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A NOTE ON GEOMETRIC CONSTRUCTION OF
SPECTRALLY ARBITRARY ZERO-NONZERO PATTERN

MATRICES
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Abstract

In this paper, we give a geometric construction for spectrally arbitrary
zero-nonzero pattern matrices. The geometric construction also deals with
computation of a matrix realization for a given characteristic polynomial.
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1 Introduction

In this paper, we are developing the geometric construction for spectrally
arbitrary zero-nonzero pattern matrices.

We begin with some basic definitions and terminologies. A zero-nonzero pat-
tern matrix of order n is an n× n matrix whose entries belong to the set {∗, 0},
where ∗ represents a nonzero entry. A Qualitative class or simply a zero-nonzero
pattern class of a zero-nonzero pattern matrix S is denoted by Q(S) and is defined
as

Q(S) := {A = (aij) ∈ Mn(R) : aij ̸= 0 if sij = ∗ otherwise aij = 0},

where sij is the (i, j)th entry of the zero-nonzero pattern S.

A given property P of an n× n matrix is said to be an allowable property for
a given zero-nonzero pattern matrix S if there exists an n × n matrix A ∈ Q(S)
such that A satisfies P . We say that a zero-nonzero pattern matrix S requires a
property P if every matrix in Q(S) satisfies P .

The basic definitions are as given in [4].
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2 Main results

Definition 1. [1] A zero-nonzero pattern matrix S of order n × n is said to
be spectrally arbitrary if every monic polynomial of degree n is the characteristic
polynomial of some matrix A in the qualitative class of S.

We assign a one to one correspondence between vectors in Rn and coefficients
of a characteristic polynomial for an n × n matrix in Mn(R). For a vector v =
(a1, a2, . . . , an−1, an) there is a characteristic polynomial xn − a1x

n−1 + a2x
n−2 −

· · ·+ (−1)n−1an−1x+ (−1)nan for some square matrix A of order n.

Definition 2. Let S be a given zero-nonzero pattern matrix of order n. For a
given vector v = (a1, a2, . . . , an−1, an) in Rn if there exists a matrix A ∈ Q(S)
whose characteristic polynomial is xn − a1x

n−1 + a2x
n−2 + · · ·+ (−1)n−1an−1x+

(−1)nan, then a matrix A is called as a realization of the vector v.

In this paper we are mainly interested in answering the following two open
questions from the literature [2] to zero-nonzero pattern matrices.
Question 1. Given a zero-nonzero pattern, is it spectrally arbitrary?
Question 2. If a zero-nonzero pattern is spectrally arbitrary, then for any given
monic polynomial with appropriate order how do we find a matrix in its qualitative
class whose characteristic polynomial is the given polynomial?

Example 1. Let

S =


∗ ∗ 0 ∗
0 0 ∗ ∗
∗ 0 0 ∗
∗ 0 0 ∗

 .

be a zero nonzero pattern of order 4.

Let e1, e2, e3, e4 be unit vectors along the coordinate axes surrounding a
hyperoctant. We want to find realizations of these vectors in Q(S). Consider a

matrix realization A ∈ Q(S) given by A =


2 2 0 a
0 0 1 b
1 0 0 c
1 0 0 d

, where a, b, c, d are

nonzero real numbers. The characteristic polynomial of A is given by

p(x) = x4 − (d+ 2)x3 + (−a+ 2d)x2 − (2b+ 2)x+ (−2c+ 2d)

= x4 − p1x
3 + p2x

2 − p3x+ p4.

We need to find variables a, b, c and d say a1, b1, c1 and d1 such that the
characteristic polynomial p(x) corresponds to e1. To find a2, b2, c2 and d2 such
that the characteristic polynomial p(x) corresponds to e2. Similarly for vectors
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e3 and e4. Thus we get the following system of equations.

