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Abstract

The paper is devoted to study of bounds for the normalized scalar curva-
ture and the generalized normalized δ-Casorati curvatures for submanifolds
of product spaces.
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1 Introduction

The theory of product manifolds and their submanifolds is of fundamental
importance in geometry due to its various geometric and physical aspects. The
notion of locally product manifolds was introduced by Tachibana[26] in 1960.
Adati[1] studied invariant, anti-invariant and non-invariant submanifolds of a lo-
cally product manifold. Bejancu[4] investigated semi-invariant submanifolds of
locally product manifolds. Şahin[24] studied slant and semi slant submanifolds
of locally product manifolds. Kiliç et al.[13] established the Chen-Ricci inequal-
ities for different submanifolds of locally product manifolds. On the other hand,
Yano and Kon[33] studied the submanifolds of Kaehlerian product manifolds.
Shahid[25] studied CR-submanifolds of Kaehlerian product manifolds.

In 1890, the notion of Casorati curvature, an extrinsic invariant was introduced
by Casorati[5] for surfaces in Euclidean spaces. In general, the Casorati curvature
C of a submanifold in a Riemannian manifold is defined to be normalized square of
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the second fundamental form [6]. In particular, for hypersurfaces of a Riemannian
manifold Mn+1, the Casorati curvature is given by

C =
1

n
(k21 + k22 + ...+ k2n)

where k21, ..., k
2
n denote the principal curvatures of the hypersurface. It extends the

concept of the principal direction of a hypersurface of a Riemannian manifold [11].
This notion gives a better intuition of curvature compared to the Gaussian cur-
vature. Gaussian curvature may vanish for surfaces that look intuitively curved,
while the Casorati curvature vanishes only at planar points. The Casorati curva-
ture has been extended to arbitrary submanifolds in Riemannian geometry. In the
last decade geometers rigorously worked in this direction to obtain some optimal
inequalities for submanifolds of different ambient spaces [15, 16, 17, 27, 28, 31].

Wintgen[32] obtained an inequality

K ≤ ∥H∥2 − |K⊥|, (1)

where K , ∥H∥2 and K⊥ is Gauss curavture, squared mean curvature and normal
curvature respectively of any surface M2 in an Euclidean Space E4. The equality
holds if and only if the ellipse of the curvature of M2 in E4 is a circle.The above
inequality is called Wintgen inequality.

De Smet et.al.[8] developed the generalized Wintgen inequality and named as
DDVV conjecture for the submanifolds in real space forms as follows:

Conjucture 1. Let f : Mn → M̄m(c) be an isometric immersion of n-dimensional
submanifolds of a real space form M

m
(c) of constant sectional curvature c, then

ρ ≤ ∥H∥2 − ρ⊥ + c

where ρ and ρ⊥ are the normalized scalar curvature and the normalized normal
scalar curvature respectively.

The normalized scalar curvature is defined by

ρ =
2τ

n(n− 1)
=

2

n(n− 1)

∑
1≤i<j≤n

K(ei ∧ ej), (2)

where τ is scalar curvature.
The normalized normal scalar curvature are defined as

ρ⊥ =
2τ⊥

n(n− 1)
=

2

n(n− 1)

√ ∑
1≤i<j≤n

∑
1≤α<β≤m

(R⊥(ei, ej , ξα, ξβ)), (3)

where τ⊥ is normal scalar curvature.
Lu[18] and Ge and Tang[9] finally settled the general case of DDVV conjecture

independently. The Wintgen inequality holds good for every submanifold Mn in
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any real space form Mn+m , n ≥ 2,m ≥ 2. The geometers prove the conjecture
for different submanifolds of different ambient spaces [2, 3, 18, 19, 20, 21, 22].

In this paper, we derive inequalities in terms of Casorati curvatures and Wint-
gen inequality for submanifolds of product spaces. In Section 2, we give a brief
introduction about product spaces and their submanifolds . In Section 3, we ob-
tain some inequalities for δ-Casorati curvatures for submanifolds of product spaces
and in the last section we obtain Wintgen inequalities for product spaces.

