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An assignment model based on similarity
measur es of intuitionistic fuzzy sets

Dorin LIXANDROIU'

Abstract: First, this paper presents some distance and similarity measures of intuitionistic
fuzzy sets. These similarity measures can be applied in models of multi-attribute decision.
We propose an assignment model based on similarity measures of intuitionistic fuzzy sets,
where the elements of sets are weighted. A numerical example is also given.
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1. Introduction

The notion of intuitionistic fuzzy sets (IFS), introduced by Atanasov (1986),
generalized the concept of fuzzy sets (FS) introduced by Zadeh (1965). The
measures of distance and similarity are used to estimate the degree of closeness
between two sets. In the models of multi-attribute decision, the distance and the
similarity between two IFS is very important (Lixdndroiu and Lixdndroiu, 2013).

Szmidt and Kacprzyk (2000), Hung and Yang (2004, 2008) show several
measures for the distance between two IFS and the way the associated similarity
measure is constructed. Li Qin and Olson (2007) make a comparative analysis of
different defined measures of similarity between two IFS. Xu (2007) develop some
similarity measures of IFS and define the notions of positive ideal IFS and negative
ideal IFS. These similarity measures are applied to multiple attribute decision
making based on intuitionistic fuzzy information.

This article presents some measures for the distance between two IFS and
the possibility of obtaining similarity measures. It is known that the two concepts of
distance and similarity are dual concepts.

In Ejegwa, Akubo, Joshua (2014) a model of allocation is built based on the
distance between two IFS, in which the elements have the same importance.

In this article, based on the measure of similarity between two IFS, which also
considers the weights of the elements, we build a weighted allocation model.
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2. Basic concepts

A fuzzy set (FS) is defined as follows (Zadeh, 1965): let X = {Xl,Xz ,...,Xn} be a
universe of discourse, a fuzzy set A is characterised by a membership function
Up: X = [0,1], which associates the degree of membership # A(X j) to each

element Xj € X,
A={xj.unlx; ) xj € X} M

In the particular case, when t only takes the values O or 1, the fuzzy set A is a
classical subset of X.

Definition 2.1. An intuitionistic fuzzy set (IFS) Ain X is (Atanasov, 1999):
A=), ualx) Lvalx; hxj e X; )
which is characterized by a membership function fp and a non-membership
function V5, where:
ua: X =[01], xje X > ualxj)e o] 3)
va: X —=[01], xjeX —>VA(Xj Je [0.1] (4)

on condition that

,uA(xj)+vA(xj)SI forall Xj € X

For each IFS A in X if

ﬂ'A(Xj )zl—,uA(xj )—VA(XJ—) (5)
then 77 A(X i ) is called the degree of indeterminacy (or a hesitation margin) of x; to A.
If 7Z'A(Xj )zl—,uA(Xj )—VA(XJ- )=O,for each Xj € X the IFSA is reduced

to a classical fuzzy set.

Definition 2.2. (Hung and Yang, 2008)
If A and B are two IFS in X, then

(i) Ac B ifand only if VXe X, za(X) < #g(x) and v o(X) > vg(x);
(i) A=B ifand only if VXe X, ua(X)= g(x) and v o(X) = vg(x);



D. LIXANDROIU: An assignment model based on similarity measures 431

(iii) AC = {(X,V A(X), Y7, A(X))| xe X}, where AC denotes the complement of A,
(iv) AN B={{x min(z,(x). g (X)) max(v 5 (x).vg (x))| xe X};
(v) AU B ={(x max(,(x). g (x)) min(v 5 (x).v5 (x))) | xe X}.

Let @(X) be the set of all IFSs of X. We introduce the concepts of distance
measure and similarity measure between two IFSs:

Definition 2.3. (Hung and Yang, 2008)

The real function d : @(X)x®(X) — R"is called a distance measure if it
satisfies the following properties:

(D1) d(A,B)=d(B,A), VABe &(X);

(D2) d(A,A)=0, VAe &(X);

(D3) d(D,DC )= max d(A,B),ifD is a crisp set;

A,Bed(X)
(D4)If Ac Bc C, then d(A,B)<d(A,C)and d(B,C)<d(AC),
VA,B,Ce &(X).

Definition 2.4. (Hung and Yang, 2008)

The real function S: @(X)x@(X)— R is called a similarity measure if it
satisfies the following properties:

(S1) S(A,B)=S(B,A), VABe &(X);

(S2) S(D,DC ): 0, if D is a crisp set;

(S3) S(E,E)= A’Iée’lg)((x)S(A, B), VEe ®(X);

(S4)If Ac Bc C, then S(AB)>S(A C)and S(B,C)<S(AC),
VA,B,Ce &(X).

Remark. Generally, normalized expressions are used for the measures considered:
- for the distance measure: d: ®(X)x®(X)— [0,1]
and d(A,B)e [01], VA Be &(X);
- for the similarity measure: S: ®(X)x®(X)— [0,1]
and S(AB)e[0]] VABe ®(X).
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In Xu (2007), the property (S3) is replaced by:
S(A,B)=1 ifandonly if A=B.

We may use the distance measure to define a Similarity measure.
Let f be a monotone decreasing function.

