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GENERALIZATION OF GAUSSIAN MERSENNE NUMBERS
AND THEIR NEW FAMILIES

Munesh KUMARI1 2 Kalika PRASAD1,2,∗ Jagmohan TANTI 3

Abstract

In this article, we present the generalized Gaussian Mersenne numbers
with arbitrary initial values and discuss two particular cases, namely, Gaus-
sian Mersenne and Gaussian Mersenne-Lucas numbers. We present their
various algebraic properties such as Binet’s formula, negatively subscripted
elements, Catalans’s, Cassini’s, and d’Ocagne’s identities, partial sum, bino-
mial sum, generating and exponential generating functions, etc. In addition,
we study a new generalized sequence arising from the explicit expression made
with the characteristic roots and refer to them as the k-generalized Gaussian
Mersenne numbers. We present various identities of them and show their
connections with the generalized Gaussian Mersenne numbers.
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1 Introduction

In 1963, Horadam [8] introduced the concept of the complex Fibonacci num-
bers defined as

Cn = Fn + iFn+1, where Fn is the nth Fibonacci number.

Later, in 1977 Berzsenyi [1] defined the complex Fibonacci numbers by a different
approach and named it the Gaussian Fibonacci numbers. Horadam [7] also defined
the Gaussian Fibonacci numbers using a recurrence relation analogous to the
Fibonacci numbers. Further, the concept of Gaussian numbers is extended to
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other number sequences like Lucas, Pell, Leonardo, etc., their generalizations and
polynomial version, one can refer to [9, 14, 13, 15, 16, 20, 21].

In this paper, we deal with the generalization of the Mersenne numbers which
is given by 2n − 1 and have many interesting properties. Recently, Catarino
et al. [2] gave the homogeneous recurrence relation for the Mersenne numbers
and studied their algebraic properties. One of the generalizations of Mersenne
numbers is introduced by Soykan [18] and Kumari et al. [10] with arbitrary initial
values. Dasdemir [4] also studied the generalized form of these numbers and their
application in quaternion. Uysal et al. [19] studied the octonions with Mersenne
numbers and obtained various interesting properties of them. Kumari et al. [11]
shown the application of Mersenne numbers in r-circulant matrices. Frontczak et
al. [6] shown some connections between Mersenne and generalized Fibonacci (i.e.,
Horadam) numbers.

The generalized Mersenne sequence {Wn}n≥0 is given by the recurrence rela-
tion

Wn+2 = 3Wn+1 − 2Wn, W0 = c0, W1 = c1, (1)

and the terms of this sequence are known as the generalized Mersenne numbers.
As a special case of generalized Mersenne sequence, setting c0 = 0, c1 = 1 in (1)
gives the classical Mersenne sequence {Mn}n≥0 and for c0 = 2, c1 = 3, it gives the
Mersenne-Lucas sequence {Hn}n≥0. The characteristic equation corresponding to
the above recurrence relation is

λ2 − 3λ+ 2 = 0. (2)

Eqn. (2) has two roots, λ1 = 2 and λ2 = 1 and they satisfy λ1 + λ2 = 3,
λ1λ2 = 2 and λ1−λ2 = 1. Thus, the Binet’s formula for the generalized Mersenne
numbers is given by

Wn = (W1 −W0)2
n − (W1 − 2W0).

Some recent developments on Mersenne numbers and their applications, can
be seen in [3, 4, 5, 12, 17].

Motivated by these works on Mersenne numbers, we generalize the Gaussian
Mersenne numbers with arbitrary initial values and give a new family of the gen-
eralized Gaussian Mersenne numbers. We obtain their algebraic properties, some
well-known identities like explicit formula, Catalan identity, d’Ocagne identity,
summation formulas, generating functions etc.

2 Generalized Gaussian Mersenne numbers

Here, we introduce the generalized Gaussian Mersenne sequence {GWn}n≥0

and present their some algebraic properties, well known identities and relations
with Gaussian Mersenne and Gaussian Mersenne-Lucas numbers.
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Definition 1. The generalized Gaussian Mersenne sequence {GWn}n≥0 is defined
by

GWn+2 = 3GWn+1 − 2GWn, with GW0 = a+ i
(
(3a− b)/2

)
, GW1 = b+ ai,

where a and b are arbitrary complex (real) numbers not all being zero.

