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Abstract: First, this paper presents some distance and similarity measures of intuitionistic 
fuzzy sets. These similarity measures can be applied in models of multi-attribute decision.  
We   propose an assignment model based on similarity measures of intuitionistic fuzzy sets, 
where the elements of sets are weighted. A numerical example is also given.   
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1. Introduction 
 
The notion of intuitionistic fuzzy sets (IFS), introduced by Atanasov (1986), 
generalized the concept of fuzzy sets (FS) introduced by Zadeh (1965). The 
measures of distance and similarity are used to estimate the degree of closeness 
between two sets. In the models of multi-attribute decision, the distance and the 
similarity between two IFS is very important (Lixăndroiu and Lixăndroiu, 2013). 

Szmidt and Kacprzyk (2000), Hung and Yang (2004, 2008) show several 
measures for the distance between two IFS and the way the associated similarity 
measure is constructed. Li Qin and Olson (2007) make a comparative analysis of 
different defined measures of similarity between two IFS. Xu (2007) develop some 
similarity measures of IFS and define the notions of positive ideal IFS and negative 
ideal IFS. These similarity measures are applied to multiple attribute decision 
making based on intuitionistic fuzzy information. 

 This article presents some measures for the distance between two IFS and 
the possibility of obtaining similarity measures. It is known that the two concepts of 
distance and similarity are dual concepts. 

In Ejegwa, Akubo, Joshua (2014) a model of allocation is built based on the 
distance between two IFS, in which the elements have the same importance. 

In this article, based on the measure of similarity between two IFS, which also 
considers the weights of the elements, we build a weighted allocation model. 
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2. Basic concepts  
 
A fuzzy set (FS) is defined as follows (Zadeh, 1965): let { }n21 x,...,x,xX =  be a 
universe of discourse, a fuzzy set A is characterised by a membership function 

[ ]1,0X:A →µ , which associates the degree of membership ( )jA xµ
 

to each 

element Xx j ∈ ,  

( )( ){ }XxxxA jjAj ∈= ,, µ                          (1) 

 
In the particular case, when Aµ  only takes the values 0 or 1, the fuzzy set A  is a 
classical subset of X.   
 
Definition 2.1. An intuitionistic fuzzy set (IFS) A in X is (Atanasov, 1999): 

( ) ( )( ){ }XxxvxxA jjAjAj ∈= ,,, µ                       (2) 

which is characterized by a membership function Aµ  and a non-membership 
function Av , where: 

   [ ] ( ) [ ]1,0,1,0: ∈→∈→ jAjA xXxX µµ                (3) 

   [ ] ( ) [ ]1,0,1,0: ∈→∈→ jAjA xvXxXv                (4) 

 
on condition that 

   ( ) ( ) 1≤+ jAjA xx νµ  for all  Xx j ∈  

 
For each IFS  A  in X, if  

   ( ) ( ) ( )jAjAjA xvxx −−= µπ 1                       (5) 

then ( )jA xπ  is called the degree of indeterminacy (or a hesitation margin) of  jx to A.  

If   ( ) ( ) ( ) 01 =−−= jAjAjA xvxx µπ , for each Xx j ∈  the IFS A is reduced 

to a classical fuzzy set. 
 
Definition 2.2. (Hung and Yang, 2008) 

If A and B are two IFS in X, then 
 

(i) BA ⊆  if and only if ( ) ( )xx,Xx BA µµ ≤∈∀  and ( ) ( )xx BA νν ≥ ; 
(ii) BA =  if and only if ( ) ( )xx,Xx BA µµ =∈∀  and ( ) ( )xx BA νν = ; 
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(iii) ( ) ( )( ){ }Xx|x,x,xA AA
C ∈= µν , where CA denotes the complement of A; 

(iv) ( ) ( )( ) ( ) ( )( )( ){ }XxxxxxxBA BABA ∈=∩ |,max,,min, ννµµ ; 
(v) ( ) ( )( ) ( ) ( )( )( ){ }XxxxxxxBA BABA ∈=∪ |,min,,max, ννµµ . 
 
Let ( )XΦ  be the set of all IFSs of X. We introduce the concepts of distance 
measure and similarity measure between two IFSs: 
 
Definition 2.3. (Hung and Yang, 2008)  

The real function ( ) ( ) +→× RXX:d ΦΦ is called a distance measure if it 
satisfies the following properties: 

 

(D1) ( ) ( ) ( )XB,A,A,BdB,Ad Φ∈∀= ; 

(D2) ( ) ( )XA,0A,Ad Φ∈∀= ; 

(D3) ( )
( )

( ),B,AdmaxD,Dd
XB,A

C
Φ∈

= if D is a crisp set; 

(D4) If ,CBA ⊂⊂  then ( ) ( )C,AdB,Ad ≤ and ( ) ( ),C,AdC,Bd ≤   

     ( )XC,B,A Φ∈∀ . 
 
