using 

algebraic methods. 

  0=jx  1=jx  

0=ix  False True 
1=ix  True False 
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The implication is expressed by means of 
the logical condition: 
( ) ( )11 =⇒= ji xx    which must be true. 
 
We have: 

( ) ( ) ( ) ( )⇔=∨=≡=⇒= 1111 jiji xxxx
( ) jiji xxxx ≤⇔≥+−⇔ 11  

 (We have applied the definition of 
implication   YXYX ∨≡⇒ ) 

The implication may appear in more 
complex situations. For analysis we build 
the logic situations table for 3 projects: 

 
 
  
 
 
 
 

The accomplishment of project i  
involves the accomplishment of at least one 
of the projects h and k.  

The situation is defined by the 
compliance with case F, G  or H and can 
be expressed by the constraint:  

 
khi xxx +≤ ,             (6)  

 
which verifies the 3 cases:  (F): 101 +≤ , 
(G): 011 +≤ , (H): 111 +≤ .  

The constraint (6) may be deduced using 
algebraic methods: 
( ) ( ) ( ) ≡=∨=⇒= 111 khi xxx  
( ) ( ) ( )( )⇔=∨=∨=≡ 111 khi xxx  
( ) khikhi xxxxxx +≤⇔≥++−⇔ 11  

 
The accomplishment of project i  

involves the accomplishment of projects h 
and k.  

The situation is defined by the 
compliance with case H and can be 
expressed by the constraint: 

 
khi xxx +≤⋅2 ,           (7) 

 
which verifies (H): 1112 +≤⋅ , i.e. 22 ≤ . 

Using algebraic methods, we obtain: 
( ) ( ) ( ) ≡=∧=⇒= 111 khi xxx  
( ) ( ) ( )( )⇔=∧=∨=≡ 111 khi xxx  
( ) khikhi xxxxxx ⋅≤⇔≥⋅+−⇔ 11  

 
The constraint khi xxx ⋅≤  is equivalent 

to the constraint khi xxx +≤⋅2 .  
Obviously, in an optimization model that 

results in the LPP, the constraint will be 
expressed in the linear form given by (7).  

The accomplishment of projects h or k 
involves the accomplishment of project i.  

The situation is defined by the 
compliance with case F, G or H and can be 
expressed by the constraint: 

 
  ikh xxx ⋅≤+ 2 ,          (8)  
 
which verifies the 3 cases:  
(F): 1210 ⋅≤+ , (G): 1201 ⋅≤+ , 
(H): 1211 ⋅≤+ . 
 
Using algebraic formalism, we obtain: 
 
( ) ( ) ( ) ≡=⇒=∨= 111 ikh xxx  
( ) ( ) ( )111 =∨=∨=≡ ikh xxx

 ( ) ( )( ) ( )⇔=∨=∧=≡ 111 ikh xxx  
( ) ( ) 111 ≥+−⋅−⇔ ikh xxx  

khkhi xxxxx ⋅−+≥⇔  
 
Obviously, the two constraints are 

equivalent, but in the optimization model 
that leads to the LPP, it is required to 
express the constraint in the linear form 
given by (8).  

 

 
Case 

 
ix  

 
hx  

 
kx  

A 0 0 0 
B 0 0 1 
C 0 1 0 
D 0 1 1 
E 1 0 0 
F 1 0 1 
G 1 1 0 
H 1 1 1 
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3. Rules for defining logical constraints 
 
Using Boolean variables in modelling 

business processes by means of linear 
programming allows us to define a large 
number of logical constraints. 

We consider n sentences nPPP ,...,, 21  and 
let the binary variables be nxxx ,...,, 21 , 
defined as follows:  

1=ix ,  if iP is true 
0=ix , if iP  is false. 

Based on predicate logic, we can state 
the following rules [1]: 
Rule 1.  At most one of the propositions 

nPPP ,...,, 21  can be true, leads to the 
condition:  

 ∑
=

≤
n

i
ix

1
1.  

Generalizations are immediate ( nk ≤ ): 
• At most k of the propositions 

nPPP ,...,, 21  can be true, it results: 

 ∑
=

≤
n

i
i kx

1
 

• At least k of the propositions 

nPPP ,...,, 21  are true, it results: ∑
=

≥
n

i
i kx

1
. 