In terms of generalized Mersenne numbers, the generalized Gaussian Mersenne
numbers can be written as

GWn+2 = Wn+2 + iWn+1.

For a = 0, b = 1 and a = 2, b = 3, Definition 1 yields the Gaussian Mersenne
sequence {GMn}n≥0 and the Gaussian Mersenne-Lucas sequence {GHn}n≥0, re-
spectively, i.e.

GMn+2 = 3GMn+1 − 2GMn, GM0 =
−i

2
, GM1 = 1,

and GHn+2 = 3GHn+1 − 2GHn, GH0 =

(
2 + i

3

2

)
, GH1 = 3 + 2i.

The first few generalized Gaussian Mersenne, Gaussian Mersenne and Gaus-
sian Mersenne-Lucas numbers are:

n GWn GMn GHn

0 a+ i
(
(3a− b)/2

)
−i/2 2 + i32

1 b+ ai 1 3 + 2i
2 (3b− 2a) + ib 3 + i 5 + 3i
3 (7b− 6a) + i(3b− 2a) 7 + 3i 9 + 5i
4 (15b− 14a) + i(7b− 6a) 15 + 7i 17 + 9i
5 (31b− 30a) + i(15b− 14a) 31 + 15i 33 + 17i

Table 1: Generalized Gaussian Mersenne numbers.

Theorem 1. For n ≥ 0, the Binet’s formula for GWn is given by

GWn = (b− a)2n − (b− 2a) + i
(
(b− a)2n−1 − (b− 2a)

)
. (3)

Proof. By the theory of difference equation, nth term of generalized Gaussian
Mersenne sequence can be written as

GWn = cλn
1 + dλn

2 , where λ1 = 2 and λ1 = 1. (4)

On solving for n = 0 and n = 1, we obtain

c =
GW1 −GW0λ2

λ1 − λ2
and d =

GW0λ1 −GW1

λ1 − λ2
. (5)

Now, using GW0 = a + i
(
(3a − 2b)/2

)
, GW1 = b + ai and Eqn. (5) in Eqn.

(4), we have

GWn = (b− a)λn
1 − (b− 2a)λn

2 + i
(
(b− a)λn−1

1 − (b− 2a)λn−1
2

)
.

This completes the proof.
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In particular, Binet’s formulae for Gaussian Mersenne and Gaussian Mersenne-
Lucas numbers are, respectively, given by

GMn = (2n − 1) + i(2n−1 − 1) and GHn = (2n + 1) + i(2n−1 + 1). (6)

Theorem 2. For n ≥ 0, the following identities are provided.

1. GWn+1 +GWn = 2n−13(b− a)(2 + i)− 2(b− 2a)(1 + i).

2. GWn+1 −GWn = 2n−1(b− a)(2 + i).

3. GWn+1 = 2GWn + (b− 2a)(1− i).

Proof. 1. Using the Binet’s formula of the generalized Gaussian Mersenne num-
bers, we have

GWn+1 +GWn = (b− a)2n+1 − (b− 2a) + i[(b− a)2n − (b− 2a)]

+ (b− a)2n − (b− 2a) + i[(b− a)2n−1 − (b− 2a)]

= 2n3(b− a)− 2(b− 2a) + i[3(b− a)2n−1 − 2(b− 2a)]

= 2n−13(b− a)(2 + i)− 2(b− 2a)(1 + i).

By a similar argument, the second and third identities can be proved.

Definition 2. The generalized Gaussian Mersenne numbers with negative sub-
script {GW−n}n≥1 are defined recursively as

GW0 = a+ i
(
(3a− 2b)/2

)
, GW1 = b+ ai, and GW−n =

3GW−n+1 −GW−n+2

2
.

For a = 0, b = 1 and a = 2, b = 3 in Definition 2, we obtain Gaussian
Mersenne and Gaussian Mersenne-Lucas numbers with negative subscript defined,
respectively, as

GM−n =
3GM−n+1 −GM−n+2

2
, GM0 = −i/2, GM1 = 1,

GH−n =
3GH−n+1 −GH−n+2

2
, GH0 = 2 + i(3/2), GH1 = 3 + 2i.

