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REGRESSION TO PREDICT DISEASE SPREAD
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Abstract

The Covid-19 epidemic has significantly impacted the world, highlight-
ing the urgent need to understand and anticipate its mechanisms of spread.
This essential knowledge is necessary to plan and conduct an immediate and
adequate public health response. This study presents an approach to model-
ing the spread of Covid-19 using non-uniform cellular automata. The paper
extends the application of a previously developed model that uses cellular
automata and the SIRD epidemiological model for predicting the evolution
of Covid-19. Originally developed for a different context, the model is now
adapted to assess the progression of the pandemic in Germany and Italy,
considering the potential impact of neighboring countries on the spread of
the epidemic. Additionally, this approach expands the prediction model to
countries lacking infection data (Switzerland) by using estimated parame-
ters from neighboring countries and randomly initialized parameters for the
target country. The study demonstrates the model’s precision in tracking
infection rates over time by employing reliable public data sources such as
the World Health Organization and existing information from national health
websites. The study not only furnishes valuable insights into the regional dis-
tribution of the epidemic’s impact but also makes a significant contribution
by extending the model’s application beyond the borders of a single country.
It introduces a strategy for extrapolating patterns of infection spread across
borders, marking it as the first study of its kind with substantial importance
in the field.
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Transilvania University of Braşov, Romania, e-mail: iulian.popa@unitbv.ro
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1 Introduction

The emergence of the unprecedented Covid-19 pandemic has highlighted the
importance of accurate and reliable epidemiological models for predicting and
controlling the spread of infectious diseases. These models serve as crucial tools for
informing public health policies and actions. However, traditional epidemiological
models, such as the Susceptible-Infectious-Recovered (SIR) model [1], [6] and its
extensions, SEIR, SLIR, SIRD, SEIRU, SLIAR, have shown certain limitations in
the face of the global Covid-19 crisis. For example, these models do not consider
the spatial distribution of population and disease, which can significantly impact
the spread of the disease [13].

Given the spatially heterogeneous nature of the Covid-19 pandemic, with un-
even disease spread across regions and countries, models are urgently needed to
capture this spatial heterogeneity and the complex interactions between regions.
This needs to lead us to explore using cellular automata as a modeling tool to
predict the spread of Covid-19.

Cellular automata, mathematical models first introduced by von Neumann
and Ulam in the 1950s, are well suited for simulating systems with complex spa-
tial interactions. In a cellular automaton, space is discretized into cells, with each
cell following a deterministic rule that considers the states of neighbouring cells.
Local interactions between cells can lead to complex global behaviour, making
cellular automata an excellent tool for modeling complex systems such as infec-
tious disease dynamics. However, conventional cellular automata models assume
uniformity between cells, an assumption that is rarely met in real-world scenarios.
Therefore, we chose non-uniform cellular automata, in which each cell (or region)
is unique and behaves according to its characteristics. This non-uniformity allows
for incorporating geographic variations and real-world population density, thus
providing a more realistic model of Covid-19 spread.

Predictive modeling of health emergencies has progressed, with previous stud-
ies focusing on epidemic trends in China [8], [16]. The present research extends
this work to Germany, introducing two key considerations: their distinct geo-
graphical and demographic characteristics and the influence of neighbouring coun-
tries on epidemic spread. Existing predictive models, including machine learning
and regression models [1], [2], often overlook the geographical context. The anal-
ysis from [4] notes that the errors of models that do not consider spatial elements
are between 13% and 225%, which is enormous. In addition, [5] asserts that we
need space elements for a better-performing model. This study fills this gap by fo-
cusing on the geographical nuance of epidemic progression. Focusing on Covid-19
in Germany, a country known for its strong healthcare infrastructure and interre-
gional mobility, we also examine how Germany, Italy, Austria and France might
affect Switzerland. This approach improves our understanding of epidemics by
discussing the impact of neighbouring regions.

