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A PROFIT MAXIMIZATION METHOD USING POST
OPTIMAL ANALYSIS IN LINEAR PROGRAMMING
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Abstract: The competition for market survival has become fiercer over the
years. The decision-makers are continuously challenged to maximize the
operational efficiency of their businesses, especially when it comes to
production structure. A good example is the product — mix problem,
highlighting how to choose between numerous possible products or quantities
to be manufactured while also considering resource constraints. Linear
Programming (LP) represents the best method to model such a scenario,
targeting the optimal operational point for all decisional variables. The
present paper covers the mixed product scenario double perspective, firstly to
determine the optimal operational points and secondly to provide additional
information on further improvement scenarios of these points by changing the
initial problem constraints. The decision makers are advised to efficiently
increase the current production level, taking advantage of the under-utilized
capacity of specific constraints in order to prolong the accessibility of those
already fully utilized. As a direct consequence, units will be more efficiently
used and hence allowing the aggregate operational profit growth.

Keywords: Linear programming, sensitivity analysis, post optimally
analysis, positive sensitivity analysis, Lagrange multiplier

1. Introduction

Linear programming is a well-known concept in the economic / industrial environment,
where decisional factors are continuously facing the weary challenge of utilizing limited
resources in an optimal manner. An interesting affirmation (Luenberger and Ye, 2008)
associates its strength with the capacity of being applied in various real scenarios, offering
also different methods of solving specific problems.

The main goal of specific fast-solving algorithms utilization (as simplex) is to provide the
optimal solution (in case there is any). Once highlighted, it has to be analysed / tested for
practical reasons, offering managerial insights that will lead to a best policy
implementation. However, deciders expectations related to linear programming are
mostly not limited to optimal solution delivery. Due to the economic environment
unpredictability, the identification of output sensitivity related to the input parameter
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changes proved to be much more useful than knowing each decision variable / objective
function value. If the sensitivity degree is high enough and there are reliable reasons to
believe that the model is representative for a real situation, they may be interested in a
thorough solution output analysis. The most frequent scenario involves changes in
resources level (right side term of each constraint) and considering the fact that the
solution requires input parameters constancy, the subject of sensitivity analysis comes
into play.

A wide range of companies are using such a modelling solution to solve different kinds
of practical problems. In these coordinates, sensitivity analysis role is to obtain specific
information regarding the influence of the input data variation on the decisional process.
In case changes appear in the activity costs or resources availability, it needs to determine
their influence over the spending schedule / supplying program, in order to assume the
best decision. Another frequent scenario involves the imminent introduction of additional
constraints / activities, after a stringent analysis of such a choice impact over the aggregate
results. Linear programming also offers a perfect occasion to introduce the "what-if"
analysis principle (Vakilifard, Esmalifalak et al., 2013), delivering powerful tools for post-
optimal analysis.

High-performance information programs have been lately developed based on specific
algorithms. The vast majority of available packages created to solve linear programming
problems do not have such limitations, offering valuable information regarding the
solution sensitivity to specific data variations (sensitivity / post optimality analysis).
Sensitivity analysis, which starts once the initial problem solution was delivered, consists
in a set of chained activities targeted to highlight the solution sensitivity degree at initial
assumption changes. Developed around an optimal basis, the simplex method is properly
treated in the specific literature, being introduced in various papers (Dantzig, 1963; Gal,
1979). It also has a tremendous importance in real situations, where parameter values can
be estimated (Dahiya andVerma 2007).

2. Literature Review

Starting from the definition proposed by Sung and Park (1988), Yang (1990)
distinguished two types of sensitivity analysis. The first focuses on identifying the
characteristic region within which the optimal basis remains unchanged despite
perturbations introduced into the problem (the stability region). The second, referred to
as Positive Sensitivity Analysis (PSA), aims to determine the specific region within which
the nonnegative variables comprising the optimal solution remain nonnegative even after
disruptive factors are introduced. As per Park, Kim et al. (2004), PSA expressly highlights
the bounded region within positive elements of optimal solutions remains superior to
zero.

Other different treatment possibilities of sensitivity analysis are represented by the
tolerance approach (Wendell, 1984 &1985) and global approach (Wagner, 1995). The goal
of the tolerance approach is to provide the maximum percent data variation, good enough
to keep the initial optimal solution structure unchanged, whilst the global sensitivity
analysis aims to determine the key variability factors. A merged analysis of these two
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scenarios offers interesting answers related to the linear programming key properties
(Borgonovo et al., 2018)

Based on the “optimal partitions” concept, another promising method of parametric
analysis was developed. Initially referring to two complementary but also disjointed
subsets of the restriction set method (Adler & Monteiro, 1992), the method was
generalized four years later (Monteiro & Mehrotra, 1996). The same concept represents
the basis for building another sensitivity analysis method within which cost coefficients
and resources availability are simultaneously changing (Greenberg, 2000). The Yang's or
Adler & Monteiro's method involves additional computation for interior-point methods in
order to determine optimal solution / optimal partition. However, the connections
between PSA and sensitivity analysis using optimal bases / partition are eventually
highlighted (Boyd and Vandenberghe 2004).

