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Abstract: This paper is about an instrumental research regarding the using of Linear              
Regression Model for data analysis. The research uses a model based on real data and stress 
the necessity of a correct utilisation of such models in order to obtain accurate information 
for the decision makers. The main scope is to help practitioners and researchers in their           
efforts to build prediction models based on linear regressions. The conclusion reveals the 
necessity to use quantitative data for a correct model specification and to validate the model 
according to the assumptions of the least squares method.   
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1. Introduction 

 
The present paper is a part of a series of instrumental researches meant to review the 
main multivariate data analysis models. The research is based on the exemplification 
of using the Multiple Linear Regression Model starting from the model specification 
and continuing with the validation of this one. The main issues related to this model 
are underlined in order to stress the importance of a correct utilisation in the process 
of data analysis.   
 
 
2. The Multiple Linear Regression Model 

 
According to Kutner, et al. (2005), “regression analysis has three major purposes: 
(1) description, (2) control, and (3) prediction”. Thus the regression model could be 
used to describe the relationship between different variables, to control and predict 
the evolution of a dependent variable according to the evolution of one or more vari-
ables used as predictors.  

One of the most popular models is the linear one, which starts from the               
assumption of a linear relationship between the analysed variables. If we take into 
consideration a dependent variable (Y) and an independent one (X), it would be 
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supposed that the mean of the dependent variable is placed on a straight line deter-
mined by the variation of the independent variable. In this respect, two parameters, 
β0 and β1, which determine a straight line, can be calculated based on the observed 
data. The observations of the dependent variable Yi is supposed to deviate from the 
mean with a random error denoted by εi (Rawlings, Pantula and Dickey, 1998). 
Thus, the statistical model of simple regression is: 

 

                                   Yi = β0 + β1Xi + εi                                                                                   (1) 
 

In practice, the variation of dependent variable is determined by more than one pre-
dictor, so that a multiple regression model is used by adding more independent vari-
ables to the above equation. 

 

             Yi = β0 + β1X1i + β2X2i + β3X3i + βkXki + εi                                         (2) 
 
The estimation of model’s parameters (β …βk) is made by using the least squares 
method, which can be applied only when the number of observed values for the ana-
lysed variables (n) is higher than the number of independent variables (k). Other as-
sumptions should be also considered: the errors (εi) have a null mean and a constant 
variance, the errors are not auto-correlated and the independent variables (X) are not 
correlated each other (Montgomery, Peck and Vining, 2006).   

The variables used in the regression model, both dependent and independent 
ones, have to be quantifiable (Saunders, Lewis and Thornhill, 2007). In this respect, 
a ratio scale is used for measurement, which allows the calculation of means and 
variation indicators. Moreover, in order to make predictions the selected variables 
have to be in a cause-effect relationship- i.e. the independent variables determine the 
evolution of the dependent variable. Thus, a strong statistical relationship between 
variables is not enough and the causal relationship should be interpreted with                  
caution, using supplementary analyses and references to theories (Kutner, et al. 2005).  

Conducting multiple regression analysis involves several steps, starting with 
the estimation of the model’s parameters, by using the least squares method, which 
continues with the test for parameters’ significance and other tests conducted for 
verifying the model’s assumptions mentioned above (Malhotra, 2004). Finally, the 
coefficient of determination (R2) can be calculated in order to measure the strength 
of association. The predicted values of the dependent variable (Ŷ) can also be ob-
tained based on the values of independent variables. 

 
 