The first few terms of the sequences {GW−n}, {GM−n} and {GH−n}n≥1 are
shown in the following table:
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n GW−n GM−n GH−n

1
(6a− 2b) + i (7a− 3b)

4

(−2− 3i)

4

(6 + 5i)

4

2
(14a− 6b) + i (15a− 7b)

8

(−6− 7i)

8

(10 + 9i)

8

3
(30a− 14b) + i (31a− 15b)

16

(−14− 15i)

16

(18 + 17i)

16

4
(62a− 30b) + i (63a− 31b)

32

(−30− 31i)

32

(34 + 33i)

32

Table 2: First few terms of {GW−n}, {GM−n} and {GH−n}.

Theorem 3. For n ≥ 0, the Binet’s formulae for the generalized Gaussian
Mersenne, Gaussian Mersenne and Gaussian Mersenne-Lucas numbers with neg-
ative subscripts are given, respectively, as

1. GW−n =

(
(b− a)− (b− 2a)2n

2n

)
+ i

(
(b− a)− (b− 2a)2n+1

2n+1

)
.

2. GM−n =

(
2− 2n+1

)
+ i

(
1− 2n+1

)
2n+1

.

3. GH−n =

(
2 + 2n+1

)
+ i

(
1 + 2n+1

)
2n+1

.

Proof. Replacing n by −n in Binet’s formulae (3) and (6), we get the required
results.

Theorem 4 (Catalan’s identity). For n,m ≥ 1, we have

GWn+mGWn−m −GW 2
n =(b− a)(b− 2a)[(2n − 2n+m−1) + (2n−m−1 − 2n−m)]

+ i3(2n − 2n+m−1 − 2n−m−1). (7)

Proof. Using Binet’s formula (3), we have

GWn+mGWn−m −GW 2
n =

[(b− a)2n+m − (b− 2a) + i
(
(b− a)2n+m−1 − (b− 2a)

)
]

[(b− a)2n−m − (b− 2a) + i
(
(b− a)2n−m−1 − (b− 2a)

)
]

−
[
(b− a)2n − (b− 2a) + i

(
(b− a)2n−1 − (b− 2a)

)]2
= (b− a) (b− 2a)

[
(2n − 2n+m−1) + (2n−m−1 − 2n−m)

]
+ i3(2n − 2n+m−1 − 2n−m−1).

Substituting m = 1 in Catalan’s identity (7) gives the Cassini’s identity for
the generalized Gaussian Mersenne numbers and hence the following theorem.
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Theorem 5 (Cassini’s identity). For n ≥ 1, we have

GWn+1GWn−1 −GW 2
n = (b− a) (b− 2a)

[
(2n−2 − 2n−1)− i(2n−23)

]
. (8)

As a special case of the above theorems, we deduce the following corollary.

Corollary 1. For n,m ∈ N, the following identities have been verified.

1. GMn+mGMn−m −GM2
n =

[
(2n − 2n+m−1) + (2n−m−1 − 2n−m)

]
+ i3(2n − 2n+m−1 − 2n−m−1).

2. GHn+mGHn−m −GH2
n = −[[(2n − 2n+m−1) + (2n−m−1 − 2n−m)]

+ i3(2n − 2n+m−1 − 2n−m−1)].

3. GMn+1GMn−1 −GM2
n = (2n−2 − 2n−1)− i(2n−23).

4. GHn+1GHn−1 −GH2
n = (2n−1 − 2n−2) + i(2n−23).

Theorem 6 (D’Ocagne’s identity). For n,m ≥ 1, we have

GWm+1GWn −GWmGWn+1

= (b− a) (b− 2a)
[
(2n−1 − 2m−1) + i3(2n−1 − 2m−1)

]
.

Proof. The argument is similar to that of Theorem 4.

Corollary 2. For n,m ≥ 1, we have

1. GMm+1GMn −GMmGMn+1 = (2n−1 − 2m−1) + i3(2n−1 − 2m−1).

2. GHm+1GHn −GHmGHn+1 = (2m−1 − 2n−1)− i3(2n−1 − 2m−1).

Remark 1. The Catalan’s, Cassini’s and d’Ocagne’s identities for the Gaussian
Mersenne-Lucas numbers are same as the Gaussian Mersenne numbers but with
a negative sign.

Theorem 7 (Generating function). For the generalized Gaussian Mersenne num-
bers, we have

GW (z) =

a+ (b− 3a)z + i

[(
3

2
a− 1

2
b

)
+

(
3

2
b− 7

2
a

)
z

]
(1− 3z + 2z2)

.

