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Abstract

In the present work, we have proposed a classification algorithm which
uses Dempster Shafer (D-S) evidence theory since it has emerged as an ef-
fective tool in handling data classification problems. As basic probability
assignment (BPA) is a pre-requisite for applying D-S theory, how to gen-
erate it is a hot issue. This paper proposes a novel method for generating
basic probability assignments (BPAs) from training data. Dempster Shafer’s
(D-S) rule of Combination is utilized for the unification of these BPAs and
finally, classify each data item using these unified BPAs. Testing is car-
ried out using some popular benchmark data sets consisting of three classes.
Evaluated results show that the classification accuracy is comparatively high.
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1 Introduction

For the mathematical representation of uncertainty in real-time systems, Demp-
ster Shafer (D-S) evidence theory has emerged as a perfect alternative to tradi-
tional probabilistic approaches. This framework allows the allocation of proba-
bility masses in the form of sets (generally known as the mass function or basic
probability assignment (BPA)) or intervals instead of singletons that are mutually
disjoint. Also, the probabilistic framework is highly dependent on the knowledge
that is acquired independently of any particular experience and even if it is avail-
able, it fails to combine information obtained from multiple sources. Often used in
various sensor fusion applications, the D-S evidence theory allows the amalgama-
tion of evidence obtained from different sources and effectively models the conflict
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among them. In the present work, we shall investigate the D-S evidence theory as
the theoretical basis for classifiers on a small data set, where classification is per-
formed by combining pieces of evidence. Various distinct approaches have been
utilized by researchers in [5], [1], [4], [12], [14], [11] for dealing with classification
problems. However, how to construct BPA is still a hot issue. In the present work,
we have performed the classification using the simple concept that an object will
belong to a particular class if all the features/ attributes of the object are closer
to the corresponding features/ attributes of that class. To classify an object, we
have proposed an algorithm to compare each feature of the object to be classified
with the features of each given class by constructing a BPA corresponding to each
feature and then combining obtained BPAs with the weighted average approach.
The construction of BPA is based on the fact that the more an object belongs to
a class, the lesser will be the dissimilarity between the features.
Over the past few years, researchers have used triangular fuzzy numbers, interval
numbers, gaussian numbers and various other mathematical structures and tech-
niques for generating basic probability assignments for classifying data. Dongdong
et al. [11] used the triangular fuzzy numbers to determine BPA and utilised the
maximum, minimum and average values of the attributes in the training set to
construct the triangular fuzzy numbers. The authors assigned a certain mass value
to propositions if the test sample intersects the triangular fuzzy number model
and the rest was equally assigned to the remaining propositions. However, assign-
ing equal masses to the remaining proposition may not always generate desired
results. Kang et al. [5] and Bowen et al. [14] proposed methods to determine BPA
based on interval numbers. Kang et al. [5] used only maximum and minimum
values of the sample as the lower and upper bound of the interval number. But
the maximum and minimum values are not sufficient to describe the whole data
set as the maximum and minimum values can probably be much more than or
less than any other data in the same sample. Bowen et al. [14] improved this
drawback by constructing interval numbers using clusters. They divided training
data into two clusters and the mean values of the two clusters are taken as the
lower and upper bounds of interval number. The interval number corresponding
to compound propositions (say {A,B}) is taken as the intersection of the interval
numbers of its components (A and B). It can be easily seen from their examples
that the mass corresponding to compound propositions is mostly zero with no
logical justification for it. For evaluating the distance of the test sample from
training data, the maximum, minimum and average of all the values or two clus-
ters of training data have been used so far. If the training data is large, dividing
it into more than two parts to find averages can give better results as it will
reduce the distance between the test sample and training data. Moreover, how
to assign mass to compound propositions is still an open issue. After obtaining
BPAs, the classification result depends on how the fusion of BPAs is performed.
Although the D-S combination rule is a classical and well-accepted approach to
fuse BPAs it may give counter-intuitive results for highly conflicting BPAs. To
address this issue, many data fusion algorithms have been proposed to fuse BPAs
using a weighted average approach ([15], [3], [9], [7], [13]). In the present work, we
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have divided training data into more than two subparts, calculated the average
of each subpart and utilized it to find the distance of the test sample from each
class. The distance of the test sample from compound propositions is calculated
as the average of the distances of its components from the test sample. Recipro-
cal of the distance obtained is taken as the supporting factor of that proposition
which is then normalized to obtain BPAs. BPAs are then combined with the data
fusion algorithm proposed in [6]. The paper is organized as follows. In section 2,
we provide an overview of Dempster-Shafer’s Evidence Theory along with some
important definitions. Section 3 describes the proposed classification algorithm
using BPA. In section 4, we have utilized the proposed algorithm for Iris data
set classification. In section 5, a comparative analysis is shown for Iris and Seeds
data sets. Section 6 concludes the paper.

