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GEOMETRY OF GENERALIZED F-HARMONIC MAPS

Nour Elhouda DJAA*! and Fethi LATTI 2

Abstract

In this paper, we extend the definition of F-harmonic maps [1] and, we
give the notion of F-biharmonic maps, which is a generalization of bihar-
monic maps between Riemannian manifolds [3] and f-biharmonic maps [7]
and we discuss some conformal properties and the stability of F-harmonic
maps. Also, we give a formula to construct some examples of proper F-
biharmonic maps. Our results are extensions of [1] and [7].
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1 Introduction

Consider a smooth map ¢ : (M, g) — (IV, h) between Riemannian manifolds.
Let

F:MxR—(0,00), (z,7)— F(x,r), (1)

be smooth positive function, for any compact domain D of M the L-energy func-
tional of ¢ is defined by

PrleiD) = [ Fla.e(o)(@) vy, @)
where e(y) is the energy density of ¢ defined by
el) = 5 hldpler), dpler). g

vy is the volume element, here {e;} is an orthonormal frame on (M, g).

Definition 1. A map is called F-harmonic if it is a critical point of the F-enerqgy
functional over any compact subset D of M.
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2 First variation formula
Let F': M xR — (0,00), (x,r) — F(z,7), we denote by
O =0/or, F' =0,(F), F"=0,(0:(F))
and let F,., F!, F € C°°(M) defined by

Fy(z) = F(z,e(p)(@), Fl(z)=F(z,e(p)(x)), F'(z)=F"(z, 6(@)(33))-(4)

Theorem 1. Let ¢ : (M, g) — (N,h) be a smooth map and let {¢1}ie(—ce) be a
smooth variation of ¢ supported in D. Then

d
GEr(ei D) _ == [ (o), )
_ Oy .
where v = Bt oo denotes the variation vector field of p,
Tr(p) = Fy 7(p) + dip(grad" F}), (6)

and 7(p) is the tension field of ¢ given by

7(p) = trace Vde. (7)

Tr () is called F-tension field of ¢.

Proof. Define ¢ : M x (—e€,€) — N by

(;3(Jf,t) = th(.T), (wvt) €M x (_676)7 (8)

let V¢ denote the pull-back connection on ¢~ T N. Note that, for any vector field
X on M considered as a vector field on M x (—¢, €), we have

[0, X] = 0. 9)
Using (2) we obtain
GEee D) = [ o(Flaeten@))[ v (10)
first, note that
0 (F(r.cle)@)) )| _, = dF (@uele)] _ - (1)
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Calculating in a normal frame at © € M, we have

Oe(e(pr)) = h(Vﬁtdwt(ei),d%(ei))

= h(V2de(dr).dpi(e;)), (12)
then
AF (ae(en)|_, = FIA(VED dp(e)
= el(h(vvF; dw(el))) - h(’U,VfZF; dso(el))v (13)
where the last equality holds since dgf)(@t)’ ) =Y define a 1-form on M by
t=
w(X) = h(v, Fldp(X)), X € I(TM), (14)
by (13) and (14) we get
dF (0 (e(¢t))) L_O = divw — h(v,dp(grad" F))) (15)

—h(v,F,', T((p)).

By substituting (11),and (15) in (10), and considering the divergence theorem,
the Theorem 3.1 follows. O

Corollary 1. A smooth map ¢ : (M, g) — (N, h) between Riemannian manifolds,
is F-harmonic if and only if

Tr(p) = F.m(p) + dgo(gradM F,f) =0. (16)
In the case where F'(z,r) = F(r) we obtain the results of Ara [1]
A mapping ¢ : (M™,g9) — (N", h) is called conformal if there exists a
A € C°(M,R%) such that for any X,Y € I'(T'M) we have h(dp(X),dp(Y)) =

Ag(X,Y). The function )\ is called the dilation for the map . The tension field
for a conformal map ¢ is given by (see [2]):

T(¢) = (2 —n)dp(gradin \) (17)

By Corollary 1 and formula (17), we obtain

Corollary 2. Let ¢ : (M,g) — (N,h) be a smooth conformal map with dilation
A, then

Tr(p) = dcp((2 —n)F! grad™ (In \) + grad™ F;) (18)
From Corollary 2 we obtain

Theorem 2. Let ¢ : (M™,g) — (N™, h) (n > 3) be a conformal immersion with
dilation X, then o is F'-harmonic if and only

F(z,r) = C(\(z) " 2.r, (19)



104 Nour Elhouda Djaa and Fethi Latti

Examples 2.1. :
1) If F is constant then any harmonic map is an F-harmonic map.