In our solution, we merge cellular automata principles with an epidemiological
model to simulate and predict the spread of Covid-19. The model uses a custom
cellular automata map, formed by dividing a country’s map into regions. Each
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region forms one or more cells in our cellular automata model, with the daily num-
ber of active Covid-19 cases in each region serving as the primary data source for
prediction. Prediction is performed using multiple linear regression, a statistical
technique that predicts a dependent variable based on two or more independent
variables [15]. In our model, the future number of Covid-19 cases forms the de-
pendent variable, and the current state of a region and the states of neighbouring
regions form the independent variables. This method allows each cell’s prediction
to be influenced not only by its own state but also by neighbouring cells’ states,
mimicking the disease transmission process in the real world.

The capability of the model extends beyond the borders of a single country.
It can simulate the spread of Covid-19 from two countries into a common neigh-
bouring country. This particular feature of cross-border modeling allows a broader
regional perspective on the pandemic, capturing the dynamics of the spread of the
disease across national borders. This is particularly important for global public
health planning, where understanding the cross-border transmission of the disease
is essential for coordinating international responses and mitigation strategies.

2 Materials and methods

There are several essential components that support the conduct of this cur-
rent study. The fundamental aspect is to understand the predictive modeling
systems, which serve as the basis for designing research, building models, vali-
dating, and assessing their performance [1],[3],[10]. Central to this study is the
Susceptible-Infectious-Recovered-Deceased (SIRD) model, which serves as corner-
stone of the experiments. This epidemiological model categorizes the population
into distinct categories, namely susceptible, infected, recovered, and deceased.
These categories offer crucial parameters necessary for the functioning of cellular
automata for the prediction of disease spread [6], [11].
The cellular automata [18], [19] are network-like structures used to encapsulate
distinct stages of the epidemic. Each cell represents a population subset char-
acterized by health statuses, encompassing susceptibility, infection, recovery, or
mortality. All this data, available at [20], on the evolution of the epidemic was
collected from reliable sources such as the World Health Organization. They pro-
vide a nuanced picture of disease spread’s geographical and temporal dynamics.
In addition, another essential part of the model is represented by the linear regres-
sion for predictive analysis. By delineating correlations and estimating outcomes
based on input data, linear regression help to determine the influence of neigh-
bouring regions on the propagation dynamics of the epidemic [10], [15]. Overall, a
comprehensive understanding of these concepts will serve as a guide and provide
a solid foundation for comprehending the fundamentals of the following model.
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2.1 Specificity of cellular automata

Creating a cellular automaton for a country

Creating the cellular automata space involves several computational and spa-
tial analyses that ensure an accurate and practical representation of the geograph-
ical area in question. The key is to transpose a real-world map into a spatial space
that symbolizes, through each cell, a specific part of the territory while accurately
preserving the structural and spatial relationships between the different regions.
The selection of cell size is an essential aspect of this process. This is determined
based on the size of the smallest geographical region that can fit into a single
cell. It should be noted that this is only sometimes the physically smallest re-
gion. The underlying reason is the potential for significant disparities in different
regions’ sizes. If some regions are extremely small, they are combined with one
of the adjacent regions. This approach is not strictly standardized and is usually
made ad-hoc, ensuring each region is properly represented in the cellular automata
matrix.

Considering a map of Germany, see Figure 1 a) - The map of Germany, divided
into regions, using the Mercator projection, this is transformed into a cellular
space, with small regions combined with neighbouring ones. A Python script then
overlays a grid of equally spaced vertical and horizontal lines on the chosen map,
dividing it into cells. Selecting the dimensions of the cells is a crucial aspect of this
process. This is determined based on the size of the smallest geographical region
that can fit within a single cell. It is important to note that this is not always the
smallest region in a physical sense. The rationale behind this is the potential for
significant disparities in the size of different regions. In cases where some regions
are extremely small, they are combined with one of the adjacent regions. This
approach is not strictly standardized and is usually performed ad hoc, ensuring
that each region is appropriately represented in the cellular automaton grid. By
using this method, we ensure a balance between the resolution of the cellular grid
and the practical representation of geographical regions. The result is shown in
Figure 1 b) and this matrix, with values from 0 (outside the country) to the total
number of regions, is 19X14, with other unused cells outside the borders. The
process requires precision, reproducing geographic space into cell space.