The sensitivity analysis, subsequent to the simplex method application, is rightly
developed around on optimal base, involving an insignificant computational effort. The
method has been discussed in a wide range of papers so far (Dantzig, 1963; Higgle and
Wallace, 2003; Ahmed et al, 2021; etc.), being also transposed in many linear
programming codes. The degeneracy scenario may offer incomplete information due to
alternative optimal bases (Baker and Evans, 1982; Knolmayer, 1984; Jansen et al., 1997,
Kim, Park et al., 2004).

Linear programming represents a practical analysis tool for optimal resources allocation,
mainly in underdeveloped countries economies. The mathematical algorithm was
conceived by the mathematician George Dantzig (1947), in his attempt to plan various
range of U.S. Air Force activities, considering limited resources. Seven years later, Lemke
offers the dual simplex method, as a perfect answer at his primal version (1951) - a
rigorous mathematic tool aiming to solve linear programming problems (Momoh, El-
Hawary et al. 1999). In 1979, Khachiyan and Kozlov present the first polynomial algorithm
for linear equations system, whilst Karmarkar (1984) suggests a specific projective
method, strong enough to set the linear program’s polynomial-time solvability, thus
starting the research related to the interior point method. Dantzig himself advocates for
this approach, considered the right tool for solving a wide range of economic / industrial
problems.

Equation systems represent an appropriate tool of linear algebra, utilized for optimizing
the resources allocation problem, ensuring adequate support to financial decision-making
problems, especially in the software implementation context. Therefore, linear
programming became a popular optimization technique, aimed at decisional variables
values able to optimize a unique set objective (profit maximization / cost minimization)
based on specific constraints.

3. Methodology

The present paper presents a linear programming subject, aiming to optimize a
maximum objective, described as a linear function. The process is restricted by the
presence of certain constraints (linear as well), also respecting the economic rationality
criteria - meaning nonnegativity assumption of considered variables. The chosen method
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for such an optimization process is the Lagrange method, requiring first of all, certain
specific assumptions. An initial maximization function should be firstly set, f(x;),i = 1,n
gathered with the presence of some particular constraints g;(x;),j = 1,m, conceiving
this way a new one, called Lagrangean:

m
L(X1, X0, ey Xp) = [ (X1, X0, eerve, Xp) — Z/lj -9 (X1, X, e, X)) (1)
=1

The A; parameters are called Lagrange multipliers and from the economic perspective
they represent a measure of objective function sensitivity to the constraint parameter
variation (shadow price). In the maximization problem, a specific shadow price / dual
variable can be associated to each constraint, its interpretation being reported only at the
present situation (debated problem), offering additional information for economic
analysis / increasing system efficiency.

Nested functions, meaning the objective f(x;) gathered with constraint function set
g(x;) are supposed to be continuous and differentiable. To solve the problem and find out
the minimum local point (x;), it is necessary to define first order condition (for each
Lagrangean variable), as shown bellow:
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In order to solve the current system restrictions (2) and find the aggregate solution -
including optimal point x; / shadow prices A7, the dual problem feasibility conditions have

to be considered (3), as well as the complementary slackness conditions (4):

gix)=0 - A4=20Mi=1Lnj=1m (3)

3

After optimal solution highlighting, we can go on by testing its sensitivity at various
parameters value changes. There are two options in this respect, first one aimed to see
how the influence of different parameters values changes over the final result, by solving
the initial problem repeatedly, for different inputs (preferably by computer). The plurality
of the considered scenarios increases the precision method, the main shortcoming in this
case being represented by the long time needed in order to test the wide range of possible
changes. The second one is represented by the specific post — optimality method, which
is used once the linear programming problem solution is revealed. For example, different
changes to the constraint’s right-side terms can be applied to improve the optimal profit
value. In each case, the sensitivity region is represented by the values range within which
the optimal quantities values can fluctuate, without changing the solution variable
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structure. A direct consequence is generally the optimal solution value / feasible region
change, except for the constraints redundancy scenario.