2) In partical, in the case where F(x,r) = F(r) and ¢ is an isometric immer-
sion, the following properties are equivalent:

i) @ is minimal;
1) @ is harmonic;
iii) ¢ is F-harmonic.

3) In the case where ¢ is an isometric harmonic immersion, the following
properties are equivalent:

i) ¢ is F-harmonic.
i) F=F(r)

4) In the case where ¢ is a harmonic map, the following properties are equiv-
alent:

{ i) gradM F! € kerdyp

1) ¢ is F-harmonic.

5) In the case where ¢ is a harmonic Riemannian submersion, the following
properties are equivalent:

i) grad™ F/ is tangent to the fibers of ;
i) ¢ is F-harmonic.

Theorem 3. Let ¢ : M — N be a smooth map of two Riemannian manifolds
and leti: N — P be the inclusion map of a submanifold, then ¢ is F-harmonic if
and only if Tr(i 0 ) is normal to N, where F' € C*°(M x R) is a smooth positive
function.

Proof. The F-tension field of the composition 70 ¢ : M — P is given by
mr(iog) = Flr(iog)+ di(de(gradM F))
since the tension field of the composition ¢ o ¢ is given by
T(i 0 @) = di(1(p)) + trace Vdi(dey, dyp),
we obtain
tr(iop) = FEldi(t(p)) + F. trace Vdi(dp, dp)
+di(dp(grad™ F!))

= di(tr(p)) + F. trace Vdi(dp, dyp).
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So 7r(i 0 ) — di(7p(p)) is normal to N, then
Tr(p) =0 <= 7p(ioyp) L N.
O

Theorem 4. Let ¢ : (M™,g9) — (N™, h) (m > 3) be a smooth map between
Riemannian manifolds. we assume that F| # 0. Then ¢ is F-harmonic if and
only if ¢ is harmonic with respect to the conformally related metric g given by

,>2/<m—2>'g

§: (F’r

Proof. Putting \(x) = F/(x,e(¢)(x), then the tension fields 7(p) with regard to
the conformally related metric § = \?g are given by

(o) = Aim{k(mfz)f(w)+dcp(gmd(k(m’2)>)}
= (E)" M () + de(grad(F) }

= (Fr/)(m_Q)/mTF(@)-

3 Second variation formula

Theorem 5. Let v : (M, g) — (N, h) be an f-harmonic map between Riemannian
manifolds and {Spt,s}t,se(fe,e) be a two-parameter variation with compact support
in D. Set

aSDt s 890t s

= 24 = 2% . 20
Y ot ltms—0’ Js lt=s=0 (20)

Under the notation above we have the following

32
9 Bl D ‘ —— | n W) v, 21
gD == [ mrw)e, (21)
where Jp(v) € T(p 1T N) given by
Jr(v) = —F! trace RN (v,dp)dp — trace V¥ F.V® v

—trace V¥ < V¥v,dp > Fdp. (22)

Here <, > denote the inner product on T*M ® ¢ *T'N and RN is the curvature
tensor on (N, h).

Proof. Define ¢ : M x (—¢,€) X (—¢,€) = N by

o(z,t,8) = prs(z), (x,t,5) € M x (—€,€) X (—¢€,€), (23)
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let V¢ denote the pull-back connection on ¢ 'T'N. Note that, for any vector

field X on M considered as a vector field on M X (—e¢,€) x (—¢,€), we have
[0, X] =0, [0s,X]=0, [00s] =0, (24)

Then, by (2) we obtain

2 2
8?88EF(%,5; D)’t=s=0 = /D a(?asF(a:, e(pr,s)(2)) ‘t:s:o Vg, (25)
first, note that 5
5 (@ eprs)(2)) = dF (D(e(prs))), (26)
dF(D(e(pr,5))) = h(V5,dd(ei), dé(eq)) F, (27)

when we pass to the second derivative, we get
82
5102 F (@ 0es(0),e(pns) (@) +h(V5 V5 db(er), do(ei) F
+h(V,dd(ei), V do(e:)) F]
+h(V5,do(e:), dd(es)) D (F). (28)

by (25) and the definition of the curvature tensor of (NN, h) we have

WV, Vhdo(e). do(e)Fl| = FLB(RY (w,dp(e))v, do(e)

=s=0

+F{W(VENVS A0, dgpled)|

(29)

by (29), the property of the curvature tensor of (N, h) and the compatibility of
V¢ with the metric h we have