The corresponding details for each region, including cell ID, region, and
CellCount occupied by them, are kept in a CSV file. This file helps for easy ref-
erence and efficient data management, see Table 1. Creating a cellular automaton
space is a complicated process that requires meticulous attention to detail and
precise rendering of the geographic space within the cellular frame boundaries.
As seen in Germany, the process can require manual intervention and ad hoc
decisions, especially when dealing with smaller regions.

Note that the cellular automata space’s accuracy depends on the original map’s
quality and the careful division and assignment of cells to regions. Therefore, pe-
riodic quality reviews and checks are necessary to maintain the integrity and
accuracy of the cellular automata space. As the scale and complexity of the area
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Figure 1: Map of Germany (a) transformed into the cellular space (b)

Table 1: The arrangement of the 15 regions in the cellular space

ID Region CellCount ID Region CellCount

1 Baden-Wurttemberg 17 9 Nordrhein-Westfalen 20

2 Bayern 32 10 Rheinland-Pfalz 9

3 Berlin 1 11 Saarland 2

4 Brandenburg 14 12 Sachsen 10

5 Bremen, Niedersachsen 25 13 Sachsen-Anhalt 11

6 Hamburg 1 14 Schleswig-Holstein 11

7 Hessen 8 15 Thuringen 9

8 Mecklenburg-Vorpommern 14

under consideration increases, more sophisticated and automated methods may
be required to manage the generation and manipulation of the cellular automata
space. However, the basic principles and steps described here would remain the
same, ensuring a consistent approach to creating cellular automaton spaces for
different countries or regions.

Creating the cellular automaton for multiple countries

To create the cell space for several countries, individual matrices are combined
into one, considering different conditions, such as the lack of regional data for a
particular country.

After generating each country’s individual cellular automata matrices, the next
essential step is to amalgamate them into a single composite matrix. In order to
proceed with this step, it is essential to ensure uniform cell dimensions across all
countries. The initial step in this process involves identifying the smallest region,
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which will determine the standard cell size. Due to the irregularity of regional
borders, some cells may contains multiple regions. In such cases, the cell will be
assigned based on the region occupying the largest area.

Integrating these matrices requires carefully analyzing these countries’ geo-
graphical alignment and adjacency. The matrices are merged in an ad-hoc manner,
ensuring that geographical coherence is maintained. This involves aligning each
country’s individual cellular automatic matrices so that their relative geographic
positions and boundaries accurately intersect in the combined matrix.

Germany, Italy, Austria, France and Switzerland are combined into a single
matrix to study cross-border phenomena, see Figure 2. The merging of matrices

Figure 2: The resulting cellular automaton space derived from combining ma-
trices

is done ad-hoc, ensuring that geographical consistency is maintained. This in-
volves aligning each country’s individual cellular automatic matrices so that their
relative geographic positions and boundaries intersect precisely in the combined
matrix. In the final combined matrix, Figure 2, each cell continues to represent
a specific region in Germany and Italy or a single region in Switzerland, Austria
and France. This allows us to study and simulate data spread across these coun-
tries and to gain insights into how variables or phenomena might cross national
borders. This process, while requiring careful planning and precise execution, pro-
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vides a robust and flexible framework for studying larger geographical areas that
cross national borders. Despite its complexity, creating such a combined space for
cellular automata provides a valuable cross-border modeling and analysis tool.

SIRD model

The system proposed in [8] focuses on cells in a fixed two-dimensional ar-
ray, each representing the number of infected individuals at a given time step.
This is based on a discrete version of the SIRD model, which estimates changes
in the number of infections. The general equation of the SIRD model is modi-
fied to include interactions between neighbouring cells in the grid. Each cell has
four adjacent cells, which are assigned unique interaction coefficients. These co-
efficients thus play a significant role in determining current and future infection
levels within the cell and in neighbouring cells, see Figure 3. The significance

Figure 3: Cellular automaton transition diagram model

of each variable in the equations given in the Figure 3 is justified and explained
in section 3.2 of the source mentioned. We have time series data, which shows
the number of people infected over a period of time. Each cell has a sequence of
values, each representing the number of infected people in that cell at each point
in time. Using this data and referring to Figure 3, which explains how a new
state is formed, a system of linear equations was constructed for each cell, stated
in matrix form [8]:

∆Ii,j = Pi,jqi,j

where:

∆Ii,j = [∆I1i,j ,∆I2i,j , . . . ,∆INi,j ]
T

is a N-dimensional vector with each element ∆Iti,j = Iti,j − It−1
i,j , t = 1, . . . , N

Pi,j is a NX6 dimensional matrix where each row t is

[1, P t−1
c,i,j , P

t−1
n,i,j , P

t−1
e,i,j , P

t−1
s,i,j , P

t−1
w,i,j ]

T
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qi,j is a 6-dimensional vector with

[ki,j , qc,i,j , qn,i,j , qe,i,j , qs,i,j , qw,i,j ]
T .

In these equations, ∆Ii,j is a vector demonstrating the change in the number of
infections, Pi,j is a matrix with information about the current state of the cell
and its neighbors, and qi,j is a vector containing the coefficients to be optimized.

The goal is to find the values of qi,j for all cells (i, j) such that the estimated
changes in the number of infected individuals at time t, taking into account inter-
actions with neighbouring cells, represented by Pi,j , accurately approximate the
actual changes represented by ∆Ii,j . This is treated as a multiple linear regression
problem, aiming to optimize qi,j .

This method facilitates a reliable prediction of disease spread. Note that the
applied equations are taken from [8], and interpreting a new state, as explained
in Figure 3, is crucial for understanding the proposed model.

2.2 Prediction model

The assumed methodology makes regional data adjustments to the model
based on a cellular automaton for infection modeling. Infected individuals are
estimated for each cell, and prediction models are modified to predict the spread
of infection using a set of equations ([19]-[21]) derived from the previous study
[8]. Figure 4 represents the steps taken for a prediction.

Figure 4: The steps from prediction model

In this study, the approach employed is multiple linear regression, a statisti-
cal technique used to model the relationship between a dependent variable and
multiple independent variables. Unlike simple linear regression, which involves
only one independent variable, multiple linear regression can handle two or more
predictors, making it a powerful tool for understanding complex relationships in
data. The general form of the multiple linear regression equation is:

Y = β0 + β1 ∗X1 + β2 ∗X2 + . . .+ βn ∗Xn + e

Here, Y represents the dependent variable, β0 is the y-intercept, β1, . . . , βn are
the coefficients for the independent variables X1, . . . , Xn and e is the error term.
Multiple linear regression is chosen for its ability to handle complex datasets and
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deliver meaningful insights in various fields such as economics, finance, social
sciences, and natural sciences.

Building on the discussion of our multiple linear regression and cellular automata-
based prediction models, we consider a situation where no data exist for a given
country, but data are available for its neighbours. In this scenario, we use Switzer-
land as the country of interest and Italy, Germany, Austria and France as neigh-
bouring countries with data. As a preliminary setup, it is assumed that the
q-values, i.e., the parameters for the multiple regression model, are known for
neighbouring countries and are estimated from the available infection data using
the multiple linear regression model. However, no data are available for Switzer-
land to estimate these q-values.

To address this issue, we initialize q values for Switzerland randomly. This is
a viable strategy as it is considered that infections may spread from Italy, Ger-
many, Austria and France, which share borders with Switzerland. Transmission
of infections from these neighbours to Switzerland would account for a proportion
of all infections in Switzerland. Since the q values for Switzerland are random,
this means that although the model will generate predictions for the spread of
infections in this country, these predictions will be inherently less reliable than
those for neighbouring countries, for which we have actual infection data and es-
timated q parameters . Concisely, this approach extends the prediction model
to countries with missing infection data, using estimated parameters from neigh-
bouring countries and randomly initialized parameters for the target country. This
method provides a strategy for extrapolating patterns of infection spread across
borders, although the accuracy of such predictions could be better due to the lack
of data-driven parameter estimation.

Adapting the prediction model to another epidemic situation is relatively
straightforward, given the flexible nature of the tools and techniques used. The
basis of the model, cellular automata, is highly adaptable and capable of repre-
senting a variety of scenarios. Although the process of transforming a country
map into a cellular automaton requires some flexibility and creativity due to its
ad-hoc nature, it can be done regardless of the country or region of interest.

