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MAPS ON MATRICES PRESERVING IDEMPOTENCY OF A
TRIADIC RELATION

Mahdi KARDER∗,1

Abstract

Let Mn be the algebra of all n×n real or complex matrices. In this paper
we give a full description of continuous maps on Mn such that Φ(A)(Φ(B)−
Φ(C)) is idempotent if and only if A(B −C) is idempotent for all A,B,C ∈
Mn.
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1 Introduction and statement of the result

Linear preserver problems deal with maps on subsets of algebras that preserve
certain sets, functions, relations, etc. Compared to the linear preserver problems,
a more general task would be to consider the maps being non-linear only. In many
cases, there exists a gap between linear maps and non-linear maps, and it is much
more difficult to deal with the non-linear ones. To fill this gap, sometimes we need
stronger assumptions to reach a regular form between ”wild” characters. For all
these topics we refer to the interesting book [4] and the references therein as well.
Throughout this paper, the following notations will be used:

� F, field of real numbers R or the field of complex numbers C;

� Fn, vectors with n real or complex components;

� I, identity matrix;

� Ir, identity matrix of size r × r;

� Mn = Mn(F), algebra of all n× n matrices over field F;

� In = In(F), the set of all idempotents in Mn; i.e., A ∈ In iff A2 = A;
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� A, matrix obtained from A ∈ Mn by applying the complex-conjugation
entrywise, A = (aij) = (aij);

� Ker (A), kernel or null space of A ∈ Mn; i.e., Ker (A) = {x ∈ Fn |Ax = 0};

� Im (A), image or range of A ∈ Mn; i.e., {Ax |x ∈ Fn};

� dim(V ), dimension of subspace V of Fn;

� Eij , n× n matrix with (i, j)-entry being 1 and other entries 0;

� σ(A), set of all eigenvalues of A ∈ Mn.

For every non-zero n × 1 vector x and non-zero 1 × n vector yt, the xyt is
rank-1 matrix and every rank-1 matrix can be written in this way. The rank-1
matrix xyt is idempotent if and only if ytx = 1 and xyt is nilpotent if and only if
ytx = 0.

We begin by discussing two familiar preserver problems which will serve as
motivation for what will follow. For a given nonempty subset S of Mn, often, we
are interested in describing the form of mappings Φ : Mn → Mn satisfying A∗B ∈
S iff Φ(A)∗Φ(B) ∈ S, where ∗ is an operation such as A−B,AB,AB−BA,AB+
BA,ABA, . . . and S is any of sets {0}, rank-1 matrices, rank-1 idempotents, rank-
1 nilpotents, full rank matrices, In, . . .. This paper was inspired by two following
theorems.

Theorem 1. [5, Theorem 3.4] Let n ≥ 3 and let Φ : Mn → Mn be a bijective
continuous map. Assume that

A− λB ∈ In ⇐⇒ Φ(A)− λΦ(B) ∈ In,

for all A,B ∈ Mn, λ ∈ C. Then there exists an invertible T ∈ Mn such that Φ
has the following forms

A 7→ TAT−1 or A 7→ TAtT−1 (A ∈ Mn). (1)

Peter Šemrl showed that assuming λ = 1 in Theorem 1, it is not possible to
reach a regular form of the map Φ such as the form (1). Therefore, we need a
slightly stronger assumption. The natural question is what other assumptions can
reach us with reasonable results? Can other assumptions be mapped as substitutes
for surjectivity’s condition? The next theorem, which is the starting point of our
research, is as follows:

Theorem 2. [3, Theorem 1.2] Let n ≥ 3. Then a unital surjective map Φ :
Mn → Mn satisfies

AB ∈ In \ {0} ⇐⇒ Φ(A)Φ(B) ∈ In \ {0} (A,B ∈ Mn),

if and only if there exist a field automorphism f : C → C and an invertible matrix
S ∈ Mn such that Φ(A) = Sf(A)S−1 for all A ∈ Mn, where f(A) = (f(aij)) if
A = (aij).
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This was a summary of what led us to the following theorem. Our main
theorem reads as follows.