Proof. Let the generating function for the sequence {GWn}n≥0 be given by
GW (z) =

∑∞
j=0GWjz

j . Thus, we have

GW (z)− 3zGW (z) + 2z2GW (z) = GW0 + z(GW1 − 3GW0)

=⇒ GW (z)(1− 3z + 2z2) = GW0 + z(GW1 − 3GW0)

=⇒ GW (z) =
GW0(1− 3z) + zGW1

(1− 3z + 2z2)

=⇒ GW (z) =
a+ (b− 3a)z + i

[(
3
2a− 1

2b
)
+
(
3
2b−

7
2a

)
z
]

(1− 3z + 2z2)
.
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The following corollary gives the generating functions for Gaussian Mersenne
and Gaussian Mersenne-Lucas numbers.

Corollary 3. GM(z) =
z + i

(
3
2z −

1
2

)
(1− 3z + 2z2)

and GH(z) =
(2− 3z) + i

(
3
2 − 5

2z
)

(1− 3z + 2z2)
.

Theorem 8. The exponential generating function for generalized Gaussian
Mersenne numbers is

E(z) = (b− a)(1 +
i

2
)e2z − (b− 2a)ez(1 + i).

Proof. Let E(z) =
∑∞

n=0GWn
zn

n!
be the exponential generating function for the

sequence {GWn}n≥0. Then using Binet’s formula (3), the result can be easily
proved.

Theorem 9. The exponential generating functions for even and odd-indexed se-
quences {GW2n} and {GW2n+1} are given as

EGW2n(z) = (b− a)(1 +
i

2
) cosh 2

√
z − (b− 2a)(1 + i) cosh

√
z

and EGW2n+1(z) =
1√
z

[
(b− a)(1 +

i

2
) sinh 2

√
z − (b− 2a)(1 + i) sinh

√
z
]
.

Proof. The proof follows using the fact that the exponential generating functions
for even and odd-indexed sub-sequences {GW2n}n≥0 and {GW2n+1}n≥0 are given
by

EGW2n(z) =
E(

√
z) + E(−

√
z)

2
and EGW2n+1(z) =

E(
√
z)− E(−

√
z)

2
√
z

,

where E(z) is the exponential generating function of the sequence {GWn}n≥0.

Corollary 4. The exponential generating functions for the Gaussian Mersenne
and Gaussian Mersenne-Lucas numbers are given as follows:

1. EGMn(z) = (1 + i
2)e

2z − (1 + i)ez.

2. EGHn(z) = (1 + i
2)e

2z + (1 + i)ez.

3. EGM2n(z) = (1 + i
2) cosh 2

√
z − (1 + i) cosh

√
z.

4. EGH2n(z) = (1 + i
2) cosh 2

√
z + (1 + i) cosh

√
z.

5. EGM2n+1(z) =
1√
z

[
(1 + i

2) sinh 2
√
z − (1 + i) sinh

√
z
]
.

6. EGH2n+1(z) =
1√
z

[
(1 + i

2) sinh 2
√
z + (1 + i) sinh

√
z
]
.

The next theorem deals with the finite sum of the generalized Gaussian
Mersenne numbers. Hence, the result for Gaussian Mersenne and Gaussian
Mersenne-Lucas numbers are given in the subsequent corollary.
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Theorem 10. For all positive integers n, the following sum formulas have been
verified.

1.
∑n

k=0GWk = GWn+1 − (n+ 1)GW1 + (2n+ 1)GW0.

2.
∑n

k=0GW2k =
4GW2n − 3nGW1 + (6n− 1)GW0

3
.

3.
∑n

k=0GW2k+1 =
4GW2n+1 − (3n+ 1)GW1 + 6nGW0

3
.

Proof (1). Using the Binet’s formula GWk = c2k +d, where c = GW1−GW0 and
d = 2GW0 −GW1, we get

n∑
k=0

GWk = c

n∑
k=0

2k + d

n∑
k=0

(1)k = c
(
2n+1 − 1

)
+ d (n+ 1)

= GWn+1 − (n+ 1)GW1 + (2n+ 1)GW0.

Similarly, the second and third identities can be proved.

Corollary 5. For all positive integer n, the following sum formulas have been
verified.

1.
∑n

k=0GMk = GMn+1 − (n+ 1)− i
(
2n+1

2

)
.

2.
∑n

k=0GM2k =
4GM2n − 3n− i

(
6n−1

2

)
3

.

3.
∑n

k=0GM2k+1 =
4GM2n+1 − (3n+ 1)− i3

3
.

