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AN ALTERNATIVE PROOF OF THE CATALAN
CONJECTURE

Chang LIU 1 and Preda MIHĂILESCU∗,2

Abstract

The original proof [5] of Catalan’s conjecture uses real binomial power
series expansions and annihilation of real class groups, based on a Theorem
of Thaine. In this paper we provide a simplified approach to this proof, which
uses Stickelberger annihilation of the minus part of the class group, and thus
does not require the Theorem of Thaine. The approach is based on proving
the existence of a character connecting Galois exponents of roots of unity.
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1 Introduction

Catalan’s equation is

Xm − Y n = 1; X,Y ∈ N;m,n ≥ 2, (1)

and it was proved to have no solutions except for (X,Y,m, n) = (3, 2, 2, 3), [5].
We recommend the reader interested in more historical details about the progress
towards the proof of this fact, to read the books like [9], [1] or [8] written on the
subject.

The purpose of the present paper is to provide a new proof of the above fact,
based on a simplification brought to the arguments in [5]. First, we shall consider
integer solutions X,Y ∈ Z, and due to early results – see [8] – we may assume
that m,n > 3 in (1). It will thus suffice to show that the equation

xp − yq = 1; with primes p, q > 3 and integers x, y ∈ Z \ {0,±1} (2)
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has no solutions. Allowing integers solutions has the advantage that if (x, y; p, q)
is a solution to (2), then so is (−y,−x, q, p): if there is a solution to the pair (p, q)
of exponents, there is one also for the exponents in switched order, (q, p). This
remark allows us to impose the condition q > p, without restriction of generality.

The work of Cassels [2] allows one to assume that if there are solutions to (2),
then the following necessary conditions hold, among others:

xp − 1

x− 1
= pzq; x− 1 = pq−1bq y = pbz. (3)

We shall show that (3) has no solutions with x ∈ Z \ {0,±1}, and odd primes
p, q > 3. With this, we prove:

Theorem 1. The equation (3) has non non-trivial solutions with q > p > 3.

By the above, this implies the truth of the Catalan Conjecture, thus offering
a new proof of the same.

1.1 Notations and overview of the approach

Let K = Q[ζp] = Q[ζ] = Q[X]/(Φp(X)) be the p−th cyclotomic extension
with, Φp(X) = Xp−1

X−1 , the p−th cyclotomic polynomial and ζ, a root thereof.
Denote by G = Gal(K/Q) the Galois group of K/Q and let the automorphisms
σc ∈ G : ζ 7→ ζc, for c ∈ P := {1, 2, 3, . . . , p − 1}. We write, in multiplicative
notation, aσ = σ(a) for all a ∈ K and σ ∈ G. We let ȷ ∈ G be the complex
conjugation and λ = (1 − ζ) which is an algebraic integer generating the unique
ramified prime ideal above p in K. Denote by µn = {z ∈ C | zn = 1} the group
of n−th root of unity.

The fractional and principal ideals of K are F(K),P(K), respectively and the
class group is C(K) = F/P. The Stickelberger Ideal I ⊂ Z[G] annihilates the class
group. Assuming x, z is a non trivial solution to (3), we show that the G-orbit
of α := x−1

1−ζ ∈ Z[ζ] is built of mutually coprime algebraic integers and the ideal
A = (α, z) has order dividing q. By applying some θ ∈ I to A we obtain identities
of the type

(β/β)q =

(
1− ζ/x

1− ζ/x

)θ
,

with β ∈ Z[ζ] being an integral element that depends on x and θ. If Gθ ∈ K[[T ]]
is the formal binomial series Gθ(T ) = (1 + ζT )θ/q, it is absolutely convergent for
|T | < 1, in particular at T = −1/x. Fixing some primitive q−th root of unity
ξ ∈ C, there is thus a Galois exponent κ(θ) ∈ Z/(q · Z), such that

β/β = ξκ(θ)Gθ(1−ȷ)(−1/x).