2 Preliminaries

Let (Mn, G) be an n-dimensional Riemannnian manifold isometrically im-
mersed into product space M

m
(c) = (M

m1
(c1) × M

m2
(c2), G), where M

m1
(c1)

and M
m2

(c2) are m1-dimensional and m2-dimensional space forms of curvatures
c1 and c2 respectively. We define a non-trivial tensor field F of type (1, 1) a prod-
uct structure of M

m
(c) such that F 2 = I and F ̸= ±I, where I is the identity

transformation and obviously F satifies

G(FX,FY ) = G(X,Y ), ∇F = 0, (4)

for all vector fields X and Y on M
m
(c).

The curvature tensor R of M
m
(c) is expressed as[13]

R(X,Y, Z,W ) = a

{
G(X,W )G(Y,Z)−G(X,Z)G(Y,W )

+G(X,FW )G(Y, FZ)−G(X,FZ)G(Y, FW )

}
+b

{
G(X,FW )G(Y, Z)−G(X,FZ)G(Y,W ) (5)

+G(X,W )G(Y, FZ)−G(X,Z)G(Y, FW )

}
,

(6)

where a = c1+c2
2 and b = c1−c2

2 . For any vector field X tangent to M, we can write

FX = fX + tX, (7)

where fX and tX represents the tangential and normal parts of FX respectively.
From (4) and (7), we can easily see that

G(fX, Y ) = G(X, fY ), (8)

for all vector fields in M. The squared norm of f at any point p ∈ M is given
by

∥f∥2 =
n∑

i,j=1

G(fEi, Ej)
2, (9)
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where {E1, E2, . . . , En} be an orthonormal basis of the tangent space TpM.
Let (Mn, G) be a submanifold of a Riemannian manifold (M

m
, G). The Gauss

and Weingarten formulae are given by

∇XY = ∇XY +B(X,Y ), (10)

∇XV = −AVX +DXY, (11)

for all X,Y tangent to Mn and vector field V normal to Mn, where ∇, ∇ and D
be the Riemannian connection, the induced Riemannian conection and induced
normal conection in M

m
(c), Mn and T⊥Mn respectively. The second fundamental

form B and the shape operator AV are related by

G(B(X,Y ), V ) = G(AVX,Y ). (12)

Let p ∈ Mn and {E1, ..., En} be an orthonormal basis of the tangent space
TpM

n and {En+1, ..., Em} be an orthonormal basis of T⊥Mn. The mean curvature
vector, denoted by H(p), is defined by

H(p) =
1

n

n∑
i=1

B(Ei, Ei). (13)

Also, we set

Br
ij = G(B(Ei, Ej), Er), i, j ∈ {1, ..., n}, r ∈ {n+ 1, ...,m}

and

∥B∥2 =
n∑

i,j=1

(B(Ei, Ej), B(Ei, Ej)). (14)

For (Mn, G) submanifold of a Riemannian manifold (M
m
, G). we denote by

K(π) the sectional curvature of Mn associated with a plane section π ⊂ TpM
n, p ∈

Mn. For an orthonormal basis {E1, E2, ..., En} of the tangent space TpM
n, the

scalar curvature ρ is defined by

ρ =
∑
i<j

Kij ,

where Kij denotes the sectional curvature of the 2-plane section spanned by Ei

and Ej .
Let R be the curvature tensor of Mn, then the Gauss and Ricci equations are

R(X,Y, Z,W ) = R(X,Y, Z,W ) +G(B(X,W ), B(Y,Z))−G(B(X,Z), B(Y,W )),

R
⊥
(X,Y, η, ζ) = c[G(JX, η)G(JY, ζ)−G(JX, ζ)G(JY, η)]−G([Aη, Aζ ]X,Y ),
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for any vector fieldsX, Y , Z,W tangent toMn and η, ζ normal toMn respectively.
The norm of the squared mean curvature of the submanifold is defined by

