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CONVERGENCE OF THIRD ORDER NEWTON-LIKE
METHOD IN RIEMANNIAN MANIFOLDS
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Abstract

In this article, we present semilocal convergence of third order Newton-like
method in Riemannian manifolds. We study convergence analysis with Lip-
schitz continuity condition and by using recurrence relations of the method.
Finally, two numerical examples are given to illustrate the effectiveness of
our results.
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1 Introduction

Many problems in engineering and technology field can be solved through
nonlinear equation

G(x) = 0, (1)

where G is a nonlinear operator defined in an open convex subset Ω of a Banach
space B into itself. To determine the roots of (1) has attracted the attention of
mathematicians in the field of pure and applied mathematics. The exact solution
of (1) is difficult to find so that we use iterative methods to solve these equations.
One study the convergence of iterative methods usually based on semilocal and
local convergence analysis. If the convergence analysis which uses information
around a solution and estimates the radius of convergence ball, then it is said to
be local convergence where as if the convergence analysis tells information around
an initial point, then it is said to be semilocal convergence. There are several
articles that can be found in literature which were devoted to study so many
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iterative methods in Banach spaces[3, 4, 5]. The third order Newton-like method
[14] in Banach space to solve (1) is defined as:

yn = xn −G′(xn)
−1G(xn),

xn+1 = xn − 2[G′(xn) +G′(yn)]
−1G(xn), for each n = 0, 1, 2, . . . ,

}
(2)

where G′(xn) is first Fréchet derivative in Ω. Recently, there has been a growing
interest in studying iterative methods in Riemannian manifolds, since there are
many numerical problems in manifolds that arise in many contexts [7, 8]. Some
higher order iterative methods in manifolds have been studied in [6, 2, 1]. In this
article, we extend the third order Newton-like method (2) in Riemannian mani-
folds to find the singular point of a vector field. We study the convergence theorem
under Lipschitz continuity condition on the second order covariant derivative of
a vector field and by using recurrence relations of the method.

The article is divided into six sections as follows: Section 1 is introduction. In
Section 2, we introduce some basic results of differential geometry. In Section 3, we
present recurrence relations for third order Newton-like method in Riemannian
manifolds. In Section 4, we establish existence and uniqueness theorem of our
method. In Section 5, two numerical examples are given. In Section 6, some brief
conclusions are given.

2 Preliminaries

In this section, we introduce some basic results of differential geometry (for
more details see [10, 13, 12]).

Let K be a real n dimensional Riemannian manifold. The tangent space of K
at a is denoted by TaK. The inner product ⟨ ., .⟩a on TaK induces the norm ∥.∥a.
The tangent bundle of K is denoted by TK and is defined by

TK := {(a, v); a ∈ K and v ∈ TaK} =
⋃
a∈Z

TaK.

Let a, t ∈ K, and ϱ : [0, 1] → K be a piecewise smooth curve joining a and t.
Then the arc length of ϱ is defined by l(ϱ) =

∫ 1
0 ∥ϱ′(x)∥dx, and the Riemannian

distance from a to t is defined by d(a, t) = infϱ l(ϱ), where the infimum is taken
over all the piecewise smooth curves ϱ connecting a and t. Let χ(K) be the set of
all vector fields of class C∞ on K and D(K) the ring of real-valued functions of
class C∞ defined on K. An affine connection ∇ on K is a mapping

∇ : χ(K)× χ(K) → χ(K)

(X,F) 7→ ∇XF

that satisfies the following properties

(i) ∇fX+gFV = f∇XV+ g∇FV.

(ii) ∇X(F+V) = ∇XF+∇XV.

