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Abstract

In this paper, we consider a class of stochastic differential equations with
almost periodic coefficients. In the one-dimensional case, by using the unitary
group of operators associated to the stationary increments of the Brownian
motion, we show the unitary almost periodicity of the solution. We also
prove that the tightness is a property of almost periodically unitary processes.
Some examples are given.
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1 Introduction

Ever since the generalization of the almost periodicity theory to the functions
with values in abstract (Polish or Banach) spaces, given by Bochner [7], several
classes of almost periodic (AP) functions have been introduced, mainly: Stepanov
AP, Weyl AP, Besicovitch AP, etc., see [2] for an overview and the hierarchy of
these notions. This theory has played a role in various branches of mathematics,
most notably in differential equations. For more details concerning this theory and
its application to differential equations, see for instance [1, 17, 23, 11, 9]. We focus
in this paper on the class of random functions (stochastic processes). In this case,
the almost periodicity forks into different types. In [19], T. Morozan and C. Tudor
introduced the almost periodicity in one-dimensional distributions (APOD), in
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[13], H. L. Hurd, A. Russek and D. Surgailis defined the almost periodicity of the
finite dimensional distributions (APFD) and for continuous processes, C. Tudor
introduced the almost periodicity in infinite dimensional distributions (APD),
see [22]. In the case of continuous second-order stochastic processes, the almost
periodicity in quadratic mean (APQM) is given by P. H. Bezandry and T. Diagana
[5]. In [12], E. G. Gladyshev treated the periodic and almost periodic correlated
processes (PC and APC, respectively). On the other hand, the well-known link
between the unitary groups of operators and some processes, such as stationary
processes and PC processes, motivated H. L. Hurd [14] to propose the definition
of almost periodically unitary (APU) processes which is the central concept in
this work. Some relationships between the different types of almost periodicity
are shown by C. Tudor in [22], Bedouhene et al. in [4]. All the above concepts are
applied to study the stochastic differential equations (SDEs) with AP coefficients
except the APU (APC), to our knowledge, until now, no work has broached
this issue and this is due to the fact that the set of APU processes has neither
algebraic nor topological suitable properties (no stability by addition and there
isn’t a complete adapted metric). For instance, the study of the existence of
a quadratic mean almost periodic solution to SDEs has aroused the interest of
several authors, unfortunately in [18] it is shown, by counterexamples, that it is
strong as a property for solutions of SDEs, which means that, generally, there is
no APQM solution. However, for the almost periodicity in distribution (APOD,
APFD and APD), C. Tudor and his collaborators [21, 3, 19, 20] showed the
existence of solutions (of these types) to various SDEs. M. Kamenskii, O. Mellah
and P. Raynaud De Fitte [16] proved, under some conditions, that the unique
bounded mild solution to some semilinear SDE in a Hilbert space is APD. In this
work, we show that the unique bounded solution in one dimensional case is APU.
The study of the infinite dimensional case uses the notion of measure conserving
transformations. This work is in progress.

This paper is organized as follows: In the second section, we recall the defi-
nitions of the different types of almost periodic processes with more details and
properties on the APU processes. In section 3, we prove that an APU process
satisfies the tightness property given in [4, Remark 2.2.]. We also show that the
solutions to SDEs given in [18] as conterexamples to mean square almost periodic-
ity are APU. We finish by the study of existence and uniqueness of APU solutions
to some SDE. In this part, we consider the following affine stochastic differential
equation

dX(t) = −aX(t) dt+ F (t) dt+G(t) dW (t), t ∈ R, (1)

where a is a real positive constant, W := {Wt}t∈R is a standard Brownian motion
(sbm) on R, F : R → R and G : R → R are almost periodic functions. By using
the unitary group of operators connected to the stationary increments of the sbm,
we show that the unique solution to (1) is APU.
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2 Notations and preliminaries

In this section, we recall some important definitions.

2.1 Almost periodic functions

Let (E, || · ||) be a Banach space. A continuous function f : R → (E, || · ||) is
said to be Bohr-almost periodic if for each ε > 0 there exists l(ε) > 0 such that
any interval of length l(ε) contains at least a number τ (called ε−almost period)
for which

sup
t∈R

||f(t+ τ)− f(t)|| < ε.