The key result of this paper is the following

Proposition 1. Notations being like above, for each θ ∈ I, either κ(σθ) = 0 for
all σ ∈ G, or else there is a character χ = χθ : G→ F×

q such that

κ(σθ) = χ(σ) · κ(θ), ∀σ ∈ G. (4)
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Using this result, we may produce some simple θ ∈ I such that κ(σθ) = 0
for all σ ∈ G. Some simple, non vanishing linear combinations of conjugates of
β(θ) can be defined, which have vanishing leading terms in their power series
developments. This leads to the strong upper bound on |x| < 2, that confirm the
Theorem 1.

2 Cyclotomy, classical and elementary facts.

We assume in the sequel that (x, z) is a solution to equation (3), for the prime
exponents p < q. We note the following relation between x and z:

Lemma 1. Let (x, y, p, q) be a solution to equation (2) with p < q, a(p−1) = q−1
where a > 1 is a positive real number and z is defined as in equation (3). Then
|x| > |z|a.

Proof. Consider equation (3),

pzq−1 < p|z|q = |x
p − 1

x− 1
| = |xp−1 + xp−2 + · · ·+ 1| < pxp−1,

therefore, |za| < |x|.

2.1 Characteristic numbers and characteristic ideals

Lemma 2. Let α = x−ζ
1−ζ and A = (α, z): the characteristic number and ideal,

respectively.

1. Then α ∈ Z[ζ];α ≡ 1 mod λ2.

2. The conjugates of the characteristic number are mutually coprime:

(σc(α), σd(α)) = (1), for 1 ≤ c < d ≤ p− 1

3. The conjugates of the characteristic ideal A are mutually coprime and

Aq = (α), and NK/Q(A) = (z). (5)

Proof. For point 1: since p =
∏p−1
i=1 (1− ζi) and p|(x− 1), (1− ζ)|(x− 1 + 1− ζ),

so α = 1 + x−1
1−ζ ≡ 1 mod λ2 is integral and verifies the claimed congruence.

For point 2, let I(c, d) = (σc(α), σd(α)) = (x−ζ
c

1−ζc ,
x−ζd
1−ζd ). We note that for any

integers k and j not divisible by p, the number 1−ζk
1−ζj is a cyclotomic unit of the

field K – e.g. [10], Proposition 8.1. Therefore, x−ζ
c

1−ζc · 1−ζc
1−ζd = x−ζc

1−ζd ∈ I(c, d). Then

ζc−ζd
1−ζd ∈ I(c, d). The ideal I(c, d) thus contains a unit and it must be I = (1).

For point 3, zq =
∏
c∈P σc(α) by equation (3), so α|zq, and zq/α =

∏
c∈P,σc ̸=σid σc(α).

Hence, by point 2, we know (α, zq/α) = (1). For the characteristic ideal, this im-
plies:

Aq =
(
αq, αq−1z, . . . , αzq−1, α · (zq/α)

)
= (α) · (αq−1, . . . , zq−1, zq/α) = (α),
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hence Aq = (α) which means that the characteristic ideal is either principal or
has order q. N(A) =

∏
c∈P (α

σc , z) = (N(α), z, z2, . . . , zp−1) by point 2. Since
N(α) = zq, we get the relation N(A) = (z).

2.2 The Stickelberger’s ideal

As mentioned above, the Stickelberger ideal is a subideal of the group ring Z[G]
with the property of annihilating the class group. It is defined as the intersection
of a fractional, principal ideal, with Z[G], as follows:

Definition 1. The Stickelberger element is defined by

ϑ =
1

p

p−1∑
c=1

cσ−1
c ∈ 1

p
Z[G] (6)

and Stickelberger’s ideal is defined as

I = ϑZ[G] ∩ Z[G]. (7)

We note that N = NK/Q ∈ I and I ⊂ (1− ȷ)Z[G]⊕ (N). There exists a base for
I− = (1− ȷ)I made of (p− 1)/2 elements, called Fueter elements, e.g. [6], which
are

ψn = ϑ(1 + σn − σn+1) =
∑
c∈Sn

ncσ
−1
c ∈ Z≥0[G], for n ∈

{
1, 2, . . . ,

p− 1

2

}
(8)

with nc =

([
(n+ 1)c

p

]
−
[
nc

p

])
and nc + np−c = 1, (9)