2. Using the Regression Model in data analysis 
 
In the followings we are going to exemplify the applying of the Multiple Linear Re-
gression Model using the IBM SPSS system (Statistical Package for Social Sciences). 
The dependent variable (Y) is the GDP recorded in 2014 by every county of Roma-
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nia. The main economic problem related to this indicator is the huge difference that 
exists among Romanian counties (see Fig. 1). 
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Fig. 1. The levels of GDP recorded in 2014 by Romanian counties (Bucharest included) 
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We can notice that the capital city recorded a very high value of GDP, which is 
higher than the sum of the first 5 counties but there are also significant discrepancies 
between counties. Starting from this problem we tried to identify the influence                  
factors that contribute to a higher or a lower level of GDP.  In this respect, a                   
Multiple Linear Regression Model has been used having as predictors the following 
independent variables (see Fig. 2): the population size (Population), the labour re-
sources (Labour_res), the number of active companies (Company_ number) and 
the employed population (Employed_pop). These predictors have been chosen                   
starting from the supposition that the population is the main determinant of the total       
consumption and contribute to a large extent to the production process through the la-
bour resources and the employed population. Another predictor, the number of active 
companies, can have a direct influence on the production and consequently on the GDP 
value. As Bucharest recorded an extreme value, it has been excluded from the analysis. 

 

 

Fig. 2. The linear dependences between the GDP and every predictor (year 2014) 
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In Fig. 2 we can observe the linear dependence between the GDP and every predic-
tor, with determination coefficients (R2) higher than 0.7. Therefore, we can consider 
that every variable by itself explains more than 70% of the GDP variation. The 
highest influence is given by the number of companies, which explains 85.5% of the 
GDP variation. But the relevance of the statistical relationship is not enough for a 
scientific explanation of the causal relationship.  

In practice, an economic phenomenon is influenced by a mix of factors and 
the use of Multiple Regression Model is more suitable. Thus we have applied such a 
model on the above variables, all predictors being included together in the analysis 
(see Table. 1). 
 
Model Unstandardized 

Coefficients 
Std. 

Coeff. 
t Sig. Correlations Collinearity 

Statistics 
B Std. 

Error 
Beta Zero-

order 
Partial Part Tol-

er-
ance 

VIF 

(Constant) -2065,7 1491,5  -1,38 ,175      
Population -,047 ,036 -,95 -1,29 ,205 ,85 -,21 -,07 ,006 172,8 
Labour_res 95,069 56,85 1,29 1,67 ,103 ,88 ,26 ,09 ,005 191,6 
Company_   
number ,668 ,25 ,49 2,60 ,013 ,92 ,39 ,14 ,087 11,4 

Employed_ 
pop 11,660 30,51 ,10 ,38 ,705 ,90 ,06 ,02 ,042 23,5 

Table 1. The regression coefficients and multicolinearity 
 

The results show that even if every variable by itself is strongly correlated with the de-
pendent variable, when they are put together in the model, the majority of regression 
coefficients become insignificant. According to the results of t-Student test, the                         
significance level (Sig.) is smaller than 0.05 only for the Company_number. For the rest 
of variables, Sig.> 0.05 and the coefficients cannot be considered significantly different 
from zero. This anomaly appears due to a high multicollinearity between variables. This 
phenomenon is presented in the column “Partial correlation”, where the partial                            
correlation coefficients have quite small values. These coefficients represent the correla-
tion between two variables, which remains after removing their mutual correlation with 
other variables included in model. The multicolinearity is also revealed in the last two 
columns of the table. Small values of “Tolerance” and big values of “Variance Inflation 
Factor (VIF)” underline a low contribution of the variables to the model. It means that 
the model has computational problem and the predictors have to be reconsidered. In            
order to avoid such problems it is recommended to use a selection method of predictors. 
One of the best methods is “Stepwise selection”. This one includes the predictors in 
model step by step, starting with the variable that has the highest influence on the                     
dependent variable. The variables with small contribution to the variance explanation 
are excluded from model.  



Bulletin of the Transilvania University of Braşov - Vol. 10 (59), No. 1 - 2017 • Series V 
 
32 

 

Model Unstandardized Co-

efficients 

Std. 