(iii) ∇X(fF) = f∇XF+X(f)F,
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where X, F, V ∈ χ(K) and f , g ∈ D(K). Let F be a vector field of class C1 on
K, the covariant derivative of F is determined by the connection ∇ which defines
on each a ∈ K, a linear application of TaK itself

DF(a) : TaK → TaK
v 7→ DF(a)(v) = ∇XF(a),

where X is a vector field satisfies X(a) = v. A parametrized curve ϱ : I ⊆ R → K
is a geodesic at p0 ∈ I, if ∇ϱ′(p)ϱ

′(p) = 0 at the point p0. If ϱ is a geodesic for
all p ∈ I, then we say ϱ is a geodesic. If [x, y] ⊆ I, then ϱ is a geodesic segment
joining ϱ(x) to ϱ(y). A basic property of geodesic is that, ϱ′(p) is parallel along
ϱ(p) therefore ∥ϱ′(p)∥ is constant. Let U(a, s) and U [a, s] be an open and a closed
geodesic ball with centre a and radius s respectively. By the Hopf-Rinow theorem,
if K is complete metric space, then for any a, t ∈ K there exists a geodesic ϱ called
minimizing geodesic joining a to t with

l(ϱ) = d(a, t).

If v ∈ TaK then there exists a unique minimizing geodesic ϱ such that ϱ(0) = a
and ϱ′(0) = v. The point ϱ(1) is called the image of v by the exponential map at
a, i.e.

expa : TaK → K,

such that expa(v) = ϱ(1) and ϱ(p) = expa(pv) for any p ∈ [0, 1]. Let ϱ be a
piecewise smooth curve. Then for any x, y ∈ R, the parallel transport along ϱ is
denoted by Rϱ,.,. and given by

Rϱ,x,y : Tϱ(x)K → Tϱ(y)K
v 7→ V (ϱ(y)),

where V is the unique vector field along ϱ such that ∇ϱ′(p)V = 0 and V (ϱ(x)) = v.

Let j ∈ N and F be a vector field of class Ck. Then the covariant derivative of
order j of F is denoted by DjF and defined as the multilinear map

DjF : Ck(TK)× Ck(TK)× · · · × Ck(TK)︸ ︷︷ ︸
j-times

→ Ck−j(TK)

which is given by

DjF(A1, A2, . . . , Aj−1, A) = ∇AD
j−1F(A1, A2, . . . , Aj−1)

−
j−1∑
i=1

Dj−1F(A1, A2, . . . ,∇AAi, . . . , Aj−1),

for all A1, A2, . . . , Aj−1 ∈ Ck(TK).
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Definition 1. Let K be a Riemannian manifold, Ω ⊆ K be an open convex set
and F ∈ χ(K). Then DF = ∇(.)F is Lipschitz with constant M > 0, if for any
geodesic ϱ and x, y ∈ R such that ϱ[x, y] ⊆ Ω, it holds the inequality

∥Rϱ,y,xDF(ϱ(y))Rϱ,x,y −DF(ϱ(x))∥ ≤ M

∫ y

x
∥ϱ′(p)∥dp.

We will write DF ∈ LipM (Ω). If K = Rn, then the above definition is same
as usual Lipschitz condition for the operator DF : K → K.

Proposition 1. Let ϱ be a curve in K and F be a C1 vector field on K, then the
covariant derivative of F in the direction of ϱ′(t) is defined as

DF(ϱ(t))ϱ′(t) = ∇ϱ′(t)Fϱ(t) = lim
r→0

1

r

(
Rϱ,t+r,tF(ϱ(t+ r))− F(ϱ(t))

)
.

If K = Rn, then it is same as directional derivative in Rn.

Next, we take some theorems from [1] in order to prove our convergence the-
orem.

Theorem 1. Let ϱ be a geodesic in K and F be a C1-vector field on K. Then

Rϱ,t,0F(ϱ(t)) = F(ϱ(0)) +

∫ t

0
Rϱ,θ,0DF(ϱ(θ))ϱ′(θ)dθ.

Theorem 2. Let ϱ be a geodesic in K and F be a C2-vector field on K. Then

Rϱ,t,0DF(ϱ(t))ϱ′(t) = DF(ϱ(0))ϱ′(0) +

∫ t

0
Rϱ,θ,0D

2F(ϱ(θ))(ϱ′(θ), ϱ′(θ))dθ.