From nc+np−c = 1 and nc ≥ 0, we note nc = 0 or nc = 1, and (1+ȷ)·ψn = NK/Q,

which means for every ideal P ⊂ Z[ζ], P(1+ȷ).ψn = N(P).
We define I+ := ϑZ[G] ∩ Z+[G]. Combining the property of Stickelberger’s

ideal and the property of Fueter elements, we note that for every ideal P ⊂ Z[ζ]
and each θ ∈ I+, the ideal Pθ ⊂ Z[ζ] is generated by some γ ∈ Z[ζ], which satisfies
γ · γ = N(P)ςθ , for an integer ςθ ∈ Z, which we call the relative weight of θ. Note
that the relative weight of each Fueter element is 1. Furthermore, we denote by
the absolute weight of θ =

∑
c∈P ∗ ncσ

−1
c ∈ Z[G] the sum w(θ) =

∑
c |nc|.

We define the Fermat quotient map ϕ : Z[G] → Fp such that ζθ = ζϕ(θ).
Explicitly,

ϕ

(∑
c∈P ∗

ncσ
−1
c

)
=
∑
c∈P ∗

nc/c ∈ Fp. (10)

We identify the value ϕ(θ) ∈ Fp with its natural lift to N, under the least non-
negative remainder representation of Fp. The Fermat ideal is I0 = I ∩ Ker (ϕ):
this is the module of all Stickelberger elements θ such that ζθ = 1.
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We note the following useful property of the action of I on λ:

Lemma 3. Let Mµ := (1 − ζ)µ, for some µ ∈ I, then Mµ = πς(µ) · (ζ)ϕ(µ)/2,
where Q(π) ∈ K is the quadratic subfield of K and π2 = p ·

(
−1
p

)
.3 Moreover,

Mσ−1
µ = ±ζ(σ−1)ϕ(µ)/2 ∈ µ2p, for σ ∈ G.

Proof. Since NK/Q(1−ζ) = p, thenMµ ·Mµ = (1−ζ)µ(1+ȷ) = pς(µ). Furthermore,

Mµ/Mµ = (1−ζ
1−ζ̄ )

µ = (−ζ)µ and from the definition of the Fermat quotient map

ϕ, ζθ = ζϕ(θ) , then it is equal to
(
−1
p

)ς(µ)
ζϕ(µ), so M2

µ = pς(µ) ·
(
−1
p

)ς(µ)
· ζϕ(µ).

Hence, Mµ = πς(µ) · ζϕ(µ)/2. The last statement follows from σc(π) =
(
c
p

)
π.

2.2.1 The β0-map

Stickelberger’s theorem implies that for θ ∈ I, there is a principal ideal
a(θ) = Aθ, and the principal ideal arising from the action of the elements from
Stickelberger ideal is generated by Jacobi numbers, which are products of Jacobi
sums[6]. The product of Jacobi numbers by their complex conjugates are rational
integers, which are equal to the norm of A raised to the relative weight of θ , i.e.
|Z[ζ]/A|ςθ = |z|ςθ .

Iwasawa proved in [4] that every Jacobi number J verifies

J ≡ 1 mod (1− ζ)2, (11)

Let β0 ∈ J(θ) be the Jacobi number that generates the ideal. By the identity
(αθ) = Aqθ = Pq, we obtain

αθ = η · βq0, (12)

where η is a unit in Z[ζ]. Multiplying their complex conjugates on both sides of
equation (12) and since

αθ(1+ȷ) = NK/Q(α)
ςθ = zqςθ = β

q(1+ȷ)
0

we get η · η̄ = 1. It follows from Kronecker’s Unit Theorem, that η ∈ µ2p.
Combined with the congruence in Point 1. of Lemma 2 and (11), we obtain that
in fact η = 1. Hence αθ = βq0. We herewith define the maps β0 : I+ → Z[ζ] and
γ : I → K as follows. For θ ∈ I+, we let β0(θ) be the unique Jacobi number

defined above by the identity αθ = βq0. Then γ0(θ) :=
β0(θ)
β0(ȷθ)

, for θ ∈ I.