Definition 2.4. (Hung and Yang, 2008)  

The real function ( ) ( ) +→× RXX:S ΦΦ is called a similarity measure if it 
satisfies the following properties: 

 

(S1) ( ) ( ) ( )XB,A,A,BSB,AS Φ∈∀= ; 

(S2) ( ) ,0D,DS C =  if D is a crisp set; 
(S3) ( )

( )
( ) ( )XEBASEES

XBA
Φ∈∀=

Φ∈
,,max,

,
; 

(S4) If ,CBA ⊂⊂  then ( ) ( )CASBAS ,, ≥ and ( ) ( ),,, CASCBS ≤   
     ( )XC,B,A Φ∈∀ . 
 
Remark. Generally, normalized expressions are used for the measures considered: 

- for  the distance measure: ( ) ( ) [ ]1,0: →Φ×Φ XXd  
     and ( ) [ ] ( )XB,A,1,0B,Ad Φ∈∀∈ ; 
- for  the similarity  measure: ( ) ( ) [ ]1,0: →Φ×Φ XXS  
     and ( ) [ ] ( )XBABAS Φ∈∀∈ ,,1,0, . 
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In Xu (2007), the property (S3) is replaced by: 
 ( ) 1B,AS =  if and only if  BA = . 
 
We may use the distance measure to define a similarity measure.  

Let  f  be a monotone decreasing function. 
From ( ) 1B,Ad0 ≤≤  we have ( ) ( )( ) ( )1fB,Adf0f ≥≥ . This implies: 
 

   
( )( ) ( )
( ) ( ) 1

1f0f
1fB,Adf0 ≤

−
−≤ . 

The similarity measure between ( )XB,A Φ∈  as follows:   

  ( ) ( )( ) ( )
( ) ( )1f0f

1fB,AdfB,AS
−

−=                         (6) 

         
Hung and Yang (2004) give several possibilities for the selection of f. 
 
 
3. Distance measures and similarity measures of IFSs 
 
Szmidt and Kacprzyk (2000) proposed several distances for IFSs based on the 
geometric distance model. Xu (2007) generalizes these distances, as follows:  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) αααα
ππννµµ

1
n

1j
jBjAjBjAjBjA xxxxxx

2
1B,Ad

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑ ⎟

⎠
⎞

⎜
⎝
⎛ −+−+−=

=
 

                                           (7) 
and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) αααα
ππννµµ

1
n

1j
jBjAjBjAjBjA xxxxxx

n2
1B,Ad

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑ ⎟

⎠
⎞

⎜
⎝
⎛ −+−+−=

=

                                         (8) 
where .0>α  
 
Remark. If  1=α , then (7) and (8) are the Hamming distance and the normalized 
Hamming distance respectively. If 2=α , then (7) and (8) are the Euclidian 
distance and the normalized Euclidian distance respectively. 
 
If the weight of the element Xx j ∈  is considered as ( )1,0w j ∈ , a weighted 

distance can be defined:     
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( ) ( ) ( ) ( ) ( ) ( ) ( ) αααα
ππννµµ

1

12
1,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ −+−+−= ∑

=

n

j
jBjAjBjAjBjAj xxxxxxwBAd     (9) 

where ( )Tn21 w,...,w,ww =  is the weight vector of njx j ,...,2,1, = , with the 

property  ∑
=

=
n

j
jw

1
1  and .0>α  The vector w of the weights reflects the relative 

importance given to each njx j ,...,2,1, = . 
 
Remark. If  1=α , then (9) is reduced to the weighted Hamming distance.  

If  ,1,...,1,1 T

nnn
w ⎟

⎠
⎞

⎜
⎝
⎛=  then (9) is reduced to (8). If  2=α  and 

,1,...,1,1 T

nnn
w ⎟

⎠
⎞

⎜
⎝
⎛=  then (9) is reduced to the normalized Euclidian distance. 

According to Szmidt and Kacprzyk (2000), these distance measures satisfy the 
conditions specified in the Definition 2.3.   
 