Theorem 3. Let ϱ be a geodesic in K such that [0, 1] ⊆ Dom(ϱ) and F be a
C2-vector field on K. Then

Rϱ,1,0F(ϱ(1)) = F(ϱ(0)) +DF(ϱ(0))ϱ′(0)

+

∫ 1

0
(1− θ)Rϱ,θ,0D

2F(ϱ(θ))(ϱ′(θ), ϱ′(θ))dθ.

3 Recurrence relations for a third order Newton-like
method in Riemannian manifolds

In this section, we will establish the recurrence relations for third order Newton
- like method in Riemannian manifolds. The third order Newton - like method
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(2) in Riemannian manifolds has the form

gn = −DF(an)
−1F(an),

bn = expan(gn),

αn(t) = expan(tgn),

hn = −2
(
DF(an) +Rαn,1,0DF(bn)Rαn,0,1

)−1
F(an),

an+1 = expan(hn), for each n = 0, 1, 2, . . . ,


(3)

where DF(an) = ∇(.)F(an). Let a0 ∈ Ω ⊆ K and assume that

1. ∥DF(a0)
−1∥ ≤ ε, ε > 0,

2. ∥DF(a0)
−1F(a0)∥ ≤ φ, φ > 0,

3. ∥D2F(a)∥ ≤ ϖ, for all a ∈ Ω, ϖ > 0,

4. ∥Rϱ,b,aD
2F(ϱ(b))R2

ϱ,a,b −D2F(ϱ(a))∥ ≤ K
∫ b
a ∥ϱ′(x)∥dx, K > 0,

where ϱ is a geodesic such that ϱ[a, b] ⊆ Ω.

We take p = ϖφε, q = Kεφ2, p0 = 1, q0 = 1, r0 = p/2, s0 = 2/(2− p), and
define for n = 0, 1, 2, . . .

pn+1 =
pn

1− ppnsn
,

qn+1 = pn+1s
2
n

[p
2
(2r2n − 7rn + 6) +

5q

12
(1− rn)

3sn

]
,

rn+1 =
ppn+1qn+1

2
,

sn+1 =
qn+1

1− rn+1
.

In these conditions, for n ≥ 0, we prove the following inequalities:

� ∥DF(an)
−1∥ ≤ pnε,

� ∥DF(an)
−1F(an)∥ ≤ qnφ,

�

∥∥∥Ian −DF(an)
−1DF(an)+Rαn,1,0DF(bn)Rαn,0,1

2

∥∥∥ ≤ rn,

� d(an+1, an) ≤ snφ,

� d(an+1, bn) ≤ (qn + sn)φ.

To prove the above inequalities we will need some Lemmas.

Lemma 1. Let F be a C2 vector field. Then, for all n ≥ 0, we have

Rαn,1,0F(bn) =

∫ 1

0
(1− t)Rαn,t,0D

2F(αn(t))(Rαn,0,tgn, Rαn,0,tgn)dt,

where αn is a family of minimizing geodesics given as above.
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Proof. By Theorem 3 and (3), we have

Pαn,1,0F(bn) = F(an) +DF(an)gn +

∫ 1

0
(1− t)Rαn,t,0D

2F(αn(t))(α
′
n(t), α

′
n(t))dt

= F(an) +DF(an)(−DF(an)
−1F(an))

+

∫ 1

0
(1− t)Rαn,t,0D

2F(αn(t))(α
′
n(t), α

′
n(t))dt

=

∫ 1

0
(1− t)Rαn,t,0D

2F(αn(t))(α
′
n(t), α

′
n(t))dt.

Since αn is a family of minimizing geodesics, then α′
n(t) is parallel and α′

n(t) =
Rαn,0,tα

′
n(0), α′

n(0) = gn. We have

Rαn,1,0F(bn) =

∫ 1

0
(1− t)Rαn,t,0D

2F(αn(t))(Rαn,0,tgn, Rαn,0,tgn)dt.