2.3 Formal binomial power series

This section basically follows the original paper proving the Catalan conjecture
in Part 4.1 [5] except the subscripts are slightly different. Therefore, some proofs
will be omitted in this context.

3Here
(

·
p

)
denotes the Legendre symbol modulo p.
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2.3.1 Definition

The identity αθ = β(θ)q leads to a binomial series expansion which converges
absolutely. In this section we consider this series in detail.

For µ =
∑

c∈P ∗ ncσ
−1
c ∈ Z[G], we let Gµ(T ), Gµ(1−ȷ)(T ) ∈ K[[T ]] be the formal

binomial power series

Gµ(T ) = (1 + ζT )µ/q =
∏
c∈P ∗

(1 + σ1/c(ζ)T )
nc/q

=
∏
c∈P ∗

1 +
∑
n≥1

(
nc/q

n

)
(σ1/c(ζ)T )

n

 =: 1 +
∑
n≥1

cn(µ)T
n, (13)

and the coefficients cn(µ) arise from the multiplication and rearrangement of the
terms in the product in (13). In particular, denoting ηµ := q · c1 =

∑
c∈P ncζ

σ1/c ,
we obtain

Gµ(T ) = 1 + ηµT/q +
∑
n≥2

cn(µ)T
n. (14)

2.3.2 Coefficients

We investigate some properties of these coefficients on base of the coefficients
in binomial series. Note that

(
(1 + ζT )µ/q

)σ
= (1 + ζT )µσ/q, by definition, as

formal power series. In addition, the common domain of convergence in C is
D = {|T | < 1} ⊂ C, so the evaluations of the two power series are equal in this
domain.

Lemma 4. The coefficients cn(µ) ∈ Z[ζ, 1/q] are q-integers, which means a′n :=
cn · qk ∈ Z[ζ] for some k. More precisely, k ≥ E(n) = n + vq(n!). In particular,
E(n) = n+ vq(n!) < n · q

q−1 .

It is an easy consequence of the following statement.

Lemma 5. Let bn(µ) = n!qn · an, a′n be same as previous definition, C(µ) =∑
c∈P ncζ

c. Then, for all n > 0 and µ ∈ Z[G], there is a v ∈ Z, (v, q) = 1 such
that bn = va′n, and

bn(µ) ≡ C(µ)n mod qZ[ζ]. (15)

Proof. It can be found in the proof of the Catalan Conjecture [5].

Now, we investigate upper bounds for the coefficients. A power series f(T ) =∑∞
k=0 akT

k with complex coefficients is dominated by the series g(T ) =
∑∞

k=0AkT
k

with non-negative real coefficients if |ak| ≤ Ak holds for k = 0, 1, . . .; if this is the
case, we write g ≫ f . The relation of dominance is preserved by addition and
multiplication of power series.
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Let r be a real number and s a complex number satisfying |s| ≤ 1. Then for
the binomial series we have

(1 + sT )r =

∞∑
k=0

(
r

k

)
skT k

(1− T )−|r| =

∞∑
k=0

(−1)k
(
−|r|
k

)
T k.

The coefficients of the latter series are positive and
∣∣(r
k

)∣∣ ≤ ∣∣∣(−|r|
k

)∣∣∣. Combining

with |ζ| = 1, it follows that Gµ(1−ȷ)(T ) ≪ (1− T )−h/q where h is the absolute
weight of µ(1− ȷ). Combining with the previous result, we obtain the following
bounds:

Lemma 6. Let a′n = qE(n)an, where an is the coefficients of Gµ(1−ȷ)(T ) and
E(n) = n+ vq(n!), h is the absolute weight of µ(1− ȷ), h′ = ⌈h/q⌉ Then

|an| ≤ (−1)k
(
−h/q
n

)
<

(
h′ + n− 1

n

)
,

|a′n| ≤ qE(n)(−1)k
(
−h/q
n

)
<

(
h′ + n− 1

n

)
qE(n),

Finally, we consider the convergence of these binomial power series.

Lemma 7. The series Gµ(t) are absolutely convergent in C when |t| ≤ 1.