2 Preliminaries

2.1 Dempster-Shafer evidence theory

Dempster-Shafer(D-S) Evidence theory [2], [8] of the combination of Basic
Probability Assignment (BPA) is a generalization of probability theory. This is
a classical approach for combination of evidence obtained from different sources
and arriving at a degree of belief. In this theory, a degree of belief called mass is
assigned to all the subsets of the evidence under consideration in the same way
as we assign a probability to all the random variables of a given experiment. For
fusing information, this theory combines the degree of beliefs of the evidence ob-
tained from different sources. It has been extensively applied to decision-making,
fault diagnosis, uncertain reasoning, multi-sensor data fusion, information fusion,
aggregation, medical diagnosis, conflict management and other fields owing to its
ability to express uncertainty.

2.1.1 Basic probability assignment

Let X = {X1, X2, . . . , Xn} be the set of all possible hypothesis under consid-
eration known as the frame of discernment (FOD). Let 2X = {F1, F2, . . . , F2n}
be the power set of X. A Basic probability assignment (BPA) is a mapping
m : 2X → [0, 1] that satisfies

m(∅) = 0,

2n∑
i=1

m(Fi) = 1.

Here, the mass m(Fi) measures the belief assigned exactly to the focal element Fi

and represents how strongly the evidence supports Fi.
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2.1.2 Dempster-Shafer rule of combination

Consider two BPAs m1 and m2, the D-S rule of combination given by Demp-
ster [2] and Shafer [8] is defined as

m(Fr) = m1(Fi)⊕m2(Fj) =

{
0 Fr = ∅∑

Fi∩Fj=Fr
m1(Fi)m2(Fj)

1−k Fr ̸= ∅

where
k =

∑
Fi∩Fj=∅

m1(Fi)m2(Fj)

is called the coefficient of conflict among the evidences.

2.2 Divergence measure

Let m1 and m2 be two BPAs defined on the frame of discernment X =
{X1, X2, . . . , Xn}. Let 2X = {F1, F2, . . . , F2n} be the power set of X. The measure
of divergence [12] between m1 and m2 is defined as

D(m1,m2) = − log2

(
1 +

∑2n

i=1min{(m1(Fi),m2(Fi)}
2

)
This measure of divergence is bounded, satisfies triangle inequality and van-

ishes only for identical BPAs. We will utilize the above divergence measure for
quantifying the dissimilarity between two BPAs. For literature on divergence
measures between two BPAs, the authors can refer ([3], [9], [13]).

2.3 Data fusion algorithm

Assume that there are n alternatives A1, A2, . . . , An and k sources of evidence
sending information in the form of BPAs mi(Aj), where j = 1, 2, . . . , n and i =
1, 2, . . . , k.
Steps for data fusion proposed in [6] are as follows.
Step I: Evaluate divergence D(mi,mj) between every pair of BPAs mi and mj

dij = D(mi,mj), i, j = 1, 2, . . . , k

Step II: A degree of support sup(mi) is associated to each BPA mi as follows.

sup(mi) =
1

k

k∑
j=1

1

1 +D(mi,mj)

Step III: A weight wi is assigned to each BPA as follows.

wi =
sup(mi)∑k
i=1 sup(mi)
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Step IV: Find the weighted average of BPAs using above-assigned weights namely

M(Aj) =

k∑
i=1

mi(Aj)wi

where mi(Aj) is the belief about the alternative Aj from sensor i.
Step V: Use D-S combination rule to combine the weighted averaged BPAs k−1
times.