Lemma 2. Let F be a C2 vector field on K and µn be a family of minimizing
geodesics defined by µn(t) = expbn(tln), where µn(0) = bn, µn(1) = an+1 and

ln = Rαn,0,1

[
DF(an)

−1F(an)−2
(
DF(an) +Rαn,1,0DF(bn)Rαn,0,1

)−1
F(an)

]
. Then,

for all n ≥ 0, we have

Rµn,1,0F(an+1) =

∫ 1

0
(1− t)Rµn,t,0D

2F(µn(t))R
2
µn,0,t(ln, ln)dt

+
1

2
Rαn,0,1

∫ 1

0
Rαn,t,0D

2F(αn(t))R
2
αn,0,t(gn, Rαn,1,0ln)dt

+Rαn,0,1

∫ 1

0
(1− t)Rαn,t,0D

2F(αn(t))R
2
αn,0,t(gn, gn)dt

− 1

2
Rαn,0,1

∫ 1

0
Rαn,t,0D

2F(αn(t))R
2
αn,0,t(gn, gn)dt,

where αn is a family of minimizing geodesics given as above.
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Proof. Since αn(0) = an and αn(1) = bn. Then, by Theorem 2, we have

Rαn,1,0DF(bn)ln =
1

2
[Rαn,1,0DF(bn)Rαn,0,1 −DF(an)]Rαn,1,0ln

+
1

2
[Rαn,1,0DF(bn)Rαn,0,1 +DF(an)]Rαn,1,0ln

=
1

2

∫ 1

0
Rαn,t,0D

2F(αn(t))R
2
αn,0,t(gn, Rαn,1,0ln)dt

+
1

2
[Rαn,1,0DF(bn)Rαn,0,1 +DF(an)]Rαn,1,0Rαn,0,1

×
[
DF(an)

−1F(an)−2
(
DF(an)+Rαn,1,0DF(bn)Rαn,0,1

)−1
F(an)

]
=

1

2

∫ 1

0
Rαn,t,0D

2F(αn(t))R
2
αn,0,t(gn, Rαn,1,0ln)dt

+
[1
2
[Rαn,1,0DF(bn)Rαn,0,1+DF(an)]−DF(an)

]
DF(an)

−1F(an)

=
1

2

∫ 1

0
Rαn,t,0D

2F(αn(t))R
2
αn,0,t(gn, Rαn,1,0ln)dt

− 1

2

∫ 1

0
Rαn,t,0D

2F(αn(t))R
2
αn,0,t(gn, gn)dt,

implies that

DF(bn)ln =
1

2
Rαn,0,1

∫ 1

0
Rαn,t,0D

2F(αn(t))R
2
αn,0,t(gn, Rαn,1,0ln)dt

− 1

2
Rαn,0,1

∫ 1

0
Rαn,t,0D

2F(αn(t))R
2
αn,0,t(gn, gn)dt.

By using Theorem 3 and Lemma 1, we get

Rµn,1,0F(an+1) = Rµn,1,0F(an+1)− F(bn)−DF(bn)ln + F(bn) +DF(bn)ln

=

∫ 1

0
(1− t)Rµn,t,0D

2F(µn(t))R
2
µn,0,t(ln, ln)dt

+
1

2
Rαn,0,1

∫ 1

0
Rαn,t,0D

2F(αn(t))R
2
αn,0,t(gn, Rαn,1,0ln)dt

+Rαn,0,1

∫ 1

0
(1− t)Rαn,t,0D

2F(αn(t))R
2
αn,0,t(gn, gn)dt

− 1

2
Rαn,0,1

∫ 1

0
Rαn,t,0D

2F(αn(t))R
2
αn,0,t(gn, gn)dt.