In this case, we say that the set of ε−almost periods is relatively dense in R.
Recall that f : R → (E, || · ||) is almost periodic if and anly if the set of

its translations (f̃t)t∈R := (f(· + t))t∈R is relatively compact in Cu(R,E), where
Cu(R,E) is the space of continuous functions endowed by the topology of uniform
convergence on R (see [7]). And thus the range of f is relatively compact in E.

There is an equivalent definition of almost periodicity, due to Bochner [8],
which is also used in the study of SDEs. However, in this paper, we settle for the
Bohr-almost periodicity.

2.2 Almost periodic processes

Let (Ω,F,P) be a probability space and L2(Ω) be the space of all mean square
complex valued random variables defined on Ω.

2.2.1 Almost periodicity in quadratic mean

A mean square continuous second order stochastic process X := {Xt}t∈R is
almost periodic in quadratic mean (APQM for short) if the function{

R → L2(Ω)
t 7→ Xt

is almost periodic.

2.2.2 Periodically and almost periodically correlated processes

A mean square process X is said to be wide sens (weakly) stationary if for any
t, s ∈ R its covariance function given by

C(t, s) = E(XtXs)− E(Xt)E(Xs)

depends only on t−s and its mean function m(t) = E(Xt) is constant with respect
to time t.
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There is a connection between a wide sens stationary process {Xt}t∈R and a
unitary group (called also a shift group) of operators U(τ), τ ∈ R, given on the
span of {Xt}t∈R by

U(τ)(Xt) = Xt+τ , for each t, τ ∈ R.

For each τ ∈ R, U(τ) can be extended to the closure H(X) of the span of
{Xt}t∈R and thus to L2(Ω). The family {U(τ), τ ∈ R} forms a one parameter
shift group on L2(Ω). And if the process is square mean continuous, the group is
strongly continuous.

From this definition, we notice that for all T ∈ R, C(t + T, s + T ) = C(t, s)
and m(t+T ) = m(t) (constant), then Gladyshev [12] naturally gives the following
definition.

A mean square process X is said to be periodically correlated with period T
(PC for short) if

C(t+ T, s+ T ) = C(t, s) and m(t+ T ) = m(t) for all t, s ∈ R.

In the same way as the stationary process, but for only τ = nT, n ∈ Z,
H.L. Hurd [14] shows the existence of a one parameter shift group {U(n), n ∈ Z}
such that

U(n)(Xt) = (Xt+nT ), for each t ∈ R, n ∈ Z.

D. Gladyshev [12] generalized the definition of the periodically correlated pro-
cesses to the almost periodically correlated processes, as follows:

A process X is said to be almost periodically correlated (APC for short) if its
mean and covariance

m(·) : R → C; C(·, ·) : R× R → C

are uniformly continuous and the functions

m(·) : R → C;C(·, ·+ τ) : R → C, t → C(t, t+ τ)

are almost periodic, for every τ ∈ R.

2.2.3 Almost periodically unitary processes

The link, given above, between stochastic processes and unitary groups moti-
vates H.L. Hurd [14] to give the following definition, which is the central concept
in this work.

A mean square continuous second order stochastic process (Xt)t∈R is called
almost periodically unitary (APU for short), if there exists a strongly continuous
unitary group (called also a shift group) U = {U(τ) : L2(Ω) → L2(Ω); τ ∈ R} such
that, for every ε > 0, there exists l(ε) > 0 such that any interval of length l(ε)
contains at least a number τ for which

sup
t∈R

∥ X(t+ τ)− U(τ)X(t) ∥L2 < ε, (2)
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which means that the set{
τ ; sup

t∈R
∥ X(t+ τ)− U(τ)X(t) ∥L2 < ε

}
is relatively dense in R.

In the following, we recall some properties of APU processes and give an
important characterization in terms of the shift group associated to the process
and some almost periodic process in quadratic mean.

Proposition 2.1. ([14, Proposition 1]) A mean square continuous second order
process (X(t))t∈R is APU with shift group U if and only if there exists an APQM
process Y such that

X(t) = U(t)Y (t), ∀ t ∈ R. (3)

Proposition 2.2. ([14, 15]) We have the following properties:

1. APU processes are uniformly continuous on R with values in L2(Ω).

2. The range of an APU process is bounded in L2(Ω), but it is not in general
totally bounded and thus not relatively compact.