WV, Vo do(ei).dp(e)Fy| = —FLh(R" (v,di(en)dp(e:), w)

+ei(h(VE, do(0), F di(e:)))|

~h(V5,d6(0), VEF dip(e)|

)
t=s=0

)
t=s=0

(30)

h(V,de(e:), V5 dp(e:)) F}

= ei(h(FVEv,w)) —h(VEFN?v,w).
(31)

t=s=0

Note that

0s(F7) 05 (F (2, e(pr,s)(2)))

= +dF!(0s(e(prs))), (32)
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by a simple calculation we have

AF,(Os(elprs))| = FIh(VEw,dgey)). (33)

t=s=0

then we get

(V5 de(e:), dp(e;))0s(FY)

= + < V%,dp > F'h(Viw,do(e;))

= +e;(h(w,< VPv,dp > F! dp(e;)))
—h(w, V¢ < VPu,dp > F dp(e;)).

t=s=0

(34)
From formulas (25), (28), (30), (31), (34), the divergence theorem and the F-
harmonicity of ¢, Theorem 5 follows. O
Lemma 1.

—/h(trace VP F V?v,w)vy = /FT” < V?u,dp >< V¥w,dp > vy (35)

Proof. we have:

—h(trace V¥ F,V¥Pv,w) = —h(VE FVEv,w) (36)
= —e;(h(FVE v,w)) + h(F.VE v, VE w)
= —divw+F <V%u,VPw > (37)

where: w(X) = F h(V{v,w).
— h(trace V¥ < V¥uv,dp > F!dp,w) =
= —h(VE < VPv,dp > F/dp(e;), w)
= —ei(h(< V¥v,dp > F! dcp(ei),w))
+h(< VP, de > F dp(e;), VE w)
= —divn+ F! < VPv,dp >< V?Pw,dp > (38)
where: n(X) =F/ <V¥?v,dp > h(de(X),w).

By the integration and divergence theorem we obtain (35). O

From Theorem 5 and Lemma 1 we deduce

Corollary 3.

0’ |de|?
7 E S;D‘ — [ pr(l%C 20, d Yw, d
ETEP (e, )t:s:0 /D r( 5 > < V?,dp >< VPw,dp > vy

d 2
—/ F;(‘ 4 )h(trace RN (v, dp)dp, w) v,
D 2

|d|?

+/ F;(T) < V%, VPw > v, (39)
D

(In the case where F = F(r) we recover the result obtained by M. Ara in [1].)
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Definition 2. An F-harmonic map is called stable if I(V,V) > 0 for any
compactly supported field V' along ¢ where

82
(v,w) = %E(ﬂﬂus;l))

t=s=0
From Definition 2 and Corollary 3 we obtain

Theorem 6. Let ¢ : M™ — N™ be an F'-harmonic between Riemannian mani-
folds. If F! > 0 and N has nonpositive curvature, then ¢ is stable.

Let MV, 6, BV and SV denote the Levi-Civita connections on M, ¢~ 1T'S™,
R™1 and S™ respectively. Let *R, B and A denote the curvature tensor, the
second fundamental form and the shape operator on S™. If X,Y € I'(T'S™ and
W e (TS™)*, then at x € S™ we have

B(X,)Y)=—-< X, Y >, and <AY(X),Y >=—- <X, Y ><z,W >.
Lemma 2. IfV is a parallel field in R™, then at x € S™ we have
VxVT = AV (dp(X)), and <VxVT,dp(X)>=—|dp(X)]* <z, V >.
for all X e T'(TM).
Proof. We have
ViV = YV’
R T
= ( de(X)VT)
R T
= ( vdw(X)(V_ VL))
R T
= ~("Vae)V)
= A (dp(X)).
<VxVTdp(X) > = <AV (dp(X)), do(X) >

= —ldp(X)P <z, V">
—|dp(X)]* < 2,V >

From Lemma 2 we obtain

Lemma 3. If V is a parallel field in R™, then at x € S™ we have

IVxVT? = |dp(X)? < 2,V >2
for all X e T'(TM).

From the sectional curvature of S™, we obtain
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Lemma 4. If V € T'(R"™) then
<S R(VT,dp(X))dp(X), VT >= dp(X) PV - < dp(X),V >
for all X e I'(TM).