Now, we can prove the above inequalities by the principle of mathematical
induction. For n = 0, the first and second inequlities are trivial, but we have to
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prove all inequalities. We start with the third inequality. Since∥∥∥∥Ia0 −DF(a0)
−1DF(a0) +Rα0,1,0DF(b0)Rα0,0,1

2

∥∥∥∥
=

∥∥∥∥DF(a0)
−1DF(a0)−Rα0,1,0DF(b0)Rα0,0,1

2

∥∥∥∥
≤ 1

2
ϖ∥DF(a0)

−1∥d(a0, b0)

≤ εφϖ

2
=

p

2
= r0 < 1,

which shows that the third inequality is true for n = 0. Now, by Banach’s Lemma
[9],

DF(a0)
−1DF(a0) +Rα0,1,0DF(b0)Rα0,0,1

2

is invertible and∥∥∥∥(DF(a0) +Rα0,1,0DF(b0)Rα0,0,1

2

)−1
DF(a0)

∥∥∥∥ ≤ 1

1− p/2
=

2

2− p
.

We have

d(a1, a0) =

∥∥∥∥(DF(a0) +Rα0,1,0DF(b0)Rα0,0,1

2

)−1
F(a0)

∥∥∥∥
≤

∥∥∥∥(DF(a0) +Rα0,1,0DF(b0)Rα0,0,1

2

)−1
DF(a0)

∥∥∥∥ ∥DF(a0)
−1F(a0)∥

≤ 2φ

2− p
= s0φ

and

d(a1, b0) ≤ d(a1, a0) + d(a0, b0)

≤ 2φ

2− p
+ φ = (q0 + s0)φ.

Therefore all inequalities are true for n = 0. Suppose that all inequalities are
true for n = 0, 1, 2, . . . , k and consider ak ∈ Ω, rk+1 < 1 and ppksk < 1. Then, we
shall prove for n = k + 1. We have

∥DF(ak)
−1∥∥RQ,1,0DF(ak+1)RQ,0,1 −DF(ak)∥ ≤ppksk < 1.

By Banach’s Lemma, RQ,1,0DF(ak+1)RQ,0,1 is invertible and

∥RQ,1,0DF(ak+1)
−1RQ,0,1∥ =∥DF(ak+1)

−1∥

≤ ∥DF(ak)
−1∥

1− ∥DF(ak)−1∥∥RQ,1,0DF(ak+1)RQ,0,1 −DF(ak)∥

≤ pkε

1− ppksk
= pk+1ε,
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where Q is a minimizing geodesic joining the points ak and ak+1 such that Q(0) =
ak and Q(1) = ak+1. Also

∥Rαk,0,1

(∫ 1

0
Rαk,t,0D

2F(αk(t))R
2
αk,0,t

(1− t)dt(gk, gk)

− 1

2

∫ 1

0
Rαk,t,0D

2F(αk(t))R
2
αk,0,t

dt(gk, gk)
)
∥

≤
∥∥∥∥∫ 1

0

(
Rαk,t,0D

2F(αk(t))R
2
αk,0,t

−D2F(ak)
)
(1− t)dt

∥∥∥∥ d(bk, ak)2
+

∥∥∥∥12
∫ 1

0

(
Rαk,t,0D

2F(αk(t))R
2
αk,0,t

−D2F(ak)
)
dt

∥∥∥∥ d(bk, ak)2
≤ K

6
d(bk, ak)

3 +
K

4
d(bk, ak)

3 =
5K

12
d(bk, ak)

3.

Hence

∥Rµk,1,0F(ak+1)∥ =∥F(ak+1)∥

≤ϖ

2
d(ak+1, bk)

2 +
ϖ

2
d(ak+1, bk)d(bk, ak) +

5K

12
d(bk, ak)

3

≤ϖ

2
(qk + sk)

2φ2 +
ϖ

2
qk(qk + sk)φ

2 +
5K

12
q3kφ

3. (4)

We obtain that

∥DF(ak+1)
−1F(ak+1)∥ ≤∥F(ak+1)∥∥DF(ak+1)

−1∥

≤pk+1ε
(ϖ
2
(qk + sk)