3. APQM processes are APU.

4. PC processes are APU.

5. APU processes are APC.

6. Weakly stationary processes are APU.

3 Main results

Instead of the relative compacity, which is not satisfied by the APU processes,
we show in the following subsection a tightness result of APU processes, which
is an important property. In the second subsection of this part, we consider two
examples given in [18] and show that the solutions are APU. These examples
motivate the study of the equation (1) in the third subsection.

3.1 Tightness of APU processes

Before giving the tightness result, let us recall the definition of tightness and
the tightness criterion given in [4] . Let X be a continuous stochastic process and
(X̃(r))r∈R := (X(·+ r))r∈R be the family of its translates. The process X is tight
if (X̃(r))r∈R is tight in Ck(R,C), which implies the following condition (tightness
criterion):

∀ [a, b] ⊂ R, ∀ ε > 0, ∀ η > 0, ∃ δ > 0, ∀ r ∈ R,
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P

{
sup

|t−s|<δ
t,s∈[a,b]

∥X(r + t)−X(r + s)∥ > η

}
< ε, (4)

where Ck(R,C) is the space of continuous functions endowed with the topology of
uniform convergence on compact subsets of R.

Proposition 3.1. If the process X is APU with a strongly continuous unitary
group of operators U = {U(τ); τ ∈ R} on L2(Ω), then X is tight.

Proof. Assume that X is APU. By Proposition 2.1, there exists an almost peri-
odic function Y : R → L2(Ω) such that

X(t) = U(t)Y (t), t ∈ R.

Then, for all t, s ∈ R and all r ∈ R∥∥∥∥X(r + t)−X(r + s)

∥∥∥∥
L2

=

∥∥∥∥U(r + t)Y (r + t)− U(r + s)Y (r + s)

∥∥∥∥
L2

.

By the group property of {U(τ)}τ∈R and since U(s+ r) is a unitary operator
on L2(Ω), we obtain∥∥∥∥X(r + t)−X(r + s)

∥∥∥∥
L2

=

∥∥∥∥U(r + s)

[
U(t− s)Y (r + t)− Y (r + s)

]∥∥∥∥
L2

=

∥∥∥∥U(t− s)Y (r + t)− Y (r + s)

∥∥∥∥
L2

.

It follows that∥∥∥∥X(r+t)−X(r+s)

∥∥∥∥
L2

=

∥∥∥∥[U(t−s)Y (r+t)−Y (r+t)

]
+

[
Y (r+t)−Y (r+s)

]∥∥∥∥
L2

=

∥∥∥∥[U(t−s)−IL2

]
Y (r+t)+

[
Y (r+t)−Y (r+s)

]∥∥∥∥
L2

=

∥∥∥∥[U(t−s)−U(0)

]
Y (r+t)+

[
Y (r+t)−Y (r+s)

]∥∥∥∥
L2

≤
∥∥∥∥[U(t−s)−U(0)

]
Y (r+t)

∥∥∥∥
L2

+

∥∥∥∥Y (r+t)−Y (r+s)

∥∥∥∥
L2

.

By Tchebychev inequality, we obtain that for every interval [a, b] ⊂ R and
every r ∈ R

P

{
sup

|t−s|<δ
t,s∈[a,b]

∥∥∥∥X(r + t)−X(r + s)

∥∥∥∥ > η

}
≤ 1

η2
sup

|t−s|<δ
t,s∈[a,b]

∥∥∥∥X(r + t)−X(r + s)

∥∥∥∥2
L2

.