Proposition 1. Let {Ek}”Jrl be the canonical orthonormal frame field in R™1,
then
n+1

> 1B E) = [ 1a¢{1agF @, ele@) + (2= i elo(e) b,

Proof. Let {e;}/", be a local orthonormal frame field on M and z € S™, from
lemmas 2, 3 and 4 we obtain

n+1 m m n+1
S < Vemldeei> ) = (X ldglen) )Z<xEk>
k=1 =1 =1
= |del|zf?
= ldel" (40)
n+l m n+l m
DD VB = D) lde(en)] <, By >’
k=1 i=1 k=1 i=1
= |delzf?
= ldel. (41)
n+l m

n+l m
2.2 < BB dple))dpled: B > = ZZ(W ()P [P~ < dp(e:), Bi >* )
k=1 i=1 k=1 1i=1

n+1
= —lde|* + |dg|* > |Ey |”
k=1
n+1
= —|do’ + |dp[* > |E, — By
k=1
n+1
= —|d* +|de* Y |Ex— < B,z > x|
k=1
n+1
= —ldol* +|del* > (1B~ < By, > [?)
k=1
n+1
= —|de|* +|do|* > (1- < Ep,2 > |?)
k=1
n+1
= —ldel* +|dgl*(n+1-> < Bg,z > )
k=1
= —|del* + |dp*(n+ 1 — |z[?)
= (n—1)|def (42)
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By Corollary 3 and formulae (40), (41) and (42) the Proposition 1 follows.

From Proposition 1 we obtain

Theorem 7. Let ¢ : M™ — S™ be an F-harmonic maps from a compact mani-
fold M. If

[ 1aeP{ldeP ! o elpl@) + (2 = m)Fla elo@) oy < 0
M

then ¢ is unstable.

Theorem 8. Let ¢ : M™ — S™ (n > 3) be an F-harmonic maps from a compact
manifold M. If
F!'<0, and F.>0

then ¢ is unstable.
From Theorem 8 follows

Theorem 9. If F/! <0, F/ >0, andn > 3 or F! <0, and n = 2. Then any
stable F'-harmonic map from a compact manifold to S™ is constant.

4  F-biharmonic maps.

Definition 3. A natural generalization of F-harmonic maps is given by integrat-
ing the square of the norm of the F-tension field. More precisely, the F-bienergy
functional of a smooth map ¢ : (M,g) — (N, h) is defined by

EQF (p7 / ‘TF ’Ug. (43)

A map is called F-biharmonic if it is a critical point of the F'-energy functional
over any compact subset D of M.

Theorem 10. [First variation of the F-bienergy functional].

Let ¢ : (M,g) — (N,h) be a smooth map between Riemannian manifolds, D

a compact subset of M and let {pi}ie(—ce) be a smooth variation with compact
support in D. Then

d
< B )| =/hmﬂ@m%, (44)
t = D
where
o r(p) = —F, trace RN (1p(y),dp)dp — trace V¥ F. V¥ 7r ()
—trace V¥ < V¥ 7r(p),dp > Fdp. (45)

(46)
T2 r () is called F-bitension of ¢.
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Proof. Define ¢ : M x (—e,€) — N by ¢(x,t) = ¢¢(x). First note that

B2 D) = [ WVh (o). (o) vy (a7)
Calculating in a normal frame at x € M we have
Vo7 (pt) = V5, VEF dpi(e:) (48)
by the definition of the curvature tensor of (N, h) we have
V5 Ve F dpi(e) = FL RN (dp(9y), dei(eq))dpi(es) + VE VG Fldpy(e:),  (49)
by the compatibility of V? with h we have
WVENGF dpie),Te(en) = e(h(VhF dpi(er), (1)
~h(V,F dei(es), Virr(pr),  (50)
the second term on the left-hand side of (50) is
—h(V5,Fldpi(e:), VErr(er) = —0(F)) h(dgi(e:), VEmr(¢r))
—F (Vi dei(ei), VEr(¢r), (51)
be a simple calculation we have
O (Fy) = do(0) (F)) + F h(VE dg (D), dipr(e;)), (52)
then the first term on the left-hand side of (51) is
—Ou(F)) h(di(ei), VEr(p)) = —e;(A(de(dr), Y hdgpi(e), VE e (1)) deu(e;))

+h(d8(00), V2, E hldgler), Ve () derles).
(53)

the second term on the left-hand side of (51) is

—F (V) dey(e:), Verr(pr) = —ei(h(dp(dr), FIVETr(¢r))),
+h(de(0y), Ve FINE i (pr))), (54)

and notice that from (47), (48), (49), (50), (51), (53), (54), v = d¢(d;) when t =0
and the divergence theorem, we deduce Theorem 4.1. O