2φ2 +
ϖ

2
qk(qk + sk)φ

2 +
5K

12
q3kφ

3
)

=pk+1

(p
2
(qk + sk)

2φ+
p

2
qk(qk + sk)φ+

5q

12
q3kφ

)
=pk+1

(p
2
(2q2k + s2k + 3qksk) +

5q

12
q3k

)
φ

=pk+1

(p
2

(
2(1− rk)

2s2k + s2k + 3(1− rk)s
2
k

)
+

5q

12
(1− rk)

3s3k

)
φ

=pk+1s
2
k

(p
2
(2r2k − 7rk + 6) +

5q

12
(1− rk)

3sk

)
φ

=qk+1φ.

Next, as∥∥∥∥Iak+1
−DF(ak+1)

−1DF(ak+1) +Rαk+1,1,0DF(bk+1)Rαk+1,0,1

2

∥∥∥∥
=

∥∥∥∥DF(ak+1)
−1DF(ak+1)−Rαk+1,1,0DF(bk+1)Rαk+1,0,1

2

∥∥∥∥
≤ 1

2
ϖ∥DF(ak+1)

−1∥d(ak+1, bk+1)

=
ppk+1qk+1

2
= rk+1 < 1.
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By Banach’s Lemma, DF(ak+1)
−1DF(ak+1)+Rαk+1,1,0

DF(bk+1)Rαk+1,0,1

2 is invertible
and ∥∥∥∥(DF(ak+1) +Rαk+1,1,0DF(bk+1)Rαk+1,0,1

2

)−1
DF(ak+1)

∥∥∥∥ ≤ 1

1− rk+1
.

This implies,

d(ak+2, ak+1) =

∥∥∥∥(DF(ak+1) +Rαk+1,1,0DF(bk+1)Rαk+1,0,1

2

)−1
F(ak+1)

∥∥∥∥
≤

∥∥∥∥(DF(ak+1) +Rαk+1,1,0DF(bk+1)Rαk+1,0,1

2

)−1
DF(ak+1)

∥∥∥∥
× ∥DF(ak+1)

−1F(ak+1)∥

≤ qk+1φ

1− rk+1
= sk+1φ

and

d(ak+2, bk+1) ≤ d(ak+2, ak+1) + d(ak+1, bk+1)

≤ sk+1φ+ qk+1φ = (qk+1 + sk+1)φ.

Thus, we conclude that all inequalities are true for n = k + 1. Hence, by
mathematical induction it holds for all n.

4 Convergence analysis

In this section, we will prove convergence and uniqueness of third order Newton
- like method in Riemannian manifolds. Before that, we will prove some Lemmas.

Lemma 3. Let z0 = 0.0952980448 . . . be the smallest positive root of 1 − 12a +
16a2 − 2a3 = 0 and we define the functions

c(a) =
3

5

(1− 12a+ 16a2 − 2a3)

(1− a)2
,

C(a, b) =
1

(1− 3a)2

(
2a2 − 7a+ 6 +

5q

3p2b
(1− a)2a

)
,

B(a, b) =
a2

(1− 3a)2

(
2a2 − 7a+ 6 +

5q

3p2b
(1− a)2a

)
,

B0(a) = B(a, 1).

Then, c(a) is decreasing in [0, z0], C(a, b) and B(a, b) are increasing in the
variable a in [0, z0] for b > 1, C(a, b) and B(a, b) are decreasing in the variable b,
B0(a), and B′

0(a) are increasing in [0, z0].

Proof. It is easy to prove and hence omitted.



Convergence of third order Newton-like method in Riemannian manifolds 197

Lemma 4. The following recurrence relations are true for the sequences {pn} and
{rn}.

pn+1 =

n∏
k=0

(
1 +

2rk
1− 3rk

)
,

rn+1 =
r2n(2r

2
n − 7rn + 6)

(1− 3rn)2

(
1 +

5q

3p2pn

(1− rn)
2rn

(2r2n − 7rn + 6)

)
.