Let ε > 0 and η > 0. By the almost periodicity of Y : R → L2(Ω) we have:
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on the one hand, since U = {U(τ); τ ∈ R} is a strongly continuous unitary
group, and using the relative compacity of R(Y ) = {Y (r), r ∈ R} in L2(Ω), there
exists δ1 > 0 such that for all r ∈ R we have:

sup
|t−s|<δ1
t,s∈[a,b]

∥∥∥∥[U(t− s)− U(0)

]
Y (r + t)

∥∥∥∥
L2

≤ η
√
ε

2
, (5)

on the other hand, from the relative compacity of the family (Y (·+ r))r∈R in
Cu(R, L2(Ω)), we deduce that there exists δ2 > 0, such that, for all r ∈ R

sup
|t−s|<δ2
t,s∈[a,b]

∥∥∥∥Y (r + t)− Y (r + s)

∥∥∥∥
L2

≤ η
√
ε

2
(6)

Therefore, X satisfies the tightness condition (4).
It remains to check ( see [6, Theorem 7.3,p. 82]) that we have,
∀ η > 0, ∃ a > 0, ∀ r ∈ R

P

{
∥X̃(r)(0)∥ ≥ a

}
= P

{
∥X(r)∥ ≥ a

}
< η.

Since Y is tight, ∀ η > 0, ∃ a > 0, ∀ r ∈ R

P

{
∥Ỹ (r)(0)∥ ≥ a

}
< η,

but,

P

{
∥X̃(r)(0)∥ ≥ a

}
= P

{
∥U(r)Y (r)∥ ≥ a

}
= P

{
∥Y (r)∥ ≥ a

}
.

3.2 Explicit examples of almost periodically unitary solutions

Example 3.2. (Stationary Ornstein-Uhlenbeck process). We consider a
real-valued standard Brownian motion W . Let α, σ > 0 be two real constants.
The Ornstein-Uhlenbeck process X, see [18, Example 2.1], given by

X(t) =
√
2ασ

∫ t

−∞
e−α(t−s) dW (s) (7)

is the unique L2−bounded solution to the linear stochastic differential equation

dX(t) = −αX(t) dt+
√
2ασ dW (t). (8)

The stochastic process X is Gaussian with mean 0, and for all t ∈ R and
τ ≥ 0, its covariance function is given by

C(t, t+ τ) = σ2 e−α τ ,

which means that X is a weakly stationary process, so APU (see Proposition
2.2).
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Example 3.3. Let W be a real-valued standard Brownian motion. Consider the
stochastic process X, defined by:

X(t) = e−t+sin(t)

∫ t

−∞
es−sin(s)

√
1− cos(s) dW (s), t ∈ R. (9)

The process X is the unique L2−bounded solution to the following stochastic
differential equation

dX(t) = (−1 + cos(t))X(t) dt+
√

1− cos(t) dW (t), t ∈ R. (10)

The process X is not weakly stationary. Indeed, we have, for any t ∈ R,
E(X(t)) = 0 and

C(t+ τ, t) = Cov(X(t+ τ), X(t))

= E(X(t)X(t+ τ))

= e−t+sin(t)e−t−τ+sin(t+τ)

∫ t

−∞
e2(s−sin(s))(1− cos(s)) ds

=
1

2
e−τ+sin(t+τ)−sin(t).

Let us show that X is PC. We have, for any k, t ∈ R,

C(k + T, t+ T ) = E(X(k + T )X(t+ T ))

= e−t−k−2T+sin (t+T )+sin (k+T )

· E
((∫ k+T

−∞
es−sin (s)

√
1−cos (s) dW (s)

)(∫ t+T

−∞
ee

s−sin (s)√
1−cos (s) dW (s)

))
.

For T = 2π, we obtain that

C(k + 2π, t+ 2π) = e−t−k−4π+sin (t)+sin (k)

· E
((∫ k+2π

−∞
es−sin (s)

√
1−cos (s) dW (s)

)(∫ t+2π

−∞
es−sin (s)

√
1−cos (s) dW (s)

))
.

Making the change of variable σ = s− 2π, we get

C(k + 2π, t+ 2π) = e−t−k−4π+sin (t)+sin (k)

· E
((∫ k

−∞
eσ+2π−sin (σ)

√
1−cos (σ) dW̃ (σ)

)(∫ t

−∞
eσ+2π−sin (σ)

√
1−cos (σ) dW̃ (σ)

))
,

where W̃ (σ) = W (σ + 2π) −W (2π) is a Brownian motion with the same distri-
bution as W (σ). It follows that,

C(k + 2π, t+ 2π) = e−t−k+sin (t)+sin (k)E

((∫ k

−∞
eσ−sin (σ)

√
1− cos (σ) dW (σ)

)
(∫ t

−∞
eσ−sin (σ)

√
1− cos (σ) dW (σ)

))
.