Proof. It follows that Gµ(t) is dominated by (1− T )−h/q. For every non-negative
integer m, we define the m -th partial sum by

Gµ(t)|m = 1 +
m∑
n=1

an(µ)t
n.

Using the common remainder estimates for Taylor series, the remainder |Rm+1|
is given by |Gµ(t)−Gµ(t)|m| ≤

(
h′+m
m+1

)
· |t|m+1

(1−|t|)h′+m+1 as a consequence of Lemma

6 .

3 Proof of Proposition 1 and the main result

We have seen that η = 1 in (12), so

β0(θ)
q = αθ =

(
x− ζ

1− ζ

)θ
. (16)

Dividing by the complex conjugate, we get

γ0(θ)
q =

(
1− ζ/x

1− ζ̄/x

)θ
· (1− ζ)θ(ȷ−1) =

(
Gθ(1−ȷ)(−1/x) · (−ζ1/q)θ

)q
. (17)
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Likewise, for σ ∈ G \ {σ1}, in view of Lemma 3,(
β0(θ)

β0(σθ)

)q
=

(
1− ζ/x

1− ζσ/x

)θ
(1− ζ)θ(σ−1) (18)

=

(
Gθ(1−σ)(−1/x) ·

((
−1

p

)
ς(θ) · ζϕ(θ)/2q

)(σ−1)
)q

.

We fix ξ ∈ C, a primitive q−th root of unity, and give the formal definition of
the Galois exponent map κ : I → Z/(qZ) used in the formulation of Proposition
1:

γ0(θ) = Gθ(1−ȷ)(−1/x) · ξκ(θ) ·
(
(−1)θ · ζ−ϕ(θ)/q

)
, (19)

We denote for simplicity, the 2p−th root of unity above by ν(θ) = (−1)θ ·ζ−ϕ(θ)/q.
In order to investigate the behavior of κ(θ) under the action of G, we introduce

the module

B =
{
b(θ) =

(
γ0(θ), Gθ(1−ȷ)(−1/x) · ν(θ)

)
: θ ∈ I

}
.

The set B is endowed with an action of Z[G] as follows: z ∈ Z acts on b via(
γ0(θ), ν(θ) ·Gθ(1−ȷ)(−1/x)

)z
=
(
γ0(θ)

z,
(
ν(θ) ·Gθ(1−ȷ)(−1/x)

)z)
,

while σ ∈ G acts naturally on the first components of b(θ). It acts on ν(θ) ·
Gθ(1−ȷ)(−1/x) by acting on the coefficients of the power series and acting naturally
on the root of unity. Extending these actions by multiplicativity turns B into a
Z[G]-module. We denote the components of elements of B by b(θ) = (b1(θ), b2(θ)).
The relation to the κ-map is obvious, being given by

ξκ(θ) =
b1(θ)

b2(θ)
. (20)

This induces an equivalence relation on B given by

b ∼k b
′ ⇔ b1/b2 = b′1/b

′
2.

The equivalence classes of ∼k are represented by the q powers of ξ. We now prove
the Proposition 1:

Proof. Fix some θ ∈ I and let k = κ(θ) ∈ Z/(q · Z). We investigate the relations
between elements of the orbit K(θ) = {κ(σθ) : σ ∈ G}. Let σ ∈ G be a generator
of the group. Since ȷ = σ(p−1)/2 acts continuously on complex power series, we
have κ(ȷθ) = −k.

Assume first that k ̸= 0; then κ(σθ) = c · k for some c ∈ Z which is uniquely
defined modulo q. In the module B we then have σ (b(θ)) ∼k b(θ)

c. We let σ act
on the above congruence and find

b(σ2(θ)) = σ2(b(θ)) ∼k σ(b
c(θ)) ∼k σ(b(θ))

c ∼k b(θ)
c2 .
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By recursion, we deduce that for e ∈ P ∗ we have b(σeθ)) = b(θ)c
e
. Since σp−1 = 1,

it follows that cp−1 ≡ 1 mod q. We may thus define a character

χθ : G→ Fq; χ(σe) = ce.