3 Classification algorithm using BPA generation

Divide the data for classification into two parts: training data and test data.
We will use training data for generating BPA and test data to check the effec-
tiveness of the proposed method. Suppose we are given a data set consisting of
n classes {C1, C2, . . . , Cn} and each class has k attributes {A1, A2, . . . , Ak}. Let
t = {t1, t2, . . . , tk} be sample data. The problem is to identify the class to which
this sample data belongs.

Step 1: Let X = {C1, C2, . . . , Cn} be FOD, the set of all possible hypothesis
and P(X) = {H1, H2, . . . ,H2n} be the power set of FOD. Generate BPA for each
attribute as follows.

1. Calculate the deviation of the sample from all the hypotheses i.e., all the
singletons of the set P(X) as follows.

2. Let ai1, ai2, . . . , air be the values of attribute Ai corresponding to class C1

arranged in ascending order.

3. Find the average of these values in batches of 10 as µ1 = 1
10

10∑
j=1

aij ,µ2 =

1
10

20∑
j=11

aij , . . . , µ[r/10] =
1
10

r∑
j=[r/10]10+1

aij

4. Evaluate the deviation of the sample from hypothesis C1 as

d({C1}, ti) = Min{(µ1 − ti)
2, (µ2 − ti)

2, . . . , (µ[m/10] − ti)
2}

5. Repeat steps (2) to (4) for hypothesis C2,C3,. . . ,Cn to obtain d({C2}, ti),
d({C3}, ti), . . . , d({Cn}, ti).
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6. The deviation of sample from other elements of P(X) is calculated as

d({Ci, Cj}, ti) =
d({Ci}, ti) + d({Cj}, ti)

2

d({Ci, Cj , Ck}, ti) =
d({Ci}, ti) + d({Cj}, ti) + d({Ck}, ti)

3
...

d({Ci, Cj , . . . , Cn}, ti) =
d({Ci}, ti) + d({Cj}, ti) + . . . , d({Cn}, ti)

n

If the deviation from sample from any element is zero, replace it with 10−12.

7. Associate a degree of support to each non-empty element of P(X).

sup(Hj) =
1

d(Hj , ti)
for j = 1, . . . , 2n − 1

8. Normalize degree of support to obtain mass mi assigned to each non-empty
element of P(X).

mi(Hj) =
sup(Hj)∑2n−1

k=1 sup(Hk)
for j = 1, . . . , 2n − 1 and i = 1, . . . , k

Step 2: Combine above obtained k BPAs mi, i = 1, . . . , k using data fusion
algorithm [6].
Step 3: The given sample belongs to the class with the greatest mass function
value.

4 Example

The proposed algorithm is used to identify the class of the Iris plant using the
Iris data set from UCI repository (https://archive.ics.uci.edu/ml/datasets/iris).
This data set contains 3 classes of 50 instances each that corresponds to different
types of Iris plant namely Iris Setosa (ISe), Iris Versicolor (IVe) and Iris Virginica
(IVi). First class is linearly separable from the other two, the latter are linearly
inseparable from each other. There are four attributes of each namely sepal length
(Sl), sepal width (Sw), petal length (Pl) and petal width (Pw), all measured in
centimeters.
To check the effectiveness of the proposed algorithm, firstly 20 % of instances of
each class are chosen randomly to serve as the test data and the remaining 80 %
as the training data.

Experiment 1:
Let’s consider the first 40 instances of each class as training data and the remaining
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Table 1: A sample from class Iris Setosa.

Sl Sw Pl Pw

5 3.5 1.3 0.3

as test data. Take a sample from test data of class Iris Setosa as shown in Table
1.

Step I: Here FOD is {ISe, IV e, IV i} and its power set is
{∅, {ISe}, {IV e}, {IV i}, {ISe, IV e}, {ISe, IV i}, {IV e, IV i}, {ISe, IV e, IV i}}.
Generate the BPA for first attribute Sl as follows.