∥H∥2 = 1

n2

m∑
γ=n+1

( n∑
i=1

Bγ
ii

)2
,

and the squared norm of second fundamental form h is denoted by C defined as

C =
1

n

m∑
γ=n+1

n∑
i,j=1

(
Bγ

ij

)2
,

known as Casorati curvature of the submanifold.
If we suppose that Γ is an s-dimensional subspace of TM with s ≥ 2, and

{E1, E2, . . . , Es} is an orthonormal basis of Γ, then the scalar curvature of the
s-plane section Γ is given as

τ(Γ) =
∑

1≤γ<β≤s

K(Eγ ∧ Eβ),

and the Casorati curvature C of the subspace Γ is as follows

C(Γ) =
1

s

m∑
γ=n+1

s∑
i,j=1

(
Bγ

ij

)2
.

The normalized δ-Casorati curvature δC(n− 1) and δ̃C(n− 1) are defined as

[δC(n− 1)]p =
1

2
Cp +

n+ 1

2n
inf{C(Γ)|Γ : a hyperplane of TpM} (15)

and

[δ̃C(n− 1)]p = 2Cp +
2n− 1

2n
sup{C(Γ)|Γ : a hyperplane of TpM}. (16)

For a positive real number t ̸= n(n−1), the generalized normalized δ-Casorati
curvatures δC(t;n− 1) and δ̃C(t;n− 1) are given as

[δC(t;n− 1)]p = tCp +
(n− 1)(n+ t)(n2 − n− t)

nt
inf{C(Γ)|Γ : a hyperplane of TpM}

if 0 < t < n2 − n, and

[δ̃C(t;n− 1)]p = rCp +
(n− 1)(n+ t)(n2 − n− t)

nt
sup{C(Γ)|Γ : a hyperplane of TpM},

if t > n2 − n.
Oprea[23] gives new direction to prove the Chen inequalities using optimization

techniques. For a submanifold (M, G) of a Riemannian manifold (M, G) and
h : M → R be a differentiable function. If we have a constrained problem

minx∈Mh(x) (17)

then the following result holds.
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Lemma 1. [23] Let x◦ ∈ M is the solution of the problem (17), then
(i) (grad h)(x◦) ∈ T⊥

x◦M

(ii) the bilinear form
B : Tx◦M× Tx◦M → R
B(X,Y ) = Hessh(X,Y ) +G(B(X,Y ), (grad h)(x◦))
is positive semi-definite, where B is the second fundamental form of M in M and
grad h is the gradient of h.

Example 1. Consider a submanifold M in E9 given by

M = {(t,−t, 0, t,−t, cosu cos v cosw, cosu cos v sinw, cosu sin v, sinu}

for any t ∈ R and u, v, w ∈ [0, π/2). Let F be an almost product structure on E9

defined by
FX = (x2, x1, x3, x5, x4, x6, x7, x8, x9)

where X = (x1, x2, x3, x4, x5, x6, x7, x8, x9). Then we have

PX =
1

2
(x1 + x2, x1 + x2, 2x3, x4 + x5, x4 + x5, 2x6, 2x7, 2x8, 2x9)

and

QX =
1

2
(x1 − x2, x1 − x2, 0, x4 − x5, x5 − x4, 0, 0, 0, 0)

which shows that M is a locally product of the unit 3-sphere given by the spherical
coordinates in E9 given as

(cosu cos v cosw, cosu cos v sinw, cosu sin v, sinu, 0, 0, 0, 0, 0)

for u ∈ [0, π/2) and the other coordinates in [0, π/2] and a plane section M1 in
E9 given by

M1 = {(t,−t, 0, t, t, 0, 0, 0, 0 : t ∈ R)}.

Thus M is an almost constant curvature manifold with a = b = 1
4 .