(d1 + 2, −a1 + 2d1, 2b1 + 2, −2c1 + 2d1) = e1 = (1, 0, 0, 0)

(d2 + 2, −a2 + 2d2, 2b2 + 2, −2c2 + 2d2) = e2 = (0, 1, 0, 0)

(d3 + 2, −a3 + 2d3, 2b3 + 2, −2c3 + 2d3) = e3 = (0, 0, 1, 0)

(d4 + 2, −a4 + 2d4, 2b4 + 2, −2c4 + 2d4) = e4 = (0, 0, 0, 1)

Transferring constant terms to the right-hand side, we have

(d1, −a1 + 2d1, 2b1, −2c1 + 2d1) = (−1, 0,−2, 0)

(d2, −a2 + 2d2, 2b2, −2c2 + 2d2) = (−2, 1,−2, 0)

(d3, −a3 + 2d3, 2b3, −2c3 + 2d3) = (−2, 0,−1, 0)

(d4, −a4 + 2d4, 2b4, −2c4 + 2d4) = (−2, 0,−2, 1)

Above system of equations can be written in the matrix form as follows
0 0 0 1
−1 0 0 2
0 2 0 0
0 0 −2 2

C =


−1 −2 −2 −2
0 1 0 0
−2 −2 −1 −2
0 0 0 1


BC = D

where the matrix B is the coefficient matrix of a, b, c and d in p1, p2, p3 and p4.
The above system has a solution

C =


−2 −5 −4 −4
−1 −1 −1/2 −1
−1 −2 −2 −5/2
−1 −2 −2 −2

 .

By making use of the first column of C in A, we have a realization for e1 as

A1 =


2 2 0 −2
0 0 1 −1
1 0 0 −1
1 0 0 −1

 .

Similarly other realizations for e2, e3, e4 respectively are as follows.

A2 =


2 2 0 −5
0 0 1 −1
1 0 0 −2
1 0 0 −2

 , A3 =


2 2 0 −4
0 0 1 −1

2
1 0 0 −2
1 0 0 −2

 , A4 =


2 2 0 −4
0 0 1 −1
1 0 0 −5

2
1 0 0 −2

 .

Suppose we want to find a matrix realization for a nonzero vector (1, 1, 1, 2)
lying in the first hyperoctant: Consider the curve (t, t2, t3, 2t4) for t ∈ R and the
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hyperplane x1 + x2 + x3 + x4 = 1 for 0 ≤ xi ≤ 1. The curve and a part of the
hyperplane intersect only at one point. Solving equation of the curve (t, t2, t3, 2t4)
for t ∈ R with the hyperplane x1+x2+x3+x4 = 1 for 0 ≤ xi ≤ 1, we get t = 0.5.
The linear combination A(x1, x2, x3) = x1A1+x2A2+x3A3+(1−x1−x2−x3)A4

gives a realization for all vectors on x1+x2+x3+x4 = 1 with 0 ≤ xi ≤ 1. Equating
(t, t2, t3, 2t4) with (x1, x2, x3, 1−x1−x2−x3) for t = 0.5 we get x1 = 0.5, x2 =
0.125, x3 = 0.125. Consequently, the matrix realization for (0.5, 0.25, 0.125, 0.125)
is

A(0.5, 0.25, 0.125) =


2 2 0 −3.25
0 0 1 −0.9375
1 0 0 −1.5625
1 0 0 −1.5

 .

Observe that the vector (t, t2, t3, 2t4) corresponds to (0.5, 0.25, 0.125, 0.125)
for t = 0.5 and corresponds to (1, 1, 1, 2) for t = 1. Hence the required matrix
realization for (1, 1, 1, 2) is

1

t
×A(x1, x2, x3) =

1

0.5
×A(0.5, 0.25, 0.125) =


4 4 0 −6.5
0 0 2 −1.875
2 0 0 −3.125
2 0 0 −3

 .

Now suppose we want to find a matrix realization for (−1, 1,−1, 2): Consider
the curve (−t, t2,−t3, 2t4) for t ∈ R and the same hyperplane x1+x2+x3+x4 = 1
for 0 ≤ xi ≤ 1 as considered above. They intersect only at one point. Solving
equation of the hyperplane x1 + x2 + x3 + x4 = 1 for 0 ≤ xi ≤ 1 with the curve
(−t, t2,−t3, 2t4) we get t = −0.5. Equating (−t, t2,−t3, 2t4) with (x1, x2, x3, 1−
x1 − x2 − x3) for t = −0.5 we get x1 = 0.5, x2 = 0.125, x3 = 0.125. There-
fore, the matrix realization for (0.5, 0.25, 0.125, 0.125) is A(0.5, 0.25, 0.125) =
2 2 0 −3.25
0 0 1 −0.9375
1 0 0 −1.5625
1 0 0 −1.5

.