Therefore, for T = 2π

C(k + T, t+ T ) = C(k, t), ∀ k, t ∈ R.

Hence X is PC which implies that X is APU.
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3.3 Existence and uniqueness of APU solution to SDE in one
dimension

We consider the following stochastic differential equation

dX(t) = −aX(t) dt+ F (t) dt+G(t) dW (t), t ∈ R, (11)

where, a > 0 is a real fixed number, W is a real-valued standard Brownian motion
and F,G : R → R are almost periodic functions.
In the following, we will show that the solution X to the above equation is APU :
The strongly continuous unitary group U associated to X is inherited from sta-
tionary processes obtained by increments of the Brownian motion W .
For each s ∈ R, denote by W̃ s = (W̃ s

t )t∈R the stationary process obtained by the
increments of the Brownien motion W :

W̃ s
t = W (s+ t)−W (t), ∀t ∈ R.

The following lemma gives explicitly the group U.

Lemma 3.4. Let W be a real-valued standard Brownian motion. Then there
exists a strongly continuous unitary group U = {U(τ); τ ∈ R} on L2(Ω) such
that:

W̃ s
t+τ = U(τ)(W̃ s

t ),

for all s, τ, t ∈ R.

Proof. To prove this lemma we can use for instance [14] and [10].

Remark 3.5. In particular, for t = 0, we have:

U(τ)

[
W (s)

]
= W̃ s

τ := W (s+ τ)−W (τ), (12)

for all s and τ in R.

Theorem 3.6. The unique L2−bounded solution X of (11), which has the form

X(t) =

∫ t

−∞
e−a(t−σ) F (σ) dσ +

∫ t

−∞
e−a(t−σ)G(σ) dW (σ); ∀t ∈ R, (13)

is APU.

Remark 3.7. For every r, t ∈ R such that r < t,

X(t) = e−a(t−r)X(r) +

∫ t

r
e−a(t−σ) F (σ) dσ +

∫ t

r
e−a(t−σ)G(σ) dW (σ).

Proof of Theorem 3.6
Let us show that the solution X is APU. We consider the strongly continuous

unitary group U = {U(τ); τ ∈ R} given by the formula (12).
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Let ε > 0 and τ be a common ε−almost period of the two functions F and G.
For any t ∈ R, we have

∥X(t+ τ)− U(τ)X(t)∥2L2

= E

(
| X(t+ τ)− U(τ)X(t) |2

)
= E

(∣∣∣∣∫ t+τ

−∞
e−a(t+τ−σ) F (σ) dσ − U(τ)

[∫ t

−∞
e−a(t−σ) F (σ) dσ

]
+

∫ t+τ

−∞
e−a(t+τ−σ)G(σ) dW (σ)− U(τ)

[∫ t

−∞
e−a(t−σ)G(σ) dW (σ)

]∣∣∣∣2).
Since (a+ b)2 ≤ 2 a2 + 2 b2, we get

∥X(t+ τ)− U(τ)X(t)∥2L2

≤ 2

(∣∣∣∣∫ t+τ

−∞
e−a(t+τ−σ) F (σ) dσ − U(τ)

[∫ t

−∞
e−a(t−σ) F (σ) dσ

]∣∣∣∣2)
+ 2 E

(∣∣∣∣∫ t+τ

−∞
e−a(t+τ−σ)G(σ) dW (σ)− U(τ)

[∫ t

−∞
e−a(t−σ)G(σ) dW (σ)

]∣∣∣∣2).
Making the change of variable s = σ − τ , we obtain

∥X(t+ τ)− U(τ)X(t)∥2L2

≤ 2

(∣∣∣∣∫ t

−∞
e−a(t−s) F (s+ τ) ds− U(τ)

[∫ t

−∞
e−a(t−s) F (s) ds

]∣∣∣∣2)
+ 2 E

(∣∣∣∣∫ t

−∞
e−a(t−s)G(s+ τ) dW̃ (s)− U(τ)

[∫ t

−∞
e−a(t−s)G(s) dW (s)

]∣∣∣∣2)
:= I1 + I2,

where W̃ (s) = W (s+ τ)−W (τ) is a Brownian motion with the same distribution
as W (s).