3 Inequalities for generalized normalized δ-Casorati
curvatures

Theorem 2. Let Mn be a n-dimensional submanifold of a manifold M
m
(c) .

Then
(i) The generalized normalized δ-Casorati curvature δc(t;n− 1) satisfies

ρ ≤ [δC(t;n− 1)]p
n(n− 1)

+ a
{
1 +

(trf)2

n(n− 1)
− 1

n(n− 1)
∥f∥2

}
+
2b

n

{
trf

}
, (18)

for any real number t such that 0 < t < n(n− 1).
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(ii) The generalized normalized δ-Casorati curvature δ̂c(t;n− 1) satisfies

ρ ≤ [δ̃C(n− 1)]p
n(n− 1)

+ a
{
1 +

(trf)2

n(n− 1)
− 1

n(n− 1)
∥f∥2

}
+
2b

n

{
trf

}
, (19)

for any real number t > n(n− 1). Moreover , the equality holds in (18) and (19)
iff M is an invariantly quasi-umbilical submanifold with trivial normal connection
in M, such that with respect to suitable tangent orthonormal frame {E1, . . . , En}
and normal orthonormal frame {En+1, . . . , Em}, the shape operator Ar ≡ AEγ ,
γ ∈ {n+ 1, . . . ,m}, take the following form

An+1 =



a 0 0 . . . 0 0
0 a 0 . . . 0 0
0 0 a . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . a 0

0 0 0 . . . 0 n(n−1)
t a


, (20)

An+2 = · · · = Am = 0.

Proof. Let {E1, E2, . . . , En} and {En+1, En+2, . . . , Em} be an orthonormal bases
of TpM and T⊥

p M respectively at a point p ∈ M. Using (5), we have

2τ = a
{
n(n− 1) + (trf)2 − ∥f∥2

}
+ 2b

{
(n− 1)trf

}
+ n2∥H∥2 − nC. (21)

Consider a polynomial Q in the components of second fundamental form B
defined as

Q = tC+
(n− 1)(n+ t)(n2 − n− t)

nt
C(L)− 2τ(p) + a

{
n(n− 1) + (trf)2 − ∥f∥2

}
+2b

{
(n− 1)trf

}
,

where Γ is hyperplane of tangent space at a point p. We assume that Γ is spanned
by {E1, E2, . . . , En−1} and Q has an expression of the form

Q =
t

n

m∑
γ=n+1

n∑
i,j=1

(Bγ
ij)

2 +
(n+ t)(n2 − n− t)

nt

m∑
γ=n+1

n−1∑
i,j=1

(Bγ
ij)

2 (22)

−2τ(p) + a
{
n(n− 1) + (trf)2 − ∥f∥2

}
+2b

{
(n− 1)trf

}
. (23)
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From (21) and (22), we arrive at

Q =

m∑
γ=n+1

n−1∑
i=1

[((n2 + nr − n− 2t)

t

)
(Bγ

ii)
2 +

2(n+ t)

n
(Bγ

in)
2

]

+
m∑

γ=n+1

[
2

(
2(n+ t)(n− 1)

t

) n∑
(i<j)=1

(Bγ
ij)

2 − 2
n∑

(i<j)=1

Bγ
iiB

γ
jj +

t

n
(Bγ

nn)
2

]

≥
m∑

γ=n+1

n−1∑
i=1

[(
(n2 + n(r − 1)− 2t)

t

)
(Bγ

ii)
2−2

n∑
(i<j)=1

Bγ
iiB

γ
jj+

t

n
(Bγ

nn)
2

]
.(24)