Case study

The first goal of our case study is to set the optimal production mix of a certain firm,
manufacturer of two different products, whose technological process involves the passing
through three different departments. The main purpose is represented by the profit
maximization, considering specific constraints related to each department available time,
(expressed in hours / half-year):

(max) f = 12x; + 16x, (5)

As previously mentioned, the objective reflects the business activity potential, reported
at the market selling price. Each constraint expresses the necessity of fitting the
department’s available time, reported to the specific processing period for any production
unit. In economic terms, the main question is how to ensure the output manufacture, in
order not to exceed each section specific limited time (1200 hours / 1500 hours / 1700
hours):

2x; + 5x, < 1200
3x; + 2x, < 1500 (6)
4x; + 3x, < 1700

Any included variable should imperiously fulfil the nonnegativity restriction, in order to
respect the economic rationality criteria.

Specific manufactured quantities (x; = 350 units / x; = 100 units) are highlighted by
solving the maximization problem, as well as the highest possible profit level (fax =
5.800 $) in the mentioned initial hypothesis: (Table 1)

The result of the basic mixed products problem Table 1
Shadow price Ay =2 A;=0 Ay=2
x* x] =350 x; = 100
fma.r f = 5800 $

Source: Author’s own research

The solution feasible areas, including the optimal point within it, are presented in Figure
1. Other interesting information is delivered by the second constraint redundancy,
meaning the lack of contribution in reducing the admissibility field in the attempt to reach
the optimal point. Mathematically speaking, the shadow price of this constraint should be
zero, whilst any positive value reflects the impact of one unit fluctuation over the general
objective function. In other words, a more efficient improvement of the profit function
can be achieved by expanding the constraint having the highest shadow price level.
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The zero value shadow price of the second constraint reflects the fact that the
corresponding time resource is not fully utilized in the manufacturing process. In such a
scenario, the second goal of the current case study is revealed, meaning the resources
utilization improvement. Hence, the established objective is to examine how a semiannual
reduction in the second section time influences aggregate performance under the
condition that the availability of all remaining components is concurrently enhanced.

a) We will suppose initially that the first equation is not expandable (the specific time
must remain unchanged) and we expand the third one instead, whilst releasing the entire
unused capacity of the second constraint. The new optimization problem can be written
as follows:

(max) f = 12x, + 16x, (7)
2xq + 5x, <1200

3x; + 2x, < 1500 — A
4x, +3x, <1700 + k- A

The similarities with the initial problem are obvious, the novelty consisting in a different
steps optimization for the expandable constraint. In this respect A units of unused time
will be released in second constraint, the third one being proportionally expanded, while
assuming that the second constraint time worthiness for one unit equals the worthiness
of k units in the third.

A further analysis of the optimal solution of problem (5) reveals that the maximal value
of A parameter is 250. Four different scenarios of the optimization problem (7) are
considered, k = 0.5,k = 1,k = 1.5 and k = 2, whilst for A parameter we assume A =
30,A=40,A=50,4A=60and A = 70 values.

Figure 1 also captures the profit optimization for the mentioned scenarios. Starting from
the basic problem optimal point (profit value 5800 $) four different linear evolutions are
revealed (one for each scenario). The optimal point in k = 1 case reflects the value at
which the shadow prices of both constraints match, so that any variation of A value
activates one of them, whilst the other becomes redundant instantly.
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Fig 1. Optimal function value for different values of A and k parameters
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b) The second assumed scenario requires the first equation expandability, the available
time for the third one remaining unchanged. The optimization problem is described
below:

(max) f = 12x, + 16x, (8)
2xq +5x, <1200+ k- A

3x; + 2x, < 1500 — A
4x; + 3x, < 1700

The situation is not quite different from the previous one, considering existing
similarities — time worthiness for one unit equals the worthiness of k units in the first
restriction. Although the optimal solution improvement process will lead to different
values (the expanded constraint is not the same), the objective function of the equational
system (8) follows exactly the same path, meaning Figure 1 perfectly reflects the present
scenario as well.

c) The present discussion cannot be ended without analysing the total expandability
scenario, the released time unit of the second constraint being counterbalanced by a
proportional extension, split between the other two constraints. In other words, the k
unit worthiness will be replaced by k4 units in the first restriction and others k5 units in
the third (kl + kz = k)

(max) f = 12x, + 16x, 9
2x1 + 5x2 S 1200 + kl 'A

3x; +2x, <1500 A4

4x1 + 3x2 S 1700 + kz - A

Things are slightly different here, due to the k; and k, complementarity. In these
circumstances, the profit growth will be reflected by the steepest trajectory in Figure 1,
considering k; + k, = 2 as assumed hypothesis. The same assumption guarantees
problem (9) profit level constancy as long as A parameter value remains unchanged,
despite the complementary variation of k; and k.
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Fig. 2. Profit evolution in the complementary extension scenario

A more specific analysis of the current scenario can be realized based on Figure 2.
Horizontal lines within it express the optimal solution structure, whilst the broken ones
highlight the profit level evolution. In addition to the aggregate vertical variation limits,
four horizontal thresholds delineate the specific production structures capable of
maintaining a constant profit level, with any crossing of these boundaries indicating a
transition to a different profit tier.