Theorem 3. Let Mn be the algebra of all n× n real or complex matrices and In
the set of all idempotents in Mn. Let Φ : Mn → Mn be a continuous map such
that

A(B − C) ∈ In ⇐⇒ Φ(A)(Φ(B)− Φ(C)) ∈ In (A,B,C ∈ Mn). (2)

Then there exists an invertible matrix T ∈ Mn and a constant λ with λ2 = 1
such that Φ has the following forms

A 7→ λTAT−1 or A 7→ λTAT−1 (A ∈ Mn). (3)

Let n = 1. Since only idempotents in F are 0 and 1, the Theorem 3 reads as
follows.

Theorem 4. Let f : F → F be a continuous map such that

a(b− c) ∈ {0, 1} ⇐⇒ f(a)(f(b)− f(c)) ∈ {0, 1} (a, b, c ∈ F). (4)

Then there exists a scalar ε ∈ {−1, 1} such that f(z) = εz or εz̄ for all z ∈ F.

Proof. For the sake of readability, we divided the proof into four steps.

Step 1. f is injective.

Let f(a) = f(b) for some a, b ∈ F. Therefore f(1)(f(a)−f(b)) and f(1)(f(b)−
f(a)) both are in {0, 1}. It follows that a− b = (a− b)2 = (b− a)2 = b− a which
implies a = b, as desired.

Step 2. f(0) = 0.

It is easy to check that both a(b− c) and a(c− b) are in {0, 1} whenever a = 0
or b = c. Both of f(0)(f(1) − f(0)) and f(0)(f(0) − f(1)) are in {0, 1} since
0(1 − 0) = 0(0 − 1) = 0. Hence f(0) = 0 or f(1) = f(0). But injectivity of f
follows f(0) = 0.

Step 3. f(r) = ±r for all r ∈ R.
Clearly, f(1) = ±1. Without loss of generality we can assume that f(1) = 1.

This implies that for every a, b ∈ F, f(a)−f(b) = 1 whenever a− b = 1. Hence by
a recursive process we get f(n) = n and f(kp) = kf(p) for all k, n ∈ Z and p ∈ Q.
This implies that m = f(nm

n ) = nf(mn ) which implies f(mn ) =
m
n for all m,n ∈ Z

with n ̸= 0. Now the continuity of f implies that f(r) = r for all r ∈ R, as desired.

Step 4. f(ci) = ±ci for all c ∈ R.
Clearly, f(i) = ±i because i(0 − i) = 1. Without loss of generality we can

assume that f(i) = i. Let p ∈ Q. For every k ∈ Z we have f((k + 1)pi) =
f(kpi) + f(pi) because (pi)−1((k + 1)pi − kpi) = 1. Now by a recursive process
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we conclude that f(kpi) = kf(pi) which gives f(pi) = pi for all p ∈ Q. Now the
continuity of f implies the desired result.

Now if f(r) = r for each r ∈ R and f(i) = i, then

1

a
(a+ ib− ib) = 1 =⇒ f(a+ ib) = a+ ib (a, b ∈ R).

The other cases can be proved similarly. This completes the proof.

2 Proof of Theorem 3

Let Φ : Mn → Mn be a continuous map satisfying (2).

Lemma 1. Φ is injective.

Proof. Suppose Φ(A) = Φ(B) for some A,B ∈ Mn. Then Φ(I)(Φ(A)−Φ(B)) and
Φ(I)(Φ(B)− Φ(A)) are idempotent. It follows that A−B = (A−B)2 = B −A,
so A = B and Φ is injective.

Lemma 2. For any three operators A,B,C ∈ Mn we have

A(B − C) = 0 ⇐⇒ Φ(A)(Φ(B)− Φ(C)) = 0.

Proof. Let A,B,C ∈ Mn. Then

A(B − C) = 0 ⇐⇒ A(B − C) ∈ In and A(C −B) ∈ In

⇐⇒ Φ(A)(Φ(B)− Φ(C)) ∈ In and Φ(A)(Φ(C)− Φ(B)) ∈ In

⇐⇒ Φ(A)(Φ(B)− Φ(C)) = 0.