4.
∑n

k=0GHk = GHn+1 + (n− 1) + i
(
2n−1

2

)
.

5.
∑n

k=0GH2k =
4GH2n + (3n− 2) + i

(
3n− 3

2

)
3

.

6.
∑n

k=0GH2k+1 =
4GH2n+1 + (3n− 3) + i (3n− 2)

3
.

3 k-Generalized Gaussian Mersenne numbers

In this section, we give a new family of the Gaussian Mersenne numbers in
generalized form, refered as k-generalized Gaussian Mersenne numbers and inves-
tigate their properties.

Definition 3. Let k ∈ N and n ∈ N ∪ {0} then ∃! s, r ∈ N ∪ {0} such that
n = sk + r, 0 ≤ r < k. Then the k-generalized Gaussian Mersenne numbers

{GW
(k)
n }n≥0 are defined as

GW (k)
n =

[
(b− a)λs

1 − (b− 2a)λs
2 + i

(
(b− a)λs−1

1 − (b− 2a)λs−1
2

)]k−r[
(b− a)λs+1

1 − (b− 2a)λs+1
2 + i ((b− a)((b− a)λs

1 − (b− 2a)λs
2))

]r
,

where λ1 and λ2 are the roots of the characteristic Eqn. (2).
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From Eqn. (3) and Definition 3, the relation between k-generalized Gaussian
Mersenne and generalized Gaussian Mersenne numbers is described as

GW (k)
n = GW k−r

s GW r
s+1, n = sk + r. (9)

If k = 1 then r = 0 and hence m = n. So, from Eqn. (9), we have

GW
(1)
n = GWn.

The next remark informs us of some special relations between k-generalized Gaus-
sian Mersenne and generalized Gaussian Mersenne numbers for k = 2, 3.

Remark 2. For s ∈ N, the following identities are verified.

1. GW
(2)
2s = GW 2

s .

2. GW
(2)
2s+1 = GWsGWs+1.

3. GW
(2)
2s+1 = 3GW

(2)
2s − 2GW

(2)
2s−1.

4. GW
(3)
3s = GW 3

s .

5. GW
(3)
3s+1 = GW 2

sGWs+1.

6. GW
(3)
3s+1 = 3GW

(3)
3s − 2GW

(3)
3s−1.

7. GW
(3)
3s+2 = GWsGW 2

s+1.

A list of first few k-generalized Gaussian Mersenne numbers is shown in the
following table.

GW
(k)
n k = 1 k = 2

GW
(k)
0 a+ i

(
3
2a− b

2

) (
−5
4 a2 − b2

4 + 3
2ab

)
+ i(3a2 − ab)

GW
(k)
1 b+ ai a+ i

(
3
2a− b

2

)
GW

(k)
2 (3b− 2a) + ib b+ ai

GW
(k)
3 (7b− 6a) + i(3b− 2a) (3b− 2a) + ib

GW
(k)
4 (15b− 14a) + i(7b− 6a) (4b2 + 8a2 − 12ab) + i(6b2 − 4ab)

GW
(k)
5 (31b− 30a) + i(15b− 14a) (18b2 + 12a2 − 3ab) + i(16b2 + 4a2 − 18ab)

GW
(k)
n k = 3 k = 4

GW
(k)
0

(−23
4 a3 − 3

4ab
2 + 9

2a
2b
)
+

(−119
16 a4 + 36

16a
3b+ 30

16a
2b2 − 12

16ab
3 + 16

16b
4
)

i
(

9
8a

3 + b3

8 + 15
8 a2b− 9

8ab
2
)

+i
(

−60
8 a4 + 92

8 a3b− 9a2b2 − ab3

2

)
GW

(k)
1

(
−5
4 a2 − b2

4 + 3
2ab

) (−23
4 a3 − 3

4ab
2 + 9

2a
2b
)
+

+i(3a2 − ab) i
(

9
8a

3 + b3

8 + 15
8 a2b− 9

8ab
2
)

GW
(k)
2 a+ i

(
3
2a− 1

2b
) (

−5
4 a2 − b2

4 + 3
2ab

)
+ i(3a2 − ab)

GW
(k)
3 b+ ai a+ i

(
3
2a− 1

2b
)

GW
(k)
4 (3b− 2a) + ib b+ ai

GW
(k)
5 (4b2 + 8a2 − 12ab) (3b− 2a) + ib

+i(6b2 − 4ab)

Table 3: The k-generalized Gaussian Mersenne numbers for k = 1, 2, 3, 4.