For t = n+ 1, . . . ,m, suppose we have a quadratic form hγ : Rn → R defined
as

hγ(B
γ
11, . . . , B

γ
nn) =

n−1∑
i=1

n2 + n(r − 1)− 2r

r
(Bγ

ii)
2 − 2

n∑
(i<j)=1

Bγ
iiB

γ
jj +

t

n
(Bγ

nn)
2

and the optimization problem

min hγ

subject to G : Bγ
11 + · · ·+Bγ

nn = cγ ,

where c is a real constant. The partial derivatives of gγ are{
∂hγ

∂Bγ
ii
= 2(n+t)(n−1)

t Bγ
ii − 2

∑n
l=1B

γ
ll,

∂hγ

∂Bγ
nn

= 2t
nB

γ
nn − 2

∑n−1
l=1 B

γ
ll,

(25)

where i = {1, 2, . . . , n− 1}, i ̸= j, and γ ∈ {n+ 1, . . . ,m}.
The vector gradhγ is normal at G for the optimal (Bγ

11, . . . , B
γ
nn) of the prob-

lem. Thus, it is collinear with the vector (1, 1, . . . , 1). Using (25), the critical
point of the corresponding problem has the form{

Bγ
ii =

t
n(n−1)B

γ
iiv

γ , i ∈ {1, . . . , n− 1}
Bγ

ii = vγ .
(26)

By use of (26) and
∑γ

i=1B
γ
ii = cγ , we arrive at{

Bγ
ii =

t
(n+t)(n−1)c

γ , i ∈ {1, . . . , n− 1}
Bγ

ii =
n

(n+t)c
γ .

(27)

For an arbitrary fixed point p ∈ D, the 2-form B : TpD × TpD → has the
following form

B(X,Y ) = Hess(hγ(X,Y )) + ⟨B(X,Y ), (grad(h))(x◦)⟩ (28)

where B and ⟨, ⟩ are the second fundamental form of D in Rn and standard inner
product on Rn respectively. The Hessian matrix of gγ is of the form
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Hess(hγ) =


2 (n+t)(n−1)

t − 2 −2 . . . −2 −2

−2 2 (n+t)(n−1)
t − 2 . . . −2 −2

...
...

. . .
...

...

−2 −2 . . . 2 (n+t)(n−1)
t − 2 −2

−2 −2 . . . −2 2t
n

 .

Though F is totally geodesic in Rn, take a tangent vector X = (X1, . . . , Xn)
at any arbitrary point p on D, verifying the relation

∑n
i=1Xi = 0, we have the

following

B(X,X) =
2(n2 − n+ tn− 2t)

t

n−1∑
i=1

X2
i +

2t

n
X2

n − 2

( n∑
i=1

Xi

)2

(29)

=
2(n2 − n+ tn− 2t)

t

n−1∑
i=1

X2
i +

2t

n
X2

n

≥ 0.

Hence the point (Bγ
11, . . . , B

γ
nn) is the global minimum point by Lemma 1 and

hγ(B
γ
11, . . . , B

γ
nn) = 0. Thus, we have Q ≥ 0 and hence

2τ ≤ tC+
(n− 1)(n+ t)(n2 − n− t)

nt
C(L) + a

{
n(n− 1) + (trf)2 − ∥f∥2

}
+2b

{
(n− 1)trf

}
,

whereby, we obtain

ρ ≤ t

n(n− 1)
C+

(n+ t)(n2 − n− t)

n2t
C(L) + a

{
1 +

(trf)2

n(n− 1)
− 1

n(n− 1)
∥f∥2

}
+
2b

n

{
trf

}
,

for every tangent hyperplane Γ of M. If we take the infimum over all tangent
hyperplanes L, the result trivially follows. Moreover the equality sign holds iff

Bγ
ij = 0, ∀ i, j ∈ {1, . . . , n}, i ̸= j and γ ∈ {n+ 1, . . . ,m} (30)

and

Bγ
nn =

n(n− 1)

t
Bγ

11 = · · · = n(n− 1)

t
Bγ

n−1n−1,

∀γ ∈ {n+ 1, . . . ,m}. (31)

From (30) and (31), we obtain that the equality holds if and only if the sub-
manifold is invariantly quasi-umbilical with normal connections in M, such that
the shape operator takes the form (20) with respect to an orthonormal tangent
and orthonormal normal frames.