Proof. The proof follows by the use of definitions of the sequences {pn}, {qn},
{rn} and {sn}.

Lemma 5. Let 0 < p ≤ z0 and 0 ≤ q ≤ 4c(p2). Then, the sequences {pn} and {rn}
are increasing and decreasing respectively. We also have rn < 1, pn > 1, ppnsn <
1 ∀n ∈ N.

Proof. See [11].

Lemma 6. Under the assumptions of Lemma 5, we define α = r2/r1, then

rn+1 ≤ α2n+1
r0 ∀ ∈ N

and the sequence {rn} converges to 0. Also
∑∞

n=0 rn < ∞.

Proof. See [11].

Lemma 7. The sequence {pn} is bounded above, that is, there exist a constant
M such that pn ≤ M, ∀n ∈ N.

Proof. See [11].

Lemma 8. The sequence {sn} is a Cauchy sequence, as sn < 8
3ps0α

2n . Also∑∞
n=0 sn < ∞.

Proof. See [11].

Now, we can prove our main convergence theorem.

Theorem 4. Let K be a complete Riemannian manifold, Ω ⊆ K be an open convex
set and F ∈ χ(K) satisfies the conditions (1)− (3) with 0 < p ≤ 2z0 and 0 ≤ q ≤
4c(p2). Then, the method given by (3) converges to a singular point a∗ of the vector
field F with an, bn and a∗ belonging to U [a0, rφ] and a∗ is the unique singular point
of F in U(a0, (2/ϖε)− rφ) ∩ Ω, where r =

∑∞
n=0 sn.

Proof. If 0 < p < 2z0. Then, by Lemma 8, {sn} is a Cauchy sequence . Now, if
p = 2z0, q = c(p/2) = c(z0) = 0. Then, we have rn = r0 = p/2, for n ≥ 0. Also

pn+1 = pn

(
1 +

2rn
1− 3rn

)
= pn

(
1 +

2r0
1− 3r0

)
= ρpn = ρn+1,
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where ρ = 1 + 2r0
1−3r0

> 1 and

sn =
2rn

ppn(1− rn)
=

2r0
ppn(1− r0)

=
1

ρn(1− r0)
=

s0
ρn

,

this shows that {sn} is Cauchy sequence. Thus, the sequence {sn} is Cauchy in
both the cases and therefore {an} is a convergent sequence. If a∗ is the limit of
{an}, then we will prove that F(a∗) = 0. From (4), we have

∥F(an+1)∥ ≤ϖ

2
(qn + sn)

2φ2 +
ϖ

2
qn(qn + sn)φ

2 +
5K

12
q3nφ

3

=
1

ε
s2n

(p
2
(2r2n − 7rn + 6) +

5q

12
(1− rn)

3sn

)
φ,

as {rn} and {sn} → 0, when n → ∞. Therefore F(a∗) = 0. Also

d(an+1, a0) ≤ d(an+1, an) + d(an, an−1) + · · ·+ d(a1, a0)

≤
n∑

k=0

skφ ≤ rφ,

this shows that an ∈ U [a0, rφ] and similarly we can prove that bn ∈ U [a0, rφ]. Now
taking limit n → ∞, we get a∗ ∈ U [a0, rφ]. Next, we will prove the singularity
is unique. Let z∗ be another singularity of F in U(a0, (2/ϖε) − rφ) and ϑ be
a minimizing geodesic joining the points a∗ and z∗ such that ϑ(0) = a∗ and
ϑ(1) = z∗. Then, we have

∥Rϑ,t,0DF(ϑ(t))Rϑ,0,t −DF(a∗)∥ ≤ ϖ

∫ t

0
∥ϑ′(0)∥ds

=ϖtd(a∗, z∗) ≤ ϖt
(
d(a0, a

∗) + d(a0, z
∗)
)
.