Lemma 3. Φ(0)Φ(A) = Φ(0)Φ(B) for every A,B ∈ Mn.

Proof. For every A,B ∈ Mn both of Φ(0)(Φ(A)−Φ(B)) and Φ(0)(Φ(B)−Φ(A))
are idempotent. This implies that Φ(0)(Φ(A) − Φ(B)) = Φ(0)(Φ(B) − Φ(A)).
This completes the proof of the lemma.

Let R = Φ(0) and consider transformation

ψ : A 7→ Φ(A)−R.

Now ψ satisfies the hypothesis of the original theorem with ψ(0) = 0.

Corollary 1. ψ preserve zero product in both directions; i.e.,

AB = 0 ⇐⇒ ψ(A)ψ(B) = 0.

Proof. It follows from Lemma 2 and that ψ(0) = 0.
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It is worth to mention that Corollary 1 with ψ(0) = 0 follow that AB ∈ In\{0}
if and only if ψ(A)ψ(B) ∈ In \ {0}. In particular, ψ(E)2 ∈ In \ {0} for all
E ∈ In \ {0}.

Lemma 4. For any idempotent E we have ψ(E)2 = ψ(E)ψ(I).

Proof. Let E ∈ In. We have E(I − E) = 0. Now Lemma 2 leads up to the
conclusion.

Lemma 5. ψ(I) = I or ψ(I) = −I.

Proof. We complete the proof by two steps.

Step 1. σ(ψ(I)) ⊆ {−1, 1}.
We have ψ(I)4 = ψ(I)2. Hence by the spectral mapping theorem we can get

σ(ψ(I)) ⊆ {−1, 0, 1}. It is enough to show that ψ(I) is invertible. For doing
this we show Kerψ(I) = {0}. Let x ∈ Kerψ(I). By Lemma 4, ψ(E)2x =
ψ(E)ψ(I)x = 0 for each E ∈ In. This implies that x ∈ Kerψ(E)2 and so
Kerψ(I) ⊆ Kerψ(E)2 for every E ∈ In. It follows that Kerψ(I) ⊆

⋂
E∈In Kerψ(E)2.

Clearly,

EF = 0 or FE = 0 =⇒ ImE ∩ ImF = {0} (E,F ∈ In). (5)

For every i, j, 1 ≤ i ̸= j ≤ n, we have EiiEjj = 0. By (5) and using zero
product preserving property of ψ we get Imψ(Eii)

2 ∩ Imψ(Ejj)
2 = {0} since

ψ(E)2 ∈ In for all E ∈ In. Now with a similar discussion as [1, Lemma 2.3]
we show that ψ(Eii)

2 is rank-1 matrix for all i = 1, 2, . . . , n. Set Ai = ψ(Eii)
2.

Clearly, A2
i = Ai, Ai ̸= 0 for i = 1, 2, . . . , n and AiAj = 0 whenever i ̸= j. It

follows that {0} ≠ ImAi ⊂ KerAj whenever i ̸= j. Thus∑
i ̸=j

ImAi ⊂ KerAj ,

and since ImAj ⊈ KerAj we have

ImAj ⊈
∑
i ̸=j

ImAi (j = 1, 2, . . . , n).

Hence, we can easily get that dim
∑

i ̸=j ImAi ≥ n−1 for every j ∈ {1, 2, . . . , n}
and since KerAj ̸= Fn we infer that

∑
i ̸=j ImAi = KerAj is of dimension n− 1.

This implies that all the images of matrices Ai are one-dimensional subspaces and
they are linearly independent. Therefore, Fn =

⊕n
i=1 Span {xi} for some basis

{xi} for Imψ(Eii)
2. Now we show that

⋂n
i=1Kerψ(Eii)