Coeff. 

t Sig. Correlations Collinearity Sta-

tistics 

B Std. Error Beta Zero-

order 

Par

tial 

Part Toler-

ance 

VIF 

(Constant) 231,501 923,835  ,2 ,803      

Compa-

ny_number 
1,246 ,082 ,925 15,1 ,000 ,925 ,92 ,925 1,000 1,000 

(Constant) -2631,5 1302,41  -2,0 ,050      

Compa-

ny_number 
,87 ,15 ,649 5,8 ,000 ,925 ,68 ,328 ,255 3,915 

Labour_res 23,411 8,09 ,320 2,8 ,006 ,880 ,42 ,162 ,255 3,915 

Table 2. The results of regression model with stepwise selection 
 
The results of stepwise selection are presented in Table 2. The variable Compa-
ny_number has been selected at the first step and Labour_res at the second step. The 
rest of variables have been rejected. We can observe that by including the second 
variable the tolerance decreased and the VIF increased due to a certain multicolin-
earity but the regression coefficients are both significant as Sig.< 0.05. 

 

Model R R Square Adjusted R 

Square 

Std. Error of the 

Estimate 

Durbin-Watson 

1 ,925a ,855 ,851 2982,58941  
2 ,939b ,881 ,875 2735,12359 1,881 

a. Predictors: (Constant), Company_number 

b. Predictors: (Constant), Company_number, Labour_res 

c. Dependent Variable: GDP 

Table 3. The coefficient of determination and error autocorrelation testing 

 
The coefficient of determination (R2) for the model with two independent variables is 
0.855, which means that these variables explain 85.5% of the GDP variation (see Ta-
ble 3). The result of Durbin-Watson test (DW) is also provided. This is a tool used to 
test the error autocorrelation, as one of the regression assumption is that the errors are 
independent (there is no correlation between errors). The interpretation of this test’s 
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results is made by comparing the calculated value (d) with two critical values from 
DW table (dL and dU), which lies between 0 and 4. The hypothesis of autocorrelation 
is rejected if dU < d < 4-dU. In our case for a significance level α = 0.05, 2 predictors 
and 41 observations, the critical values are: dL=1.391 and dU=1.600. As the calculated 
value presented in Table 3, d=1.881 is higher than dU and lower than 4-dU, we can reject 
the hypothesis of error autocorrelation. 

Another assumption of the model is the absence of heteroscedasticity, which 
means that the errors have a constant variance. There is no direct method of identify-
ing heteroscedasticity but some visual methods and empirical tests could be used. 
One of the visual methods is to plot the standardized residuals (ZRESID) on the 
standardized predicted values (ZPRED) in a scatterplot diagram (see Fig. 3). This 
diagram can be made easily with the SPSS just when we perform the regression 
model by pressing the “Plots” button.  

 
Fig. 3. The relationship between standardized predicted values and residuals 

 
As the plot fans out, having some outlier values, we can conclude that there is 
a sign of heteroscedasticity. In such cases the estimators could be biased or 
inconsistent so that the results should be interpreted with prudence or new 
independent variables should be found. 
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3. Discussions and conclusions 
 
As we presented in the above analysis, the Linear Regression Model is a powerful 
method used for the description of relationships between variables and for                        
predictions but the results have to be interpreted with caution. First of all, it is very 
important to have a proper specification of the model taking into account the nature 
of the variables and of the relationships between these ones. In this respect, both the 
independent and dependent variables have to be measured with metric scales. Some-
times binary variable, named dummy variables, could be used as independent                    
variables. As regards the relationships between variables, these ones have to be             
linear but a pure statistical dependence is not enough. The dependence relationship 
must be based on a theory if we want to use the model for predictions. After the 
model specification, some validation procedures are necessary in order to accept the 
model’s hypotheses. If certain hypotheses are rejected, the model should be recon-
sidered or the results should be considered with maximum precaution. 

In the above example, we can find that increasing the number of companies 
and labour resources will lead to higher levels of GDP. Thus new investments are 
necessary for the regional economic development. Based on different values of the 
independent variables, predicted values of the GDP could be calculated but we have 
to take care that the model is susceptible of heteroscedasticity. The results should be 
also cross validated using other samples from different years. 

The results of this instrumental research could be useful both for practitioners 
and academic researchers in their efforts to build prediction models using the Linear 
Regression. The overall conclusion is that a superficial using of this model, without 
a proper validation, could lead to wrong conclusions and predictions. Consequently 
bad decisions could be made starting from inaccurate information. 
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