In the same way, we can prove (ii).
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Remark 1. The special cases of the theorem can be proved by taking the subman-
ifolds as F-invariant, F-anti-invariant, slant et al.

4 DDVV inequality for Riemannian product spaces

In this section we prove DDVV inequality for submanifolds of product space
forms.

Theorem 3. Let Mn be a n-dimensional submanifold of a manifold M
m
(c) .

Then, we have

ρ+ ρ⊥ ≤ ∥H∥2 + a+
2

n(n− 1)

(
(trf)2 + ∥f∥2

)
− b

n
(trf). (32)

The equality holds if and only if, the shape operator with respect to the suitable
orthonormal frame {E1, E2, . . . , Em} takes the following form

AEn+1 =



ξ1 + ψ 0 0 . . . 0 0
0 ξ1 − ψ 0 . . . 0 0
0 0 ξ1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . ξ1 0
0 0 0 . . . 0 ξ1


, AEn+2 =



ξ2 0 0 . . . 0 0
0 ξ2 0 . . . 0 0
0 0 ξ1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . ξ2 0
0 0 0 . . . 0 ξ2


,

AEn+3 =



ξ3 0 0 . . . 0 0
0 ξ3 0 . . . 0 0
0 0 ξ1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . ξ3 0
0 0 0 . . . 0 ξ3


, AEn+4 = · · · = AEm = 0, (33)

where ξ1, ξ2, ξ3 and ψ are real functions on submanifold.

Proof. Using (21), we have

2τ = a
{
n(n− 1) + (trf)2 − ∥f∥2

}
+ 2b

{
(n− 1)trf

}
+

m∑
γ=n+1

∑
1≤<j≤n

[
Bγ

iiB
γ
jj −

(
Bγ

ij

)]
.

(34)

By taking into consideration (4) and Ricci equation, we get

ρ⊥ =
2τ⊥

n(n− 1)

=
2

n(n− 1)

√√√√ ∑
n+1≤γ<β≤m

∑
1≤i<j≤n

[ n∑
k=1

(
Bγ

ikB
β
jk −Bγ

jkB
β
ik

)]2
. (35)
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On the other hand, we know that

n2H2 =

m∑
γ=n+1

( n∑
i=1

Bγ
ii

)2

=
1

n− 1

m∑
γ=n+1

n∑
1≤i<j≤n

(
Bγ

ii −Bγ
jj

)2

+
2n

n− 1

m∑
γ=n+1

n∑
1≤i<j≤n

Bγ
iiB

γ
jj . (36)

By using the equation of Gauss and Ricci, we have

m∑
γ=n+1

n∑
1≤i<j≤n

(
Bγ

ii −Bγ
jj

)2

+ 2n

m∑
γ=n+1

n∑
1≤i<j≤n

(
Bγ

ii

)2
≥ 2n

[ ∑
n+1≤γ<β≤m

∑
1≤i<j≤n

[ n∑
k=1

(
Bγ

ikB
β
jk −Bγ

jkB
β
ik

)]2] 1
2

. (37)

Substituting the value of (35) and (36) in (37), we have the following equation

nH2 − nρ⊥ =
2

n− 1

m∑
γ=n+1

∑
1≤<j≤n

[
Bγ

iiB
γ
jj −

(
Bγ

ij

)]
. (38)

Using (34) and (38), we arrive at

nH2 − nρ⊥ =
2

n− 1

[
τ − a

2

{
n(n− 1)− (trf)2 + ∥f∥2

}
− b

{
(n− 1)trf

}]
. (39)

The desired result holds easily from (39). The equality case of (32) at some
point p ∈ M holds if and only if shape operator takes the form (33).

Remark 2. The special cases of the theorem can be proved by taking the subman-
ifolds as F-invariant, F-anti-invariant, slant et al.
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