2 = {0}. Let x ∈ Fn

such that x ∈
⋂n

i=1Kerψ(Eii)
2. We can find scalars c1, c2, . . . , cn such that

x =
∑n

i=1 cixi. Accordingly, we have Φ(Ejj)
2x = cjxj = 0 for each 1 ≤ j ≤ n be-

cause for each i with i ̸= j, xi ∈ Ker ψ(Ejj)
2 for 1 ≤ j ≤ n. It follows that ci = 0

for every i ∈ {1, 2, . . . , n} and so x = 0. Now since Kerψ(I) ⊆
⋂n

i=1Kerψ(Eii)
2

we get the result, as desired.
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Step 2. σ(ψ(I)) = {−1} or {1}.
Assume, with contrary, that σ(ψ(I)) = {−1, 1}. Then by applying a similarity

transformation we can suppose that ψ(I) = Ir ⊕ (−In−r). Let E ∈ In. Set

ψ(E) =

(
A B
C D

)
where A ∈ Mr, D ∈ M(n−r), and B is r × (n− r) and C is (n− r)× r. We first
show that A2 = A,CA = C and B = D = 0. We have(

A B
−C −D

)
= ψ(I)ψ(E)

= (ψ(I)ψ(E))2 =

(
A2 −BC AB −BD

−CA+DC −CB +D2

) (6)

and (
A −B
C −D

)
= ψ(E)ψ(I)

= ψ(E)2 =

(
A2 +BC AB +BD
CA+DC CB +D2

)
.

(7)

With compare Eq. (6) and Eq. (7) we obtain

A2 = A, BD = −B, CA = C, D2 = −D and AB = BC = CB = DC = 0.

On the other hand, we have

ψ(E) = ψ(E)ψ(I)2 = ψ(E)3.

This implies that(
A −B
C −D

)
= ψ(E)3 = ψ(E) =

(
A B
C D

)
,

which implies B = D = 0, as claimed. Moreover, by a direct calculation we
obtain ψ(E) ∈ In. Now for all i, j with 1 ≤ i ̸= j ≤ n we have ψ(Eii)ψ(Ejj) = 0
because EiiEjj = 0. Therefore we can find an invertible matrix S such that
ψ(Eii) = SEiiS

−1 for each 1 ≤ i ≤ n, see [7, Lemma 3.1 (i)]. Hence, we have
Eii = S−1ψ(Eii)S = S−1ψ(Eii)SS

−1ψ(I)S = EiiS
−1ψ(I)S for all 1 ≤ i ≤ n.

This implies that S−1ψ(I)S = I, a contradiction. This contradiction ensures that
σ(ψ(I)) = {1} or {−1}.

Let ψ(I) = −I and consider transformation Λ : Mn → Mn defined by Λ(X) =
−ψ(X). Then Λ satisfies the hypothesis of the original theorem with Λ(I) = I.
Hence without loss of generality we may and do suppose that ψ(I) = I.

Corollary 2. Φ coincides with ψ.
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Proof. It is enough to show that Φ(0) = 0. We have 0(I − 0) = 0. Hence
0 = Φ(0)(Φ(I)− Φ(0)) = Φ(0)(ψ(I)) = Φ(0), as asserted.

We will prove the theorem separately for n = 2, and n ≥ 3. Let n = 2. Since
E11E22 = E22E11 = 0 and Φ preserve zero product we can find invertible matrix
T such that Φ(E11) = TE11T

−1 and Φ(E22) = TE22T
−1, see [7, Lemma 3.1 (i)].

Without loss of generality we can therefore assume that

Φ(E11) = E11 and Φ(E22) = E22. (8)

The proof is divided into the following four steps.

Step 1. Φ(αE11) = αE11 or αE11 for all α ∈ F.
Since E11E22 = E22E11 = 0 and Φ is an injective continuous map such that

preserve zero product we have Φ(αE11) = f(α)E11 for some injective continuous
function f : F → F. By preserving property of map Φ we have

α(β − γ) ∈ {0, 1} ⇐⇒ f(α)(f(β)− f(γ)) ∈ {0, 1} (α, β, γ ∈ F).

Now Theorem 4 with f(1) = 1 leads up to the conclution. In a similar way
we can get the same conclusion for Φ(αE22). Therefore for every α ∈ F we have
the following four cases:

(i) Φ(αE11) = αE11 and Φ(αE22) = αE22

(ii) Φ(αE11) = αE11 and Φ(αE22) = αE22

(ii) Φ(αE11) = αE11 and Φ(αE22) = αE22

(iv) Φ(αE11) = αE11 and Φ(αE22) = αE22

We consider only the first case. In all other cases one can argue in a quite
similar way.