The parameters of the SIRD epidemiological model - mortality rate, infection
rate, and incubation period - would require adjustments based on the specific
characteristics of the new epidemic. These parameters are often derived from em-
pirical studies and are usually readily available in the early stages of an epidemic.
In addition, changing a country’s regional data (deceased, cured, and infected
persons) is simple. Public health organizations and ministries usually provide
this information and should be available in standardized formats such as CSV
files. The template is designed to handle this type of data, which means it can
be reconfigured with minimal effort. However, the effectiveness and accuracy of
the model would depend on the quality of the data and the specific characteris-
tics of the epidemic, including factors such as public health interventions, social
behaviour, and virus characteristics. Therefore, although the technical process of
model fitting is simple, a comprehensive and accurate prediction may require a
nuanced understanding of the specific epidemic context.
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The model is also flexible to adapt to situations where infection data are not
available for a particular country but are available for neighbouring countries,
bringing innovative points to this strategy. In such scenarios, estimated param-
eters from neighbouring countries with data are used and randomly initialized
for the country of interest. This allows the model to generate predictions of the
spread of infection for that country, albeit with a lower degree of accuracy due to
the random nature of the initialization.

The adaptive nature of the model extends to situations involving different epi-
demics. Modifying regional data (dead, recovered, infected) is straightforward,
as health organizations usually provide this information in standardized formats.
The parameters of the SIRD epidemiological model (mortality rate, infection rate,
and incubation period) are also easy to modify. However, the effectiveness and
accuracy of the model would depend on the quality of the data and the spe-
cific characteristics of the epidemic, including public health interventions, social
behaviour, and virus traits.

3 Results and interpretation

The dataset used for this research is crucial as it serves as a basis for mod-
eling and predicting the spread of infection. A dataset available at [20], [7] was
used, which includes information collected from reliable sources such as the World
Health Organization and the official websites of the respective countries. The data,
accessed on 27.05.2023, are stored in CSV format, which is widely used and easy
to manage due to its simplicity and readability. The dataset includes several key
attributes, namely the number of people infected, those who have been cured, and
those who have died from the infection. For this paper, three main parameters
were identified and used to understand the evolution of the disease:

1. mortality rate (0.21)

2. infection rate 1.4-2.5 [17], in the experiments value 1.4 is used

3. incubation period (5.1 days) [14].

For this example, we will consider the case of Germany. The cellular automaton
for Germany was created as detailed in Section 2.1. Germany’s Covid-19 data
as of 14.05.2020 was analyzed and split into training and test data. The model
was constructed using multiple intervals over the entire duration of the pandemic,
yielding similar outcomes throughout. This paper illustrates the model’s perfor-
mance using the first fifty-seven weeks of data in the training phase, while the next
two weeks were reserved for testing. The fifty-eighth and fifty-ninth weeks of the
pandemic period, utilized for testing, demonstrate a declining trend in the overall
number of cases, see Figure 5 a). In Berlin, the number of cases exceeds 1000,
represented by red, during the initial three days of this period, after which it de-
clines below this threshold, transitioning to orange. Similarly, the Bayern region
exhibits a reduction in the number of cases, indicated by the diminishing intensity
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of the orange color. During this timeframe, certain regions, such as Brandenburg,
maintain a consistent infection rate, of approximately 20 cases, and the color al-
ternates between yellow and light orange. This approach ensures robust training
of the prediction model and facilitates an unbiased evaluation of its performance.
We can compare the prediction with the actual data by applying multiple linear
regression to the cellular automaton, see Figure 5. The results of the cellular
automaton can be visually represented by using colors for each cell according to
the severity of Covid-19 infection in that region: yellow signifies regions with a
case count below 20 per cell, orange intensity denotes a range between 20 and
100 cases and red coloration is reserved for cells with more than 1000 cases. The
different shades of colors represent different levels of severity, from areas where
no cases have been reported to regions experiencing high numbers of cases.