The numerical approach highlights other interesting aspects, the starting point being
represented by the linearity of the price evolution trajectory. As long as parameter A value
remains unchanged, the complementary evolution of k; and k, involves opposite
direction changes of the optimal solution components values. On the other hand, it is
worth emphasizing the modification steps constancy, the objective function structure
being directly responsible for their proportionality level (the first component’s decrease /
growth causes a 75% increase / lowering of the second one’s value).

4. Findings

The rational utilization of specific resources represents a very sensitive aspect,
becoming more and more thorny as time passes. Many countries in the world have been
affected by the improper resources usage, the optimal operating point being this way
negatively affected for various industries. Microeconomically, long-term resource
planning for each production unit becomes critical, and the mention of the limits within
available resources becomes a must. Management may further improve the optimal
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operating point by utilizing available resources accordingly. No matter the row material
necessity, machinery usage, or labour force targeted, a small level variation will generally
improve the final result.

Such an analysis was conducted in the present study, explaining how exactly the
maximum level of specific constraints can vary, in order to positively impact the aggregate
result. The managerial team can equilibrate the resources, by reducing the excess at one
level (selling machineries or transferring as reserve), whilst increasing the other, already
fully utilized (deciding eventually the acquisition of new equipment). The efficient
utilization of time resources would improve the objective function, ensuring operational
profit growth.

(371.43;91.43)

(350;100)

Fig. 3. Optimal solution improvement in the unique constraint extension scenario

To solve this aspect, linear programming principles are invoked, treating different
scenarios related to A and k parameters various values. As per Figure 3, the decrease of
the redundant constraint right-hand term does not move the optimal point. In exchange,
the proportional relaxation of any other constraint changes the maximal solution, whose
new value guarantees the objective improvement. More precisely, the third constraint
extension push left the optimal solution, whilst the first extension shifts the maximum
point on the right side. The post-optimal level certainly depends on the k parameter
considered values. If both constraints are simultaneously expanded, the parallel support
lines of the optimal solution improvement trajectories include previously determined
value pairs, one from each scenario (Figure 4). Mathematically speaking, such an
extension can be written as a linear combination whose extreme cases (one constant zero
value) cannot be excluded - once enabled, the optimal point moves only along each
nonredundant constraint graphical approach. This kind of approach can be easily
extended at many other restriction types, possibly encountered in various industries.
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Fig. 4. Optimal solution improvement in the complementary extension scenario
5. Conclusions

The company’s management should permanently adapt the decisional process at the
unpredictable economic context, especially in terms of the production structure line, as
the main factor for objective improvement. A manufacture trying to determine an optimal
product mix structure represents a very suitable example, the Linear Programming (LP)
usually representing the perfect tool for such a process modelling. The only drawback is
represented by its hypothesis regarding the parameter constancy unlike the real
economic environment, always dynamic and unpredictable. In order to avoid major
troubles, the company’s management must know in advance the impact of a resource
level variation / manufacturing process modification / raw material cost fluctuation on
the final result. This kind of research is well-known in the specific literature as sensitivity
analysis / post-optimality analysis, targeting the influence of various economic parameter
changes on the primal optimal solutions.

Software packages related to linear programming generally not only approach the basic
problem but also provide information regarding the optimal solution sensitivity to specific
data variations. That is exactly what was done in the previous chapter: using LP’s general
framework, we highlighted the area (interval) within optimal solution structure remains
unchanged at the modification of the right-hand side constraint term. Such information
proves to be of overwhelming importance in practice, where parameter values can be
estimated.

Our present research, aimed at the post optimal analysis of the profit maximization
model, may help company management to assume right decisions, in order to face the
resources level modification. More precisely, deciding factors might try to release unused
production capacity of some constraints, expanding the other’s capacity accordingly (with
resources already fully utilized). If the aggregate production time decreases on a certain
department can be achieved by reducing the usage times of various machineries / possibly
removing some of them from use, the increase in the available time requires an extremely
rigorous analysis. In order not to put pressure on costs, the management may decide to
overload the existing equipment, but in the long run such a choice may prove to be a
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disaster. The most efficient solution in this case would be the acquisition of new
machineries, providing this way the additional time required, without endangering the
existing operating capacity. The management will also decide regarding the investment’s
opportunity at a given time or its postponement, respectively.
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