Step 2. For every complex number α, β ∈ F there exist injective continuous
functions f, g : F → F such that

Φ(αE11 + βE12) = αE11 + f(β)E12 (9)

Φ(αE11 + βE21) = αE11 + g(β)E21 (10)

Φ(αE22 + βE12) = αE22 + f(β)E12 (11)

Φ(αE22 + βE21) = αE22 + g(β)E21 (12)

First we prove Eq. (9). By Corollary 1, E22Φ(αE11 + βE12) = 0 because
E22(αE11 + βE12) = 0. This implies that Φ(αE11 + βE12) = α′E11 + β′E12 for
some scalar α′, β′ ∈ F. We have α−1E11(αE11 + βE12) = E11 + α−1βE12 ∈ I2.
This implies that α−1E11(α

′E11 + β′E12) = α−1α′E11 + α−1β′E12 ∈ I2 which
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implies that α = α′, as desired. In a similar manner we can show that there exist
injective continuous functions g, h, k : F → F such that

Φ(αE11 + βE21) = αE11 + g(β)E21 (13)

Φ(αE22 + βE12) = αE22 + h(β)E12 (14)

Φ(αE22 + βE21) = αE22 + k(β)E21. (15)

Set α = 0 in formulas (9), (13), (14) and (15). Injectivity of Φ implies that
f = h and g = k, as claimed.

Step 3. Let A =

(
a11 a12
a21 a22

)
. Then Φ(A) =

(
a11 f(a12)
g(a21) a22

)
for some

injective continuous functions f, g : F → F with f(0) = g(0) = 0.

Let Φ(A) =

(
a′11 a′12
a′21 a′22

)
. We have

E11

((
a11 a12
a21 a22

)
−
(
a11 a12
0 0

))
= 0

and

E22

((
a11 a12
a21 a22

)
−

(
0 0
a21 a22

))
= 0.

Consequently, by Corollary 1 and step 2 we get

E11

((
a′11 a′12
a′21 a′22

)
−
(
a11 f(a12)
0 0

))
= 0

and

E22

((
a′11 a′12
a′21 a′22

)
−
(

0 0
g(a21) a22

))
= 0.

These imply that a′11 = a11, a
′
12 = f(a12), a

′
21 = g(a21), a

′
22 = a22, as desired.

Step 4. There exists a non-zero constant c such that f(a) = ca and g(a) = c−1a
for all a ∈ F.

Every non-scalar 2×2 idempotent matrix has trace 1 and determinant 0, which

can be written as D =

(
d d12
d21 1− d

)
where d12d21 = d(1 − d). Let a, b ∈ F be

non-zero scalars and set E =

(
e a
b 1− e

)
∈ I2. Then by step 3, Φ(E) =(

e f(a)
g(b) 1− e

)
. Since Φ preserve idempotents we have f(a)g(b) = e(1−e) = ab.

We have f(1)g(1) = 1. With a = 1 and b = 1 we get g(b) = (f(1))−1 b and
f(a) = f(1)a, respectively. Put c = f(1). This completes the proof.

Now if Φ(αE11) = αE11 and Φ(αE22) = αE22 for all α ∈ C then with a

similar argument as before we can show that Φ(A) =

(
a11 a12
a21 a22

)
for all A =
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(
a11 a12
a21 a22

)
∈ M2. But this leads to a contradiction because suppose E =(

e a
b 1− e

)
∈ I2 for some non-zero purely imaginary number e ∈ C. Then

Φ(E) =

(
e a
b 1− e

)
∈ I2 which implies e + 1 − e = 1, a contradiction. By a

similar discussion the third case can not happen. Now set S =

(
1 0
0 c−1

)
. Then

Φ(A) = SAS−1. Again by applying a similarity transformation we get Φ(A) = A.
This completes the proof of Theorem 3 for n = 2.