 
Rule 2. One and only one of the 
propositions nPPP ,...,, 21  is true, leads to 

the condition: ∑
=

=
n

i
ix

1
1.  

The generalization is immediate ( nk ≤ ): 
• Exactly k of the propositions 

nPPP ,...,, 21  are true, it results: ∑
=

=
n

i
i kx

1
. 

Rule 3. If proposition 1P  is true, then 
proposition 2P  is true, leads to the 
condition: 21 xx ≤ , which forces 2x  to 
take the value 1, if 1x  is equal to 1. We can 
see that proposition 2P  can be true, and 
proposition 1P false. 

The generalization of this reasoning will 
be immediate:  

2P true ⇒  3P true, i.e. 32 xx ≤ . 
 

Rule 4. Proposition 1P  is true if and only if 

2P is true, leads to the condition: 21 xx = . 
The generalization for n propositions 
which should be all simultaneously true or 
simultaneously false leads to n-1 
constraints: 21 xx = , 32 xx = ,..., nn xx =−1 . 
 
Rule 5. If proposition 1P  is true or 
proposition 2P  is true, then proposition 

3P  is true, leads to the condition: 

321 2 xxx ⋅≤+ . The generalization is 
immediate: if at least one of the 
propositions nPPP ,...,, 21  is true, then the 
proposition 1+nP  is true, therefore: 

 ∑
=

+⋅≤
n

i
ni xnx

1
1 .     

 
Rule 6. If proposition 1P  is true and 
proposition 2P  is true, then proposition 

3P  is true, leads to the following 
conditions:  
 

,1 321 xxx +≤+   ., 2313 xxxx ≤≤  
 
The generalization is immediate:  if all 

propositions nPPP ,...,, 21  are true, then 
proposition 1+nP  is true, therefore n+1 
constraints result:  

∑
=

++−≤
n

i
ni xnx

1
11  , 

 nixx in ,...,2,1,1 =≤+  
 

4. Other applications of Boolean variables 
in linear programming  

 
a) Variables with values in a set of 

integers   
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The concrete type of certain modelled 
economic phenomena require that 
variables subject to constraints should only 
take values from certain discrete sets (most 
of the times integers). For example, if 
variable x  can take only values from the 
set of integers { }skkk ,...,, 21  we can write: 

ss kkkx ⋅++⋅+⋅= ααα ...2211  with 

 ∑
=

=
s

i
i

1
1α and   

{ } sii ,...,2,1,1,0 =∈α        (9) 
 
A mixed linear programme results with 

Boolean variables { }sααα ,...,, 21 . 
Obviously, in order for this replacement 

to be possible, variable x  must be upper 
bounded, so that the number of Boolean 
variables considered should be relatively 
small. Generally, such a superior increase 
is generally natural in economic models.  

 
b) Constraint systems with conditions 
There are situations in which the 

construction of a model leads to 
programmes in which constraints or groups 
of constraints occur which are mutually 
exclusive or which are not necessarily 
totally complied with. Let us analyse the 
following cases, in which the objective 
function is linear and in the constraint 
system: 

 
 ( ) 01 ≥Xg   
 ( ) 02 ≥Xg             (10) 
 ...... 
 ( ) 0≥Xg m  
 

we formulate the following hypotheses: 
 
I1. One and only one of the inequalities 

(10) is true. 
Solution. We assume constraints are 

bounded and let iL  be the lower bound of 
the function ( ) .,...,2,1,, miXgi  

The constraint system (10) is equivalent 
with: 

 
( ) ( )

{ }∑
=

=∈=

=≥⋅−−
m

i
ii

iii

mi

miLXg

1
,...,2,1,1,0,1

,...,2,1,01

αα

α
(11)

                    
I2. Out of the m  inequalities (10), k  

must be verified. 
Solution. If iL  has the same significance 

as before, then the constraint system (10) is 
equivalent with:   

 
( )

{ }∑
=

=∈−=

=≥⋅−
m

i
ii

iii

mikm

miLXg

1

,...,2,1,1,0,

,...,2,1,0

αα

α
  (12) 

 
I3. Out of the m inequalities (10), at least 

k  must be satisfied. 
Solution. The constraint system (10) 

becomes:   
 

 
( )