1. Arranging the values of training data of attribute Sl of class ISe in ascending
order, we obtain the following averages

µ1 = 4.59, µ2 = 4.92, µ3 = 5.12, µ4 = 5.52

2. The deviation of sample value of Sl i.e., t1 = 5 from hypothesis {ISe} is

d({ISe}, t1) = Min{(4.59−5)2, (4.92−5)2, (5.12−5)2, (5.52−5)2} = 0.0064

3. Similarly arranging the values of training data of attribute Sl of classes IVe
and IVi, we obtain

d({IV e}, t1) = Min{(5.37−5)2, (5.8−5)2, (6.18−5)2, (6.69−5)2} = 0.1369

d({IV i}, t1) = Min{(5.82−5)2, (6.35−5)2, (6.78−5)2, (7.54−5)2} = 0.6724

4. The deviation of the sample from the rest of the elements are

d({ISe, IV e}, t1) =
0.0064 + 0.1369

2
= 0.07165

d({ISe, IV i}, t1) =
0.0064 + 0.6724

2
= 0.3394

d({IV e, IV i}, t1) =
0.1369 + 0.6724

2
= 0.40465

d({ISe, IV e, IV i}, t1) =
0.0064 + 0.1369 + 0.6724

3
= 0.2719

5. The results obtained after normalizing the degree of support for each hy-
pothesis are presented in Table 2.

6. Proceeding as above, BPAs mSl,mSw,mPl,mPw corresponding to the at-
tributes sepal length (Sl), sepal width (Sw), petal length (Pl) and petal
width (Pw) respectively are evaluated and presented in Table 3. It is evi-
dent from the table that the maximum mass is assigned to class Iris Setosa
(ISe) by the BPAs corresponding to each attribute.
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Table 2: BPA generated corresponding to attribute- Sepal length.

{ISe} {IVe} {IVi} {ISe,IVe} {ISe,IVi} {IVe,IVi} {ISe,
IVe, IVi}

Deviation
of sam-
ple (d)

0.0064 0.1369 0.6724 0.0717 0.3394 0.4047 0.2719

Support
(1/d)

156.25 7.3046 1.4872 13.9567 2.9464 2.4713 3.6778

Mass
(mSl)

0.8307 0.3888 0.0079 0.0742 0.1566 0.01314 0.1955

Table 3: BPAs generated corresponding to all the attributes.

BPAs {ISe} {IVe} {IVi} {ISe,IVe} {ISe,IVi} {IVe,IVi} {ISe,IVe,
IVi}

mSl 0.8307 0.03888 0.0079 0.0742 0.01566 0.01314 0.01955

mSw 0.8748 0.00303 0.0349 0.00603 0.0673 0.0056 0.0083

mPl 0.9975 0.00043 0.00019 0.00086 0.00039 0.00027 0.0004

mPw 0.9468 0.0105 0.0032 0.0208 0.0064 0.0049 0.0074

Step II: Combining above-obtained BPAs we see that the highest belief is
0.99994 which corresponds to hypothesis {ISe}. Thus overall, the attributes of
the test sample are closer to class ISe. This implies that the sample belongs to
the class Iris Setosa. Thus, we are able to identify the class effectively.
We applied this algorithm to the remaining 29 test samples to check its effective-
ness. The results obtained are shown in Table 4.

Table 4: Results obtained from Experiment 1.

Actual
Class

Identified
Class

Actual
Class

Identified
Class

Actual
Class

Identified
Class

ISe ISe IVe IVe IVi IVi
ISe ISe IVe IVe IVi IVi
ISe ISe IVe IVe IVi IVe
ISe ISe IVe IVe IVi IVi
ISe ISe IVe IVe IVi IVi
ISe ISe IVe IVe IVi IVi
ISe ISe IVe IVe IVi IVi
ISe ISe IVe IVe IVi IVi
ISe ISe IVe IVe IVi IVi
ISe ISe IVe IVe IVi IVi

We are able to identify the class in 29 out of 30 samples. We repeated this
experiment 10 times with different random samples and the results obtained are
shown in Table 5. To check the robustness of the proposed algorithm in the
context of training data, 10 random experiments with different proportions of
training data are performed. The results obtained are presented in Table 6. The
minimum accuracy obtained in a random experiment is 86.67 % and the maximum
reaches 100 %. Increasing the proportion of training data from 50 % to 100 % , the
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Table 5: Results obtained from various random experiments.