Corollary 4. Let ¢ : (M,g) — (N,h) be a smooth map between Riemannian
manifolds. Then ¢ is F-biharmonic if it satisfies the associated Euler-Lagrange
equations

nF(p) = —F/ traceqy RN(TF(ap)7 dp)dp — traceg V¥ F!N? ()
—trace;, V¥ < V¥ 71r(p),dp > F/ dp
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From Corollary 4 and Corollary 2 we have

Theorem 11. Let ¢ : (M™,g) — (N™ h) be a conformal map with dilation .
The F'-bitension fields of ¢ is given by

0,11 (¢) = (n — 2)F) tracey, V2Fld¢ (gradIn \) — F) trace, V2d¢ (gradF)
+ ( )E tracey R™ (Fld¢ (gradIn\), d¢) d¢ — Fl tracey RY (d¢ (gradf) ,dp) do
+ (n = 2)Vgraar F1dd (gradn X) — V g,qqmdo (gradFy)
+ (n — 2) F traceg V? < V®dg (F,,’ grad™ (In \) + grad™ F;) ,do > do
(56)

Theorem 12. Let ¢ : (M",g) — (N™, h) be a conformal map with dilation X.
Then, the F-bitension field of ¢ is defined by

7o,r(¢) = (n = 2)(F))*d¢ (grad (Aln N)) — (n — 2)*(F))*V gradinrd¢ (grad ln )
+ 4(n — 2)F/V graqrd¢ (gradIn X) + (n — 2)F (AF)) d¢ (gradln \)
— Fld¢ (grad (Af)) + 2(n — 2)(F))* (Vdg, VdIn \) — 2F) (Vdg, VdE))
+ (n—2)|gradF.|* d (gradIn A) — ¥ graqrde (gradFy)
+2(n — 2)(F))?d¢ (Ricci™ (gradln \)) — 2Fd$ (Ricci™ (gradFY)) .
+ (n —2) F trace, V¥ < V¥d¢ (F,f grad™ (In \) + grad™ F;) ,do > do

Proof. Fix a point x9 € M and let {e;},,,, be an orthonormal frame, such that
Ve,e; =0, at g for all ¢, 5. Then calculating at xp, we have

Tr,V?Fld¢ (gradin \) Ve, Ve, Fldé (gradin \)
ei (F)) Ve, do (gradln\) + €; (e; (F))) do (gradln X)
ElTryV?d¢ (gradln X) 4 2V g,qar;de (gradIn \)

+ (AF))d¢ (gradln)). (57)

_|_

Note that (see [3])

TryV2d¢ (gradin \) = d¢ (grad (Aln \)) + 2d¢ (RiCCiM (gradIn \))

+ (2 =n)Vgradimadd (gradlnX) +2(Vde,Vdln X)  (58)
— TryRYN (d¢ (gradin \), d¢) de,

where

(Vdo,VdInX) = Vde (e;,e;) VdIn X (ej, e5) .

On substituting (58) in (57), we conclude that

TryV*Fld¢ (gradln \) = F.d$ (grad (Aln\)) + 2F.dé (RicciM (gradIn X))
+ (2 = n)FV gradin 2d¢ (gradIn X) + 2F (Vdp, VdIn \)
+ F/TryRN (d¢ (gradIn ) ,d@) de + 2V graardé (gradIn \)
+ (AF)) d¢ (gradIn )).

(59)
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TrgV2d¢ (gradf) = do (grad (AF;)) + 2d¢ (RicciM (gradf))
+ (2 = n)Vgraardo (gradin X) + 2 (Vde, VAF)) (60)
+ TryRN (d¢ (gradF)) ,d) d.

Finally, we have

Vgradr Fyd (gradIn N) = F)V grqapde (gradIn X)

12 (61)
+ ‘gradFT} d¢ (gradln ).

On substituting (59), (60) and (61) in (56), Theorem 12 follows.

In particular, we obtain

Corollary 5. Let (M™, g) be a flat Riemannian manifold. Then Idy; : M — M
is proper F-biharmonic if and only if function F' satisfied the equation

Flgrad(AF!) +3grad <|gradFr’|2) + F'grad(AF)) = 0.
grad F] # 0.

Remark: From Corollary 5, we obtain many examples of proper F-biharmonic
maps.

For example if F(z,r) = h(x;)f(r), then Idgrm is proper F-biharmonic if

and only h(xz;) = %eKIi where 2z = (21,..,2m), C = const and K =
_ 2f'(m/2)+f"(m/2)

fr(m/2) '
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