Observe that the vector (−t, t2, −t3, 2t4) corresponds to (0.5, 0.25, 0.125, 0.125)
for t = −0.5 and corresponds to (−1, 1,−1, 2) for t = 1. Hence the required ma-
trix realization for (−1, 1,−1, 2) is

1

t
×A(x1, x2, x3) = − 1

0.5
×A(0.5, 0.25, 0.125) =


−4 −4 0 6.5
0 0 −2 1.875
−2 0 0 3.125
−2 0 0 3

 .

In Table 1 of Appendix, we have given matrix realizations corresponding to a
zero-nonzero pattern S computed by the method as described above for a combina-
tion of eight hyperoctants. For example vectors lying in a hyperoctant surrounded
by e1,−e2,−e3,−e4 and −e1,−e2, e3,−e4 we can make use of matrix realizations
given in Appendix and Sr. no. 2 of the Table 1.
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Remark 1. In Example 1, we have computed matrix realizations for vectors
(1, 1, 1, 2) and (−1, 1,−1, 2). The matrix realization of vector (−1, 1,−1, 2)
is the negative of the matrix realization of vector (1, 1, 1, 2). Thus, the matrix re-
alizations differ in a negative sign. We know that if the characteristic polynomial
of a matrix A is xn + a1x

n−1 + · · ·+ an then the characteristic polynomial of −A
is xn − a1x

n−1 + · · ·+ (−1)nan. However, in zero-nonzero pattern matrices these
matrix realizations are allowed. Thus, it is enough to find a matrix realization of
any vector out of (1, 1, 1, 2) and (−1, 1,−1, 2).

Remark 2. The realizations for vectors e1, e2, e3 and e4 give matrix realizations
for nonzero vectors lying in two hyperoctants namely a hyperoctant surrounded by
e1, e2, e3 and e4 as well as a hyperoctant surrounded by −e1, e2,−e3 and e4.

Remark 3. In case of R4, we need to find matrix realizations for only 8 different
hyperoctants surrounded by the following sets of unit vectors:

{e1, e2, e3, e4}; {e1,−e2, e3,−e4}; {e1,−e2, e3, e4}; {e1, e2, e3,−e4};
{e1, e2,−e3, e4}; {e1,−e2,−e3,−e4}; {e1,−e2,−e3, e4}; {e1, e2,−e3,−e4}

Remark 4. In general for Rn, we need to find matrix realizations for unit vectors
along the coordinate axes surrounding only 2n−1 different hyperoctants.

Construction 2.1 : A method for finding matrix realizations for a given charac-
teristic polynomial of a spectrally arbitrary zero-nonzero pattern.

1. Find matrix realizations for vectors e1, ±e2, . . . , ±en with the property that
matrices surrounding one hyperoctant can be allowed to differ only in one
row (or column) and having the same sign pattern.

2. To identify a matrix realization for an arbitrary nonzero vector v =
(a1, a2, . . . , an): Consider the curve (ta1, t

2a2, . . . , t
nan) for t ∈ R which

passes through the origin and the vector v. Note that this curve also passes
through the vector v′ = (−a1, a2, · · · , (−1)nan).

3. If a1 ≥ 0, then choose a hyperoctant which contains the vector v =
(a1, a2, · · · , an) with e1 would be one of the surrounding axes. If
a1 < 0, then choose a hyperoctant which contains the vector v′ =
(−a1, a2, · · · , (−1)nan).

4. Assume that the hyperoctant chosen in step 3, is surrounded by vectors
e1, v2, · · · , vn where {v2, · · · , vn} ⊆ {±e2, . . . , ±en}. Also consider the
convex linear combination of these vectors x1e1+x2v2+ · · ·+(1−x1−· · ·−
xn−1)vn where 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ n−1. Find the point of intersection
t0 of the curve (ta1, t

2a2, . . . , t
nan) for t ∈ R with the hyperplane x1e1 +

x2v2+· · ·+(1−x1−· · ·−xn−1)vn. It should be noted that the curve and a part
of the plane intersect only at one point. Equating (ta1, t

2a2, . . . , t
nan) =

x1e1 + x2v2 + · · ·+ (1− x1 − x2 − · · · − xn−1)vn for particular t0 to obtain
x1, x2, . . . , xn−1.
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5. Using an affine linear combination of matrices corresponding to vectors
e1, v2, · · · , vn, obtain the matrix realization E(x1, x2, · · · , xn−1). Finally,
the required matrix realization for the vector v is (1/t0)E(x1, x2, · · · , xn−1).