Note that χ(ȷ) = −1, so χ is an odd character. We had to assume that k ̸= 0
and deduce, by means of the character χ, that then κ is non vanishing on all
the orbit K(θ). Conversely, if κ vanishes for some element in Gθ, then the orbit
K(θ) = {0}. This completes the proof of the Proposition.

Remark 1. One verifies now that the implicit q−th root of unity in (18) is

ξκ
′(θ,σ) =

β0((1− σ)θ)

G(1−σ)θν((1− σ)θ)
= ξ((1−χθ(σ))κ(θ))/2.

In particular, κ′(θ, σ) vanishes if either κ(θ) = 0 of χθ(σ) = 1.

Suppose that χθ : G → F×
q is injective; then necessarily (p − 1)|(q − 1), since

the map F×
p → F×

q is an embedding. Conversely, if (p− 1) ∤ (q − 1), there is some
σ ̸= σ1 ∈ Ker (χθ), such that χθ(σ) = 1. In this case, we choose ψ to be a Fueter
element and let σ ̸= σ1 ∈ Ker (χψ). Then θ = ψ+ ȷσψ has by construction weight
2 and vanishing Galois exponent κ. We can compute β0(θ) = β0((1 + ȷσ)ψ) as
follows:

β0((1 + ȷσ)ψ) = β0(ψ)β0(ȷσψ) = β0(ψ)β0(σψ) = β0(ψ)β0(σψ) ·
β0(σψ)

β0(σψ)

= z · β0(ψ)
β0(σψ)

.

We now define β(θ) = ν((1− σ)θ/2)β0(θ), which verifies |β(θ)| = |β0(θ)| = zς(θ).
It follows from the choice of σ that

β(θ) = z ·Gψ(1−σ). (21)

Let Gψ(1−σ) = 1− a′1
qx+R2, where R2 is the remainder

∑
n≥2 an(−1/x)n. From

Lemma 6, |a2| ≤ (−1)2
(−h/q

2

)
with h the absolute weight of ψ(1−σ) which is less

than or equal to p − 1. Since we assumed p < q, we get |a2| < 1. By the same
calculation, |an| < 1 for n ≥ 2. Hence, |R2| <

∑
n≥2 |1/xn| < 2/x2 by Lemma 7.

On the other hand, writing ψ =
∑

c∈P ncσ
−1
c and σψ =

∑
c∈P mcσ

−1
c , and

ηψ = a′1(ψ) =
∑

c ncζ
1/c, we find

ηψ =
∑
c∈P

ncσ
−1
c (ζ) and ησψ =

∑
c∈P

mcσ
−1
c (ζ).

Since ψ̄ =
∑

c∈P np−cσ
−1
c and by the property of Fueter elements, nc+np−c = 1 for

every c ∈ P , it follows that ηψ+ηψ =
∑

c∈P σ
−1
c (ζ) = −1. Similarly, ησψ+ησψ =∑

c∈P σ
−1
c (ζ) = −1. Hence, a′1 + a′1 = ηθ + ηθ = ηψ − ησψ + ηψ − ησψ = 0. Denote

δ := β(θ) + β(θ)− 2z = z
(
R2 + R̄2

)
< z(4/x2).
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Since the right hand side is Galois invariant, it follows that for all σ ∈ G we have

|σ(δ)| < |z|(4/x2). (22)

Note that δ =

(√
β(θ)−

√
β(θ)

)2

; consequently, if δ = 0, it follows that β(θ) =

β(θ), which means (β0(θ)) = (β0(θ)) and thus (αθ) = (αȷθ)), in contradiction with
the fact that the conjugates of α are pairwise coprime, as shown in Lemma 2. We
thus proved that δ ̸= 0. Since δ is an algebraic integer and Lemma 1, we conclude
from (22) and |z| < |x|

1 ≤ NK/Q(δ) <
(
4|z|/x2

)p−1 ⇒ |x| < 2. (23)

Since z is totally split in Z[ζ], we have |x| > |z| ≥ 2p+ 1 ≥ 11, and reached thus
a contradiction. The Catalan conjecture follows for all but possibly some cases
when (p− 1)|(q − 1).