Figure 5: Actual cases (a) and prediction result for the next two weeks (b)

Comparison of predictions with real data showed the model’s ability to learn
and generalize models. Root mean square error (RMSE) was used to assess
model performance. The RMSE for regions such as Mecklenburg-Vorpommern
and Sachsen-Anhalt was small, suggesting high prediction accuracy, while for
Berlin, it was significantly higher, Figure 6. The results suggest the model’s ef-
fectiveness in predicting disease severity in different regions of Germany and its
potential application in other regions and contexts, see Figure 7. This figure com-
prehensively analyzes the daily error per cell for the other regions except Berlin
over the 14 days of testing. This analysis allows a comparative view of the model
performance in different regions of Germany.

Analyzing the individual regions, it can be seen that the model maintains
a relatively low error rate. This is particularly encouraging as it demonstrates
the ability of the model to provide reasonable predictions across regions. Some
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Figure 6: RMSE Results

regions show a steady increase in error per cell over the 14 days, but overall
the error remains low. For example, Brandenburg maintains a very low error
rate, increasing to only about 0.9 on day 14. In Mecklenburg-Vorpommern, the
error remains particularly low, below 0.23, indicating excellent prediction accuracy
in this region. In contrast, Saarland shows a more significant value, reaching
an error of 39.62 on day 14. However, the errors in regions like this are still
below an acceptable limit, indicating a consistent performance of the model. The
regions Berlin and Hamburg have been omitted from this analysis because of their
considerably high error rate (778.39 for Berlin and 106.73 for Hamburg), which
differs strongly from the error rates of the other regions.

The spread of the disease among people can be unpredictable depending on
several factors, being influenced by adjacency in terms of road network and capac-
ity, the implementation of government-imposed restrictive measures and isolation
protocols, and the vaccination rate, where applicable. Analyzing the obtained re-
sults and population dynamics (based on [21]) across different regions of Germany
shows a direct association between the RMSE value and density. Berlin has the
highest population density in Germany, with 4086 inhabitants per square kilome-
ter, followed by Hamburg, which registers 2439 inhabitants per square kilometer.

The population size plays an important role in the prediction process. Given
that Berlin is geographically represented by a single cell (see Figure 1), we ex-
panded the map by subdividing this cell into four and sixteen smaller units, but
the results were quite similar, check Table 2 for details.

The following analysis focuses on cross-border transmission of the disease from
Germany, Italy, France and Austria to Switzerland. This involves assessing the
spread of the disease between countries, an essential part of understanding and
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Figure 7: Daily error per cell for the other regions(without Berlin)

combating pandemics, given the interconnectedness of the contemporary world.
The cellular automaton for these five countries is illustrated in Figure 2, providing
a visual representation of these countries. The graphical representation provides
a quantitative perspective on this issue and shows the total number of active
cases in Switzerland concerning the potential cases coming from the neighbouring
countries. It serves as a tool to visualize the transmission of the disease between
countries, thus allowing us to observe the potential influence of neighbouring
countries on the epidemic evolution in Switzerland.

Figure 8 displays the prediction results for Switzerland. For this, the ini-
tial fifty-eight weeks of data were utilized for the training phase, the next two
weeks were reserved for testing. These results are considered satisfactory, as they
produce an error rate of 793 cases on day 14, in relation to the demographic
magnitude of Switzerland, exceeding 8 million residents.

Figure 8: Predicted number of cases from neighbouring countries vs. number of
cases

Figure 9 gives a clearer picture of how the spread of the disease in Germany,
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Region 19x14 cells 38x28 cells 76x56 cells

Baden-Wurttemberg 6.66 6.83 7.04
Bayern 1.84 1.84 1.88
Berlin 778.39 774.7 709.62

Brandenburg 0.9 0.97 1.00
Bremen, Niedersachsen 0.75 0.88 0.9

Hamburg 106.73 144.27 189.04
Hessen 20.4 22.96 24.22

Mecklenburg-Vorpommern 0.23 0.22 0.21
Nordrhein-Westfalen 8.02 8.7 9.17

Rheinland-Pfalz 5.26 6.0 6.21
Saarland 39.62 39.47 39.68
Sachsen 13.87 13.54 13.3

Sachsen-Anhalt 1.96 2.29 2.56
Schleswig-Holstein 1.38 1.42 1.44

Thuringen 2.35 2.64 2.83

Table 2: RMSE values for multi cell representation

Italy, Austria or France could impact the epidemiological situation in Switzerland.
It highlights the critical role of international cooperation and coordination in
managing such infectious diseases.