Exp No. No. of test
samples

No. of cor-
rectly identi-
fied samples

Accuracy (in
%)

1 30 29 96.67
2 30 29 96.67
3 30 28 93.33
4 30 29 96.67
5 30 28 93.33
6 30 29 96.67
7 30 28 93.33
8 30 30 100
9 30 29 96.67
10 30 30 100

average accuracy varies from 94.33 % to 97.67 %. The difference in classification
accuracy is not large as we vary the proportion of training data.

Table 6: The classification accuracy (in %) in 10 random experiments with
different proportions of training data for Iris data set.

Training
data /
Exp. No.

50 % 60 % 70 % 80 % 90 % 100 %

1 100.00 86.67 90.00 96.67 96.67 100.00
2 93.33 96.67 96.67 96.67 96.67 96.67
3 100.00 100.00 93.33 93.33 100.00 96.67
4 96.67 96.67 100.00 96.67 96.67 93.33
5 93.33 100.00 86.67 93.33 93.33 100.00
6 96.67 96.67 93.33 96.67 100.00 96.67
7 86.67 93.33 100.00 93.33 93.33 100.00
8 93.33 90.00 96.67 100.00 100.00 100.00
9 93.33 96.67 90.00 96.67 100.00 93.33
10 96.67 93.33 96.67 100.00 96.67 100.00

Average
accuracy

95.00 95.00 94.33 96.33 97.33 97.67

5 Comparative analysis

The classification accuracy of the proposed method is compared with the meth-
ods proposed by Dongdong et al. [11], Jun et al. [12], Bowen et al. [14] and Kang
et al. [5] for the Iris data as shown in Table 4 and Figure 1. It is evident from
Figure 1 that accuracy obtained by the proposed algorithm is higher than the
accuracy obtained by Dongdong et al., Jun et al. and Kang et al. Although the
accuracy obtained by Bowen et al. is higher for 60 % and 70 % proportion of
training data, their average accuracy is 95% and the average accuracy obtained
by the proposed algorithm is 96 %. Thus, the results obtained are either better
than others or comparative to them.
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Table 7: Comparison of classification accuracy obtained by researchers for Iris
data set.

Training
part

50 % 60 % 70 % 80 % 90 % 100 %

Proposed
Algo-
rithm

95.00 95.00 94.33 96.33 97.33 97.67

Dongdong
et. al.
[11]

90.27 90.33 92.67 92.33 92.67 93.33

Jun Xia
et. al.
[12]

94.00 94.00 93.50 94.00 94.80 93.50

Bowen
Qin et.
al. [14]

95.40 94 95.40 96.00 97.40 95.40

Kang et.
al. [5]

90.80 90.80 90.00 90.80 92.00 92.00

86%

88%

90%

92%

94%

96%

98%

100%
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Proposed Algorithm

Dongdong et al.

Jun Xia et al.

Bowen Qin et al.

Kang et al.

Figure 1: Graphical Comparison of classification accuracy for Iris data set.

A comparative analysis of the proposed algorithm is shown in Figure 2 for
classifying the seeds data set. Comparison is done with results obtained by Wang
et al. [10], Dongdong et al. [11] and Jun et al. [12]. This data set is taken from
the UCI repository (https://archive.ics.uci.edu/ml/datasets/seeds). This data set
contains three varieties of wheat: Kama, Rosa and Canadian. Each class has 70
instances and 7 attributes: area, perimeter, compactness, length of kernel, width
of kernel, asymmetry coefficient and length of kernel groove. The proportion of
training data is taken as 80 % and test data as 20 %. The results shown are
obtained after performing 10 random experiments. Each portion of bars in the
figure represents the proportion of each class’s accuracy. It is clear from the graph
that the average accuracy obtained by the proposed algorithm is higher than all
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0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Jun Xia et al.

Dongdong et al.

Shuning Wang et al.

Proposed algorithm

Accuracy

Kama Rosa Canadian

Figure 2: Graphical Comparison of classification accuracy for Seeds data set.

the other methods and quite closed to the one obtained by Dongdong et al.

6 Conclusion

In the present work, the axiomatic framework of BPAs is used for the con-
struction of classification algorithms and then applied to the benchmark Iris data
set and Seeds data set. The results show that the proposed algorithm provides
comparable results as compared to other more favoured algorithms. Work on the
generalization of the proposed classification algorithm is in progress and will be
communicated elsewhere.
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