For I1, we have

I1 = 2

∣∣∣∣∫ t

−∞
e−a(t−s) F (s+ τ) ds− U(τ)

[∫ t

−∞
e−a(t−s) F (s) ds

]∣∣∣∣2
= 2

(∣∣∣∣∫ t

−∞
e−a(t−s) F (s+ τ) ds−

∫ t

−∞
e−a(t−s) F (s) ds

∣∣∣∣2
= 2

∣∣∣∣∫ t

−∞
e−a(t−s)

[
F (s+ τ)− F (s)

]
ds

∣∣∣∣2.
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Now, using the Cauchy-Schwarz inequality, we obtain

I1 ≤ 2

∫ t

−∞
e−a(t−s)

∣∣∣∣F (s+ τ)− F (s)

∣∣∣∣ ds
≤ 2

(∫ t

−∞
e−a(t−s)/2 e−a(t−s)/2

∣∣∣∣F (s+ τ)− F (s)

∣∣∣∣ ds)2

≤ 2

((∫ t

−∞
e−a(t−s) ds

)(∫ t

−∞
e−a(t−s)

∣∣∣∣F (s+ τ)− F (s)

∣∣∣∣2 ds))
≤ 2

((∫ t

−∞
e−a(t−s) ds

)(∫ t

−∞
e−a(t−s)

∣∣∣∣F (s+ τ)− F (s)

∣∣∣∣2 ds))
≤ 2

(∫ t

−∞
e−a(t−s) ds

)2

sup
s∈R

| F (s+ τ)− F (s) |2 .

Since F is an almost periodic function, we deduce that

I1 ≤ 2a2 ε

(∫ t

−∞
e−a(t−s) ds

)2

= 2ε.

For I2, we have

I2 = 2 E

(∣∣∣∣∫ t

−∞
e−a(t−s)G(s+ τ) dW̃ (s)− U(τ)

[∫ t

−∞
e−a(t−s)G(s) dW (s)

]∣∣∣∣2)
= 2 E

(∣∣∣∣∫ t

−∞
e−a(t−s)G(s+ τ) dW̃ (s)−

∫ t

−∞
U(τ)

[
e−a(t−s)G(s) dW (s)

]∣∣∣∣2)
= 2 E

(∣∣∣∣∫ t

−∞
e−a(t−s)G(s+ τ) dW̃ (s)−

∫ t

−∞
e−a(t−s)G(s)

[
U(τ) dW (s)

]∣∣∣∣2).
Using Lemma 3.4, we get

I2 = 2 E

(∣∣∣∣∫ t

−∞
e−a(t−s)G(s+ τ) dW̃ (s)−

∫ t

−∞
e−a(t−s)G(s) d(U(τ)W (s))

∣∣∣∣2)
= 2 E

(∣∣∣∣∫ t

−∞
e−a(t−s)G(s+ τ) dW̃ (s)−

∫ t

−∞
e−a(t−s)G(s) dW̃ (s)

∣∣∣∣2).
It follows that

I2 = 2 E

(∣∣∣∣∫ t

−∞
e−a(t−s)

[
G(s+ τ)−G(s)

]
dW̃ (s)

∣∣∣∣2).
Applying Itô’s isometry, we get

I2 = 2

∫ t

−∞
E

(∣∣∣∣e−a(t−s)

[
G(s+ τ)−G(s)

]∣∣∣∣2) ds.
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By the Cauchy-Schwarz inequality, we obtain

I2 ≤ 2

∫ t

−∞
E

(
e−2 a(t−s)

∣∣∣∣G(s+ τ)−G(s)

∣∣∣∣2) ds

≤ 2

∫ t

−∞
e−2 a(t−s) E

(∣∣∣∣G(s+ τ)−G(s)

∣∣∣∣2) ds

≤ 2

(∫ t

−∞
e−2 a(t−s)ds

)
sup
s∈R

E | G(s+ τ)−G(s) |2 .

Since G is an almost periodic function, we deduce that

I2 ≤ 2 a ε

(∫ t

−∞
e−2 a(t−s) ds

)
= ε,

thus X is APU and the associated group is given by the formula (12).
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