{ }∑
=

=∈−≤

=≥⋅−
m

i
ii

iii

mikm

miLXg

1

,...,2,1,1,0,

,...,2,1,0

αα

α
  (13) 

 
In each of the cases considered, the 

initial problem becomes a mixed linear 
programming problem by adding Boolean 
variables mααα ,...,, 21 . 

 
c) The linear objective function on 
intervals 
In economic models leading to linear 

programming, the objective function to be 
optimized (maximization or minimization) 
is linear. For example, in the models for 
optimizing production, for a production 
volume x and a unitary variable cost c, the 
objective function takes the form:  

xcz ⋅= .  
This approach does not square with 

reality when fixed costs vary on intervals 
or direct variable costs (or unitary receipts) 
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are different on disjunct intervals 
according to the size of the production 
achieved or sold.  

In order to write the objective functions 
in these complex economic situations, in 
what follows we focus on the linear cost 
functions on intervals [1], [3]. 

The form of the objective function 
presented above cannot be accepted when 
the production decision involves a fixed 
cost as well. We formulate the hypothesis: 
if production is null ( )0=x , then the 
production cost of the product considered 
is 0 and equal to ,Kxc +⋅  if 0>x .  For 
the resolution, the binary variable y is 
introduced, defined as follows: 

0=y , if  0=x  
1=y , if  0>x . 

This allows the introduction of the fixed 
cost in the objective function, which takes 
the form: 

min z,  with  ....+⋅+⋅= yKxcz   (14) 

The connection between x and y is 
accomplished by means of the additional 
constraint: 

yMx ⋅≤ ,  
where M is a constraint greater than or 
equal to the maximum value that x can 
take. 

 
Generalization 
For each linear objective function 

(involving costs or receipts) on intervals, 
variables kx can be introduced, which take 
values in the interval ( ]kk MM ,1−  with 

00 =M . 
On each interval, the variable cost is 

constant, and values xk will all be null 
except for the interval which includes 
value x. The generalization allows 
addressing uniform and progressive 
discounts in provisioning activities. Figure 
1 shows an example of objective function 
of the total cost.  

 

 
Fig. 1. Total cost function [1] 

 
In the construction of the model 

represented in Figure 1, variable x will be 
replaced by 4321 xxxx +++ . 

The objective function for the relative 
part of this production becomes: 

 

min z,  with 
( ) ( ) +⋅+⋅+⋅+⋅= 22221111 yKxcyKxcz

( ) ( ) ...44443333 +⋅+⋅+⋅+⋅+ yKxcyKxc  
 

with the constraints:  
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1110 yMx ⋅≤≤  

22221 yMxyM ⋅≤≤⋅    

33332 yMxyM ⋅≤≤⋅      (15) 

44443 yMxyM ⋅≤≤⋅  
14321 =+++ yyyy  

 
Remark. If x varies discontinuously, at a 
small variation ε of the cost function, we 
have to decide if x = Mi belongs to the 
interval i or i+1. Supposing the upper 
bounds of the intervals are excluded, i.e.: 

 
[ ) [ ),...,,,0 21211 MMxMx ∈∈  

 
we will have:   

 
( ) 1110 yMx ⋅−≤≤ ε  

( ) 22221 yMxyM ⋅−≤≤⋅ ε      (16) 
( ) 33332 yMxyM ⋅−≤≤⋅ ε  
( ) 44443 yMxyM ⋅−≤≤⋅ ε

 14321 =+++ yyyy     
 
The last constraint does not allow x to 

belong to the interval ( )ii MM ,ε− . 
Model (15) can be generalized for an N 

number of intervals:    

min z,  with ( )∑
=

⋅+⋅=
N

i
iiii yKxcz

1
 

and the constraints:  
 

 iiiii yMxyM ⋅≤≤⋅−1 , Ni ,...,2,1=    
 1...21 =+++ Nyyy          (17) 

 

It can be noticed that model (17) 
comprises ( )12 +⋅ N  restrictions.  

 
 
 
 
 
 
 
 

5. Conclusions 
 
The use of logical variables in economic 

models solved by means of linear 
programming allows the construction of 
optimization models for productive 
processes which are closer to reality.  

Thus, there can be a decrease in the 
inflexibility of linearity constraints 
frequently encountered in linear 
programming and of the simplifying 
hypotheses which are made regarding the 
definition of the objective function and of 
the model constraints. 
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