In view of the above construction, we prove our main Theorem 2. As our con-
struction doesn’t take care of the polynomial xn, we prove the following theorem
for potentially nilpotent zero-nonzero patterns.

Theorem 2. Let S be a potentially nilpotent zero-nonzero pattern matrix of order
n. Let e1, ±e2, . . . , ±en be unit vectors along the axes. Suppose at least 2n − 1
matrices exist in the qualitative class of S, which are realizations of these 2n− 1
vectors. If n matrices corresponding to n vectors surrounding each hyperoctant
differ only in one fixed row (or column) and they have the same sign pattern, then
the zero-nonzero pattern S is spectrally arbitrary. Moreover, any particular matrix
realization can be constructed as an affine combination of matrices corresponding
to a hyperoctant (i.e. unit vectors).

Proof. Suppose that S is a potentially nilpotent zero-nonzero pattern matrix
of order n. Then there are at least 2n − 1 matrix realizations for unit vectors
e1, ±e2, · · · , ±en with the property that any n matrix realizations surrounding
each hyperoctant vary only in one row (or column). Let p(x) = xn−a1x

n−1+· · ·+
(−1)n−1x+(−1)nan be any arbitrary monic polynomial of degree n. By Definition
2, the polynomial p(x) corresponds to the vector (a1, a2, · · · , an) ∈ Rn, let us call
it as v. Our aim is to find a matrix realization for the vector v = (a1, a2, · · · , an).
If a1 ≥ 0, then choose a hyperoctant that contains the vector v such that e1 will
be one of the surrounding axes, otherwise choose a hyperoctant which contains
the vector v′ = (−a1, a2, · · · , (−1)nan).

Suppose the chosen hyperoctant is surrounded by vectors e1, v2, · · · , vn
where {v2, v3, · · · , vn} ⊆ {±e2, ±e3, · · · , ±en}. Now consider the curve
(ta1, t

2a2, · · · , tnan) for t ∈ R and also consider the convex linear combination of
vectors e1, v2, · · · , vn i.e. x1e1+x2v2+· · ·+xn−1vn−1+(1−x1−x2−· · ·−xn−1)vn
where 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ n − 1. Note that the curve and a part of the
hyperplane lying in chosen hyperoctant intersect at only one point. Let t0 be
the point of intersection of the curve (ta1, t

2a2, · · · , tnan) with the hyperplane
x1e1 + x2v2 + · · · + xn−1vn−1 + (1 − x1 − x2 − · · · − xn−1)vn where 0 ≤ xi ≤ 1
for all 1 ≤ i ≤ n− 1. Equating the point on the curve (ta1, t

2a2, · · · , tnan) with
x1v1+x2v2+ · · ·+xn−1vn−1+(1−x1−x2−· · ·−xn−1)vn for particular t0, obtain
the coefficients x1, x2, · · · , xn−1. By hypothesis, we have matrix realizations for
vectors e1, v2, · · · , vn say A1, A2, · · · , An respectively such that they vary either
in a fixed row or in a fixed column. Let E(x1, x2, · · · , xn−1) = x1A1+x2A2+· · ·+
xn−1An−1+(1−x1−· · ·−xn−1)An be an affine linear combination of these matrices
corresponding to computed coefficients. It is easy to observe that, the character-
istic polynomial of E(x1, x2, · · · , xn−1) is an affine linear combination of charac-
teristic polynomials of matrices A1, A2, · · · , An i.e. ch(E(x1, x2, · · · , xn−1)) =
x1ch(A1) + x2ch(A2) + · · · + xn−1ch(An−1) + (1 − x1 − · · · − xn−1)ch(An). Also
E(x1, x2, · · · , xn−1) ∈ Q(S) as 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ n − 1. Therefore, the
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matrix E(x1, x2, · · · , xn−1) gives a matrix realization for the vector x1e1+x2v2+
· · ·+xn−1vn−1+(1−x1−x2−· · ·−xn−1)vn = (t0 a1, t

2
0 a2, · · · , tn0 an). Now as t0 ̸=

0, we have (1/t0)E(x1, x2, · · · , xn−1) ∈ Q(S) and (1/t0)E(x1, x2, · · · , xn−1)
gives a matrix realization for the vector v = (a1, a2, · · · , an). Thus the char-
acteristic polynomial of (1/t0)E(x1, x2, · · · , xn−1) is p(x).