Figure 9: Cases from neighbouring countries vs. total number of cases

4 Discussions

4.1 Aim and main findings

Our approach demonstrated that implementing a cellular automaton and an
epidemiological SIRD model can provide a robust tool for simulating the spread of
infectious diseases. Several papers deal with the specificity of the Covid-19 pan-
demic in Germany [9], [12]. Nevertheless, this approach provides a more nuanced
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understanding of disease dynamics at the granular level, considering regional par-
ticularities and interactions between adjacent countries.

With data from Germany serving as the central case study, the experiments
have shown how the proposed model can be trained successfully utilizing real-
world data. Minor differences between model predictions and real data indicate
the model’s validity. However, some variations were identified, particularly in re-
gions with higher disease severity, highlighting areas where further improvements
are needed.

The ability of the model to explore the disease’s spread over international
boundaries, a crucial component of pandemic management in our society, was
demonstrated through an examination of international transmission from a neigh-
boring country to Switzerland.

4.2 Strengths and limitations

We want to highlight some strengths and limitations of this study. To the best
of our knowledge, this is the first study quantifying the model’s ability to extend
beyond the borders of a single country. The spread of Covid-19 from two coun-
tries into a shared neighboring country can be modeled using this approach. This
unique aspect of cross-border modeling enables a more comprehensive regional
view of the pandemic by reflecting the dynamics of the disease’s transnational
spread. In addition, the results obtained in this paper highlight the value of using
visual representations, such as cellular automata, to convey complex epidemio-
logical data in an accessible manner. By translating raw data into color-coded
severity levels, this approach can make the science of epidemiology more accessible
to a wider, non-specialist audience.

Other essential strengths of the current study include the fact that the model
can easily be replicated on another country/epidemiological model as long as we
have viable data and the fact that the model can predict the spread of disease
across borders and can help identify trends in the spread of Covid-19 virus.

By all means, there are also some limitations, one of which is the need for
more data - quite a lot of data is needed (total cases, cured persons, and dead
persons), but only sometimes all three are reported. Another limitation may be
that using the SIRD model and cellular automata may oversimplify the reality
because not all people are the same, and the model does not consider the same
protective measures against the spread of the virus. Experiments have shown
that there can be significant errors in regions represented by a single cell. In
the examples provided in section 3, Berlin and Hamburg had the most significant
errors (although Hamburg was much smaller than Berlin). Furthermore, the linear
regression model does not consider a large number of variables, and the general
model does not consider possible mutations.
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5 Conclusions

This study demonstrates the utilization of cellular automata for modeling
disease spread, particularly at the intersection of computing and public health.

The research highlights the potential of integrating cellular automata with
traditional epidemiological models, such as SIRD, to simulate the spread of in-
fectious diseases such as Covid-19. This model has been effectively trained using
real-world data, mainly from Germany. Despite the good fit of the model to accu-
rate data, it was fascinating to observe variations, especially in Berlin, indicating
that there is room for refinement.

The evaluation of disease transmission from Germany, Italy, Austria and
France to Switzerland further strengthens the applicability of the proposed model.
This additional insight demonstrates the broader potential of the model for in-
ternational pandemic management, going beyond the scope of the original study.
Indeed, this cross-border analysis underlines the model’s adaptability for large-
scale health strategies.

Also, translating raw data into color-classified severity grades using cellular
automata makes complex epidemiological data more tractable. The application of
this model has highlighted its practical implications and can contribute to public
health decision-making. Integrating traditional epidemiological models with com-
putational methods such as cellular automata can lead to a richer understanding
of disease dynamics.

There are many opportunities for improvement, among which we mention that
the proposed model can have increased complexity, incorporating various factors
of disease spread; parameters can be adjusted over time; alternative predictive
models with improved accuracy, such as machine learning algorithms, can be used;
geographical scope can be extended by applying the model globally. Through
these modifications, the model could be refined to provide more accurate and
valuable information for mitigating the impact of infectious diseases.
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