From (8), a similarity measure of ( )XBandA Φ∈ , ( )B,AS  can be defined as: 
 

( ) ( ) ( ) ( ) ( )
⎢
⎢
⎣

⎡
⎜
⎝
⎛ +−+−−= ∑

=

n

j
jBjAjBjA xxxx

n
BAS

12
11,

αα
ννµµ  

             ( ) ( ) .
1
αα

ππ ⎥⎦
⎤
⎟
⎠
⎞−+ jBjA xx  

 

(10) 

 
If we take the weight of each n,...,2,1j,x j = , Xx j ∈  into account, then 

( ) ( ) ( ) ( ) ( )
⎢
⎢
⎣

⎡
∑ ⎜

⎝
⎛ +−+−⋅−=

=

n

1j
jBjAjBjAj xxxxw

2
11B,AS

αα
ννµµ  

            ( ) ( ) .xx

1

jBjA
αα

ππ ⎥⎦
⎤
⎟
⎠
⎞−+                                          (11) 



Bulletin of the Transilvania University of Braşov • Series V • Vol. 9 (58) No. 2 - 2016  
 
434

Remark. If each element has the same importance, i.e. ,1,...,1,1 T

nnn
w ⎟

⎠
⎞

⎜
⎝
⎛=  then (11) 

is reduced to (10). 
The similarity measures defined by (10) and (11) satisfy the conditions 

specified in the Definition 2.4.   
 
 
4. The assignment model based on similarity measures of IFSs 
 
The classical assignment problem is a special type of linear programming problem 
where assignees are being assigned to perform tasks (Hillier and Lieberman, 2005).   

We reformulate the problem in a way that satisfies the following hypotheses: 
1. The number of assignees (A) is m. 
2. The number of tasks (T) is n. 
3. Each task njT j ,...,2,1, =  is characterized by s attributes (characteristics) 

noted by { }sCCCC ,...,, 21= . The performance level desired for each attribute 
(characteristic) and for each task is represented by the IFSs, shown as follows: 

 

( ) ( )( ){ } njCCCCCT kkTkTkj jj
,...,2,1,∈|,, == νµ .         (12) 

4. For each assignee, we have the individual performance level for each attribute 
(characteristic) of the task. This is represented by the IFSs, shown as follows: 

 

( ) ( )( ){ } miCCCCCA kkAkAki ii
,...,2,1,∈|,, == νµ .       (13) 

5. The weight vector of the attributes: 

( )Tswwww ,...,, 21=  , where skwk ,...,2,1,0 =≥  and ∑
=

=
s

k
kw

1
1 . 

 

To solve the problem, we calculate the degree of similarity of assignee iA  and the task 

jT , for mi ,...,2,1=  and nj ,...,2,1= , with the relationship (11) (supposing that 1=α ): 
 

( ) ( ) ( ) ( ) ( )(
⎢
⎢
⎣

⎡
+−+−⋅−= ∑

=

s

k
kTkAkTkAkji CCCCwTAS

jiji
12

11, ννµµ  

               ( ) ( ))]kTkA CC
ji

ππ −+  
(14) 

 

The assignee iA  is assigned to task jT  that achieves the maximum the degree of 

similarity, i.e. ( ) ( )ji
i

ji TASTAS ,max, = . 
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5. Numerical example 
 
Let { }4321 A,A,A,AA = be the set of IT graduates, { }4321 T,T,T,TT =  be the IT 
jobs (e.g. IT programmer, IT tester, Database consultant, Web designer) and 

{ }321 C,C,CC =  be the set of the skills needed to the jobs.  
The jobs and the performance level desired for each skill are represented by 

the IFSs and shown as follows:  
 

( ) ( ) ( ){ }2.0,4.0,,1.0,7.0,,1.0,8.0, 3211 CCCT =  
( ) ( ) ( ){ }1.0,8.0,,1.0,9.0,,1.0,7.0, 3212 CCCT =  
( ) ( ) ( ){ }1.0,9.0,,1.0,8.0,,2.0,5.0, 3213 CCCT =  
( ) ( ) ( ){ }1.0,8.0,,2.0,6.0,,1.0,9.0, 3214 CCCT =  

 
After the various examinations, the graduates obtained the following performance 
level represented by the IFSs: 
 

( ) ( ) ( ){ }2.0,6.0,,2.0,7.0,,2.0,7.0, 3211 CCCA =  
( ) ( ) ( ){ }1.0,7.0,,1.0,4.0,,1.0,8.0, 3212 CCCA =  
( ) ( ) ( ){ }2.0,7.0,,1.0,8.0,,2.0,6.0, 3213 CCCA =  
( ) ( ) ( ){ }1.0,8.0,,2.0,8.0,,1.0,7.0, 3214 CCCA =  

 
The weight of the skills (attributes) are: ( )Tw 3.0,2.0,5.0= . 

We utilize (14) to calculate the degree of similarity between jobs and 
graduates. It follows that: 
 

Degree of 
similarity 1A  2A  3A  4A  

1T  0.87 0.85 0.79 0.79 

2T  0.85 0.82 0.90 0.98 

3T  0.79 0.71 0.89 0.85 

4T  0.82 0.86 0.78 0.86 
 
The optimal solution is to assign the IT graduate 1A  to the IT job 1T , graduate 2A  to 
the job 4T , graduate 3A  to the job 3T  and graduate 4A  to the job 2T . 
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