Theorem 11. For k, s ∈ N, we have the following results,

1. GW
(k)
sk = GW k

s .
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2. GW
(s)
sk+1 = 3GW

(s)
sk − 2GW

(s)
sk−1.

3. GW
(k)
sk+k −GW

(k)
sk = GW k

s+1 −GW k
s .

Proof. 1. Let n = sk, then r = 0 and hence from Eqn. (9), we have the desired
result.

2. From Eqn. (9) and Definition 1, we have

3GW
(s)
sk − 2GW

(s)
sk−1=3GW s

k − 2GWk−1GM s−1
k =GW s−1

k GWk+1=GW
(s)
sk+1.

3. It can be easily established using the fist identity of Theorem 11.

Theorem 12. Let n,m ≥ 0 such that n+m > 1, then we have

GW
(2)
2(n+m−1) −GWn+mGWn+m−2

= (b− a) (b− 2a)
[
(2n+m−2 − 2n+m−1)− i(3.2n+m−2)

]
.

Proof. From Eqn. (8) and the fist identity of Theorem 11, we have

GW
(2)
2(n+m−1) −GWn+mGWn+m−2 = GW 2

(n+m−1) −GWn+mGWn+m−2

= (b− a) (b− 2a)
[
(2n+m−2 − 2n+m−1)− i(3.2n+m−2)

]
.

Theorem 13. Let s, k ∈ N, then for fixed k, s, the following results hold.

1.
k−1∑
m=0

(
k − 1

m

)
GW

(k)
sk+m = [2n−13(b− a)(2 + i)− 2(b− 2a)(1 + i)]k−1GWs.

2.

k−1∑
m=0

(−1)m
(
k − 1

m

)
GW

(k)
sk+m = [2n−1(a− b)(2 + i)]k−1GWs.

3.
k−1∑
m=0

GW
(k)
sk+m =

GWs(GW
(k)
(s+1)k −GW

(k)
sk )

2n−1(b− a)(2 + i)
.

4.

k∑
m=0

mGW
(k)
sk+m =

GW
(k+2)
s(k+2)+1 − kGW

(k+2)
s(k+2)+k + (k − 1)GW

(k+2)
s(k+2)+k+1

(2n−1(b− a)(2 + i))2
.

Proof. 1. From relation (9), we have

k−1∑
m=0

(
k − 1

m

)
GW

(k)
sk+m =

k−1∑
m=0

(
k − 1

m

)
GW k−m

s GWm
s+1

= GWs

k−1∑
m=0

(
k − 1

m

)
GWm

s+1GW k−1−m
s

= GWs(GWs +GWs+1)
k−1 (using Binomial theorem)

= [2n−13(b− a)(2 + i)− 2(b− 2a)(1 + i)]k−1GWs (using Theorem 2).
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2. Proceeding as first identity, we write

k−1∑
m=0

(−1)m
(
k − 1

m

)
GW

(k)
sk+m = (−1)k−1

k−1∑
m=0

(−1)k−1−m

(
k − 1

m

)
GW k−m

s GWm
s+1

= (−1)k−1GWs

k−1∑
m=0

(
k − 1

m

)
GWm

s+1(−GWs)
k−1−m

= (−1)k−1GWs(GWs+1 −GWs)
k−1 (using Binomial theorem)

= (−1)k−1[2n−1(b− a)(2 + i)]k−1GWs (using Theorem 2 (2))

= [2n−1(a− b)(2 + i)]k−1GWs.

3. From (9), we have GW
(k)
sk+m = GW k−m

s GWm
s+1 = GW k

s (GWs+1/GWs)
m. So,

k−1∑
m=0

GW
(k)
sk+m = GW k

s

k−1∑
m=0

(GWs+1

GWs

)m

= GW k
s

(GWs+1/GWs)
k − 1

GWs+1/GWs − 1

= GWs

(GW k
s+1 −GW k

s

GWs+1 −GWs

)
=

GWs(GW
(k)
(s+1)k −GW

(k)
sk )

GWs+1 −GWs

=
GWs(GW

(k)
(s+1)k −GW

(k)
sk )

2n−1(b− a)(2 + i)
.