If (p− 1)|(q − 1) – so in particular q ≥ 2p− 1, we assume that χψ is injective
for all Fueter elements ψ ∈ I; otherwise we can use the argument above and
complete the proof. We have thus to assume that χψ is injective for all Fueter
elements; we shall have in this case to extend the range of elements in I to take
into consideration, for obtaining a combination with vanishing Galois exponent.

Lemma 8. There are at least two elements θ1, θ2 ∈ I+ with relative weight 2 such
that κ(θ1) = κ(θ2) .

Proof. There are at most q− 1 possible values for κ(θ), since κ(θ) ∈ F×
q for every

θ ∈ I. On the other hand, the second author proves in [7] that q < (p−1)2. Thus,
showing that I2 = {t ∈ I+ : ς(t) = 2} has cardinality N2 := |I2| ≥ (p− 1)2 > q
will imply the claim.

Consider the elements

J := {ψ(a, b) = ϑ(σa + σb − σa+b) : a, b ∈ F×
p ; ab(a+ b) ̸≡ 0 mod p} ⊂ I.

These have all relative weight 1 and |J | =
(
p
2

)
− (p − 1) =

(
p−1
2

)
; here, the first

term stands for the combinations of 2 elements of F×
p with possible repetitions,

while the correction terms removes the combinations in which a + b ≡ 0 mod p.
Note that ψ(p − a, p − b) = ȷψ(a, b). The number of sums of two elements in J
in which one element can be repeated, but the sum is different from the norm, is
obtained in a similar way and it equals

N2 =

(
|J |
2

)
− |J | =

(
|J | − 1

2

)
=

(
(p− 1)(p− 2)

2
− 1

)
·
(
(p− 1)(p− 2)

2
− 2

)
.

We have proved that θ ∈ I2 can be chosen in N2 > q ways, so by the pigeon
hole principle, there are θi ∈ I2; i = 1, 2 with κ(θ1) = κ(θ2). By the above, setting
θ = θ1 + ȷθ2 we have

ς(θ) = 4 and κ(θ) = 0.
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Note that the constants involved even show that there is a variety of possible
choices for θ, but we shall not need this fact. Moreover, if the positive element
θ has a norm as term, say θ = N + θ′, then κ(θ) = κ(θ′), from the definition of
κ, so this case reduced to the one of θ′ of relative weight 2. This completes the
proof.

We choose thus a combination θ′ = θ1 + ȷθ2, with ς(θi) = 2; i = 1, 2 and such
that κ(θ′) = 0. Like in the previous case, we have

β(θ′) = z2
β(θ1)

β(θ2)
= z2 ·Gθ1−θ2(−1/x)

Also be analogy to the previous case, and noticing that this time |β(θ′)| = z2, we
define

δ = (β(θ′) + β(θ′)− 2z2) =

(√
β(θ′)−

√
β(θ′)

)2

,

and the argument used before implies that in this case too, δ ̸= 0, while |δ| < 4z2

x2
.

While z occurs this time at a power, we can use the assumption (p − 1)|(q − 1)
and let q − 1 = a(p− 1) with a ≥ 2. From the defining equation (3), we have

|z|q =
∣∣ xp − 1

p(x− 1)

∣∣ < |x|p, hence |z|2 ≤ |z|q/p < |x|.

By inserting this bound for |z| in the one for δ and taking norms, we find in this
case too:

1 ≤ NK/Q(δ) <
(
4z2/x2

)p−1 ⇒ |x| < 4.

We reach the same contradiction as in the case (p − 1) ∤ (q − 1). This completes
the proof.

Remark 2. The character revealed in Proposition 1 can be used for the investi-
gation of the Nagell-Ljunggren equation

xp − 1

x− 1
= pezq x, y ∈ Z \ {0,±1}; e =

{
0 if x ̸≡ 1 mod p and

1 for x ≡ 1 mod p.
(24)

The proof above readily settles the case q > p and e = 1, while the case e = 0 is
similar. We shall treat in subsequent papers the cases q = p and q < p.
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