From 0<d(A,B)<1 we have f(0)> f(d(A,B))> f(1). This implies:
f(d(AB))- f(1)

f0)-1(1)
The similarity measure between A,Be @(X) as follows:
f(d(AB)-1(2) 6
10)- 1) ©

0< <1

S(AB)=
Hung and Yang (2004) give several possibilities for the selection of f.
3. Distance measur es and similarity measures of |FSs

Szmidt and Kacprzyk (2000) proposed several distances for IFSs based on the
geometric distance model. Xu (2007) generalizes these distances, as follows:

d(A’B)zlil 5 (,UA(Xj )- g (x; ]a +‘VA(XJ' )-va(x; 1“ +‘7IA(XJ )- 7g(x; ]aj:la

2]':1
(7
and
1
d(A, B):|:2];] j%l[ﬂA(Xj )—ﬂB(Xj ]0{ +‘VA<XJ' )_VB(Xj ]0{ +‘7Z'A<Xj )—”B(Xj ]0{):|0!
(®)
where a > 0.

Remark. If o =1, then (7) and (8) are the Hamming distance and the normalized
Hamming distance respectively. If & =2, then (7) and (8) are the Euclidian
distance and the normalized Euclidian distance respectively.

If the weight of the element Xj € X is considered as Wj € (01), a weighted

distance can be defined:



D. LIXANDROIU: An assignment model based on similarity measures 433

1
o

[;i UﬂA (X11a+‘VA( )- VB(XX +‘7TA ) ”B(ijtj] )

where W:(Wl,Wz,...,Wn )T is the weight vector of X;, j=1.2,..,n, with the
n
property ij =1 and @ > 0. The vector w of the weights reflects the relative

=1
importance given to each X;, j=12,..n

Remark. If a =1, then (9) is reduced to the weighted Hamming distance.

T
If Wz[%,%,...,%j , then (9) is reduced to (8). If «a=2 and

nn

According to Szmidt and Kacprzyk (2000), these distance measures satisfy the
conditions specified in the Definition 2.3.

T
w= (l,l,,%j , then (9) is reduced to the normalized Euclidian distance.

From (8), a similarity measure of Aand Be @(X), S(A,B) can be defined as:

S(AB)=1- [2 OﬂA - a5 ;) alg )-ve x|+

1 (10)

Halx; -7l 1)}

If we take the weight of each X o j=12,...n, X j € X into account, then

S(AB)-1 [ 5wy feali sl |+ a1l |+

+‘7zA(xj)—7zB(xj}aﬂ;. (11)
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-
Remark. If each element has the same importance, i.e. Wz(l,l,...,lj , then (11)
nn n

is reduced to (10).
The similarity measures defined by (10) and (11) satisfy the conditions
specified in the Definition 2.4.

4. The assignment model based on similarity measures of |FSs

The classical assignment problem is a special type of linear programming problem
where assignees are being assigned to perform tasks (Hillier and Lieberman, 2005).
We reformulate the problem in a way that satisfies the following hypotheses:
1. The number of assignees (A) is m.
2. The number of tasks (T) is n.
3. Each task Tj , ] =12,...,n is characterized by S attributes (characteristics)

noted by C={C,,C, ,...,CS}. The performance level desired for each attribute
(characteristic) and for each task is represented by the [FSs, shown as follows:

T, =1Cetr (C)vr (C)IC ECE j=12,..n. (12)
4. For each assignee, we have the individual performance level for each attribute
(characteristic) of the task. This is represented by the IFSs, shown as follows:

A ={(Cy. 15 (C)va (C))IC EC} T=12,...m. (13)
5. The weight vector of the attributes:

S
W= (Wlawza---aWS)T , where wy 20, k=1,2,....s and Zwk =1.
k=1

To solve the problem, we calculate the degree of similarity of assignee A and the task

Tj ,fori=12,...,mand j=12,...,n, with the relationship (11) (supposing that & =1):

S0, S G- € -
P (14)

tz (C)-,

The assignee A is assigned to task Tj that achieves the maximum the degree of

similarity, i.e. S(A,T;)=max S(A,T;).
|
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5. Numerical example

Let A={Aq,Ay,A3,A; }be the set of IT graduates, T ={Ty,T»,T3, T4} be the IT
jobs (e.g. IT programmer, IT tester, Database consultant, Web designer) and
C= {Cl ,Co ,C3} be the set of the skills needed to the jobs.

The jobs and the performance level desired for each skill are represented by
the IFSs and shown as follows:

T, ={(C,,0.8,0.1),(C,,0.7,0.1),(C,,0.4,0.2)}
T, ={(C,,0.7,0.1),(C,,0.9,0.1),(C;,0.8,0.1)}
T, ={(C,,0.5,0.2),(C,,0.8,0.1),(C;,0.9,0.1)}
T, ={(C,,0.9,0.1),(C,,0.6,0.2),(C,,0.8,0.1)}

After the various examinations, the graduates obtained the following performance
level represented by the IFSs:

A ={(c,,0.7,0.2),(C,,0.7,0.2),(C;,0.6,0.2)}

A ={(c,,0.8,0.1),(C,,0.4,0.1),(C,,0.7,0.1)}

A ={(C,,0.6,0.2),(C,,0.8,0.1),(C;,0.7,0.2)}

A, ={(c,,0.7,0.1),(C,,0.8,0.2),(C,,0.8,0.1)}

The weight of the skills (attributes) are: w= (0.5,0.2,0.3)T .

We utilize (14) to calculate the degree of similarity between jobs and
graduates. It follows that:

ey A A A A
T1 0.87 0.85 0.79 0.79
T2 0.85 0.82 0.90 0.98
T3 0.79 0.71 0.89 0.85
T4 0.82 0.86 0.78 0.86

The optimal solution is to assign the IT graduate A to the IT job T, graduate A, to
the job T,, graduate A; to the job T; and graduate A, to the job T,.
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