It remains to prove the theorem for n ≥ 3. Clearly, Φ preserve rank-1 idempo-
tents. Hence, by [6, Theorem 1.2] there exists an invertible matrix T ∈ Mn and
a non-zero endomorphism h : F → F such that

Φ(P ) = Th(P )T−1,

for all rank-1 idempotent P ∈ In, where h(P ) = (h(pij)) if P = (pij). Continuity
of Φ implies that h is a non-zero continuous endomorphism on F = R or C. It is
not difficult to show that continuous endomorphism on the field of real numbers
is identity and on the field of complex numbers is identity or conjugate identity;
i.e., h(z) = z, for all z ∈ C, or h(z) = z̄ for all z ∈ C, for more details see [2].
Therefore for real case we have Φ(P ) = TPT−1 and for complex case we have
Φ(P ) = TPT−1 or Φ(P ) = TPT−1. Since the transformations A 7→ TAT−1 for
all invertible matrix T and A 7→ A satisfy the hypothesis of the original theorem
so, without loss of generality we can assume that Φ(P ) = P for all rank-1 idem-
potent P ∈ In. In order to complete the proof of Theorem 3 it is enough to show
that Φ(A) = A for every A ∈ Mn and we do this by completing the following steps:

Step 1. Φ(P ) = P for all P ∈ In.

By [3, proposition 2.3], for each P ∈ In we have Φ(P ) = λI + (1 − λ)P for
some λ ∈ F \ {1}. Since Φ(P )2 = Φ(P ). We get λ = 0, as desired.

Step 2. Φ(N) = N for all rank-1 nilpotent N ∈ Mn.

By [3, proposition 2.3], for each rank-1 nilpotent N ∈ Mn we have Φ(N) =
λI + (1 − λ)N for some λ ∈ F \ {1}. Since N2 = 0, so Φ(N)2 = 0. This yields
that λ = 0, as desired.

Step 3. Φ(A) = A for all A /∈ FI.
Since A /∈ FI there exists an x such that x and Ax are linear independent. We

can find yt such that ytx = 0 and ytAx = 1. On the other hand by [3, Proposition
2.3] Φ(A) = λI+(1−λ)A for some λ ∈ F\{1}. Since Axyt ∈ In and Φ(xyt) = xyt

we have Φ(A)xyt ∈ In. Therefore 1 = ytΦ(A)x = λytx+ (1− λ)ytAx = 1− λ. It
follows that λ = 0 and the proof is completed.

Step 4. Φ(A) = A for all A ∈ FI.
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We first show that there exists a continuous injective function f on F with
f(0) = 0 and f(1) = 1 such that Φ(λI) = f(λ)I. Clearly, this follows from
continuity and injectivity of Φ, the identity of the map Φ on In and easy fact that
A ∈ F∗I if and only if AP ̸∈ In \ {0} for every P ∈ In \ {0}, where F∗ = F \ {0, 1}.
Now by preserving property of map Φ we have

α(β − γ) ∈ {0, 1} ⇐⇒ f(α)(f(β)− f(γ)) ∈ {0, 1}, (α, β, γ ∈ F).

Consequently, by Theorem 4 there exists a scalar ϵ ∈ {−1, 1} such that f(λ) =
ϵλ or ϵλ for all λ ∈ F. The cases f : λ 7→ λ,−λ, or −λ can not be happen, because
for example if f(λ) = λ then iE11(−iI) = E11 ∈ In but iE11(iI) = −E11 /∈ In,
a contradiction. It is easy to find counterexamples for the other cases. These
contradictions complete the proof.

The last step completes the proof of the Theorem 3.

3 Concluding remark

It would be expecting to get the same result for an infinite dimensional case.
Although this expectation turns out to be false as we show with the following
example. Let H be an infinite dimensional Hilbert space and B(H) the algebra of
all bounded linear operators on H. It is known that H is isomorphic with H⊕H.
We define Φ : B(H) → B(H) by

Φ : T 7→
(
T 0
0 T

)
.

Then Φ is injective, non-surjective, continuous and satisfiable in the original
assumption of our theorem but does not have a standard form as we expected.
Therefore for extend Theorem 3 to the infinite-dimensional case we need a stronger
assumption. We leave it for an interested reader.
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