Hence

∥DF(a∗)−1∥
∫ 1

0
∥Rϑ,t,0DF(ϑ(t))Rϑ,0,tdt−DF(a∗)∥dt

≤Mε

∫ 1

0
ϖt

(
d(a0, a

∗) + d(a0, z
∗)
)
dt

<
Mεϖ

2

(
rφ+

2

ϖε
− rφ

)
.

For M = 1, the operator
∫ 1
0 Rϑ,t,0DF(ϑ(t))Rϑ,0,tdt is invertible. Therefore by

Banach’s Lemma, we have

0 = Rϑ,1,0F(z
∗)− F(a∗) =

∫ 1

0
Rϑ,t,0DF(ϑ(t))Rϑ,0,t(ϑ

′(0))dt.

Therefore ϑ′(0) = 0. As 0 = ∥ϑ′(0)∥ = d(a∗, z∗), we get a∗ = z∗. Hence the
proof is complete.
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5 Numerical examples

In this section, two numerical examples are given to illustrate the effectiveness
of our results.

Example 1. Let us consider the vector field Z from R3 to R3 given by

Z(a) = Z

a1
a2
a3

 =

 −a2
a1 − a1a

2
3

a1a2a3

 (5)

with the Frobenius norm and let F = Z|S2 . Then, it can be easily verified that

Z|S2(a) ∈ TaS
2 ∀ a ∈ S2.

From [6], DF(a) in the basis

βa =


−a3

0
a1

 ,

 0
−a3
a2


of TaS

2 is given by

DF(a) =

(
− 1

a3
c1,1(a) − 1

a3
c1,2(a)

− 1
a3
c2,1(a) − 1

a3
c2,2(a)

)
,

where

ci,j(a) =aj

(
fi,a3(a)−

3∑
m=1

amfm,a3(a)ai

)
− a3

(
fi,aj (a)−

3∑
m=1

amfm,aj (a)ai

)
for i, j = 1, 2, fi,aj =

∂fi
∂aj

, and [F(a)]βa =
(
− f1(a)/a3,−f2(a)/a3

)T
. Therefore

DF(a) =

(
−a1a2(a

2
1 + 1) −1− a21(a

2
2 + a23 − 1)

1− a22 − a21(−2 + a22)− a23 −a1a2(a
2
2 + a23 − 3)

)
.

Next, by using the method of Lagrange’s multipliers, we get

ϖ = sup{DF(a1, a2, a3) : a
2
1 + a22 + a23 = 5} = 11

is a Lipschitz constant of DF. Initially for a0 = (2,−0.0013091, 1)T , we get

∥DF(a0)
−1∥ = 1.00779 = ε,

∥DF(a0)
−1F(a0)∥ = 0.0013193 = φ,

p = 0.0146253508 ≤ 2z0.

Therefore we must choose q such that 0 ≤ q ≤ 4c(p/2). Hence the equation (5)
has a unique singularity a∗ in U(a0, (2/ϖε)− rφ) ∩ Ω.
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Example 2. Consider the integral equation

F(a)(u) = −1 + a(u) +
1

4
a(u)

∫ 1

0

u

u+ v
a(v)dv, a(u) ⊂ K = C[0, 1] (6)

and we define the norm ∥a∥ = max0≤u≤1|a(u)|. Initially for a0 = a0(u) = 1, we
get

∥DF(a0)
−1∥ = 1.17718382 = ε,

∥DF(a0)
−1F(a0)∥ = 0.08859191 = φ,

∥D2F(a)∥ = 0.150514997 = ϖ,

p = 0.015697053 ≤ 2z0.

Therefore we must choose q such that 0 ≤ q ≤ 4c(p/2). Hence the equation (6)
has a unique singularity a∗ in U(a0, (2/ϖε)− rφ) ∩ Ω.

6 Conclusions

In this article, we have extended the third order Newton-like method from
Banach space to Riemannian manifolds to find the singularity of a vector field. We
have presented the convergence theorem under Lipschitz continuity condition on
the second order covariant derivative of a vector field and by using the recurrence
relations of the method. Finally, two numerical examples are given to illustrate
the effectiveness of our results.
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