Hence S is a spectrally arbitrary zero-nonzero pattern matrix and any partic-
ular non-nilpotent matrix realization can be constructed as an affine combination.
¤

Here, finding 2n − 1 matrix realizations corresponding to unit vectors
e1, ±e2, · · · , ±en such that n vectors surrounding one hyperoctant are allowed to
differ at most in one row (or column) is not much difficult. It amounts in solving
some matrix equations. The method for computing these realizations is already
depicted in Example 1.
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Table 1: Matrix Realizations

Sr.No. Octant sur-
rounding
vectors

Matrix realizations in pattern S =


∗ ∗ 0 ∗
0 0 ∗ ∗
∗ 0 0 ∗
∗ 0 0 ∗



1 e1, e2, e3, e4

e1 →


2 2 0 −2
0 0 1 −1
1 0 0 −1
1 0 0 −1

, e2 →


2 2 0 −5
0 0 1 −1
1 0 0 −2
1 0 0 −2

,

e3 →


2 2 0 −4
0 0 1 −1/2
1 0 0 −2
1 0 0 −2

, e4 →


2 2 0 −4
0 0 1 −1
1 0 0 −5/2
1 0 0 −2



2 e1,−e2,
− e3,−e4

e1 →


2 2 0 −2
0 0 1 −1
1 0 0 −1
1 0 0 −1

, −e2 →


2 2 0 −3
0 0 1 −1
1 0 0 −2
1 0 0 −2

,

−e3 →


2 2 0 −4
0 0 1 −3/2
1 0 0 −2
1 0 0 −2

, −e4 →


2 2 0 −4
0 0 1 −1
1 0 0 −3/2
1 0 0 −2


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3 e1,−e2,
e3, e4

e1 →


2 2 0 −2
0 0 1 −1
1 0 0 −1
1 0 0 −1

, −e2 →


2 2 0 −3
0 0 1 −1
1 0 0 −2
1 0 0 −2

,

e3 →


2 2 0 −4
0 0 1 −1/2
1 0 0 −2
1 0 0 −2

, e4 →


2 2 0 −4
0 0 1 −1
1 0 0 −5/2
1 0 0 −2



4 e1, e2,
− e3, e4

e1 →


2 2 0 −2
0 0 1 −1
1 0 0 −1
1 0 0 −1

, e2 →


2 2 0 −5
0 0 1 −1
1 0 0 −2
1 0 0 −2

,

−e3 →


2 2 0 −4
0 0 1 −3/2
1 0 0 −2
1 0 0 −2

, e4 →


2 2 0 −4
0 0 1 −1
1 0 0 −5/2
1 0 0 −2



5 e1, e2,
e3,−e4

e1 →


2 2 0 −2
0 0 1 −1
1 0 0 −1
1 0 0 −1

, e2 →


2 2 0 −5
0 0 1 −1
1 0 0 −2
1 0 0 −2

,

e3 →


2 2 0 −4
0 0 1 −1/2
1 0 0 −2
1 0 0 −2

, −e4 →


2 2 0 −4
0 0 1 −1
1 0 0 −3/2
1 0 0 −2



6 e1,−e2,
− e3, e4

e1 →


2 2 0 −2
0 0 1 −1
1 0 0 −1
1 0 0 −1

, −e2 →


2 2 0 −3
0 0 1 −1
1 0 0 −2
1 0 0 −2

,

−e3 →


2 2 0 −4
0 0 1 −3/2
1 0 0 −2
1 0 0 −2

, e4 →


2 2 0 −4
0 0 1 −1
1 0 0 −5/2
1 0 0 −2



7 e1,−e2,
e3,−e4

e1 →


2 2 0 −2
0 0 1 −1
1 0 0 −1
1 0 0 −1

, −e2 →


2 2 0 −3
0 0 1 −1
1 0 0 −2
1 0 0 −2

,

e3 →


2 2 0 −4
0 0 1 −1/2
1 0 0 −2
1 0 0 −2

, −e4 →


2 2 0 −4
0 0 1 −1
1 0 0 −3/2
1 0 0 −2


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8 e1, e2,
− e3,−e4

e1 →


2 2 0 −2
0 0 1 −1
1 0 0 −1
1 0 0 −1

, e2 →


2 2 0 −5
0 0 1 −1
1 0 0 −2
1 0 0 −2

,

−e3 →


2 2 0 −4
0 0 1 −3/2
1 0 0 −2
1 0 0 −2

, −e4 →


2 2 0 −4
0 0 1 −1
1 0 0 −3/2
1 0 0 −2


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