4. We should note that
∑k

m=1mxm−1 = (1− kxk−1+(k− 1)xk)/(1−x)2. Hence,

k∑
m=0

mGW
(k)
sk+m = GW k−1

s GWs+1

k∑
m=1

m
(GWs+1

GWs

)m−1

= GW k−1
s GWs+1

(1− k(GWs+1/GWs)
k−1 + (k − 1)(GWs+1/GWs)

k

(1−GWs+1/GWs)2

)
=

GW k−1
s GWs+1 − kGW k

s+1 + (k − 1)GW k+1
s+1 /GWs

(1−GWs+1/GWs)2

=
GW k+1

s GWs+1 − kGW 2
sGW k

s+1 + (k − 1)GWsGW k+1
s+1

(GWs −GWs+1)2

=
GW

(k+2)
s(k+2)+1 − kGW

(k+2)
s(k+2)+k + (k − 1)GW

(k+2)
s(k+2)+k+1

(2n−1(b− a)(2 + i))2
(using (9)).

Theorem 14. For n, k ≥ 2, then Cassini’s identity for k-generalized Gaussian
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Mersenne numbers is

(GW
(k)
nk+a−1)

2 −GW
(k)
nk+aGW

(k)
nk+a−2

=

{
GW 2k−2

n (b− a) (b− 2a)
[
(2n−2 − 2n−1)− i(3.2n−2)

]
, a = 1

0, a ̸= 1.

Proof. Let a = 1, then from Eqn. (9) and Theorem 11, we have

GW
(k)
nk+1GW

(k)
nk−1 − (GW

(k)
nk )2

= (GW k−1
n GWn+1)(GWn−1GW k−1

n )− (GW k
n )

2

= GW 2k−2
n [GWn+1GWn−1 − (GWn)

2]

= GW 2k−2
n (b− a) (b− 2a)

[
(2n−2 − 2n−1)− i(3.2n−2)

]
(using Eqn. (8)).

Moreover, if a ̸= 1, then by using Eqn. (9)

GW
(k)
nk+aGW

(k)
nk+a−2 − (GW

(k)
nk+a−1)

2

= (GW k−a
n GW a

n+1)(GW k−a+2
n GW a−2

n+1 )− (GW k−a+1
n GW a−1

n+1 )
2

= GW 2k−2a+2
n [GW 2a−2

n+1 −GW 2a−2
n+1 ]

= 0.

Theorem 15. For k, s ∈ N, the following relations between k-generalized Gaus-
sian Mersenne and generalized Gaussian Mersenne numbers are obtained.

1.
∑k−1

j=0(3)
−jGW

(k)
sk+j =

GWs

2GWs−1

(3kGW
(k)
sk −GW

(k)
(s+1)k

3k−1

)
.

2.
∑k−1

j=0(−2)k−1−j(3)j
(
k−1
j

)
GW

(k)
sk+j = GWsGW

(k−1)
(s+2)(k−1).

3.
∑k−1

j=0(−1)j(3)k−1−j
(
k−1
j

)
GW

(k)
sk+j = (−2)k−1GWsGW

(k−1)
(s−1)(k−1).

Proof. 1. By using Eqn. (9), we write

k−1∑
j=0

(3)−jGW
(k)
sk+j =

k−1∑
j=0

(GWs+1

3GWs

)j
GW k

s

= GW k
s


(GWs+1

3GWs

)k
− 1(GWs+1

3GWs

)
− 1


= GWs

(3kGW k
s −GW k

s+1

3k−12GWs−1

)
=

GWs

2GWs−1

(3kGW
(k)
sk −GW

(k)
(s+1)k

3k−1

)
.
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2. Using Eqn. (9) and binomial theorem, we get

k−1∑
j=0

(−2)k−1−j(3)j
(
k − 1

j

)
GW

(k)
sk+j = GWs(3GWs+1 − 2GWs)

k−1

= GWsGW k−1
(s+2) = GWsGW

(k−1)
(s+2)(k−1).

3. The argument is similar to 2.

4 Conclusion

In summary, we introduced the generalized Gaussian Mersenne numbers and
investigated their algebraic properties. In addition, we introduced a new family
of k-generalized Gaussian Mersenne numbers in closed form and shown some re-
lations with generalized Gaussian Mersenne numbers. Here, we examined Binet’s
formula, Cassini’s and Catalan’s identity, generating and exponential generating
functions, various partial and binomial sums, etc. of these numbers.
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