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Abstract

In present paper, several inequalities involving Csiszar divergence are es-
tablished by utilizing diamond integrals and Lidstone interpolation poly-
nomials. Consequently, new and generalized inequalities are yields. The
functions involved in these inequalities are higher order convex functions.
Inequalities involving Shannon entropy, Kullback-Leibler discrimination, tri-
angle distance and Jeffrey’s distance, are studied as particular instances with
the help of specially chosen convex functions. The main findings are also dis-
cussed for some special time scales (both discrete and continuous). Many
existing results are also obtained which established the link with existing
literature.
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1 Introduction

The theory of time scales calculus and convex functions are both rapidly
growing areas of research. The first encounter the both discrete and continu-
ous structures simultaneously and the later presents the application by means of
optimizations.

The class of n-convex functions is a good tool to generalize the inequalities in-
volving convex functions. For this purpose, many interpolations can be used. The
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interaction of convexity with information theory results many divergences and en-
tropy formulas. Hence the estimation of bounds for divergences and entropies are
the outcomes of the study of mathematical inequalities involving convex functions,
in both integrals and discrete cases. Whereas, the theory of time scales provides
an efficient methodology to combine the both discrete and continuous structures.

Non-negative measures of dissimilarity between pairs of probability measures
are very useful in data science, probability theory, statistical learning, information
theory, statistical signal processing, and other related fields. It is of great interest
to investigate the mathematical framework and many applications of these diver-
gence measurements. Divergence measures are very utile and represent a critical
role in different fields like sensor networks [21], economics [25], testing the order in
a Markov chain [19], finance [24] and approximation of probability distributions
[16]. Entropies and the divergence measures are frequently employed in statistical
physics (see [15]).

S. Hilger presented the theory of time scales that provides a platform to deal
with discrete and continuous cases together. In order to have a look at time
scales calculus, suggested books are [11, 12]. Recently, several mathematicians
have worked on this subject and constituted many results, see [3, 1, 4, 7].

In the start of time scales calculus, delta and nabla integrals were used to
study the integral inequalities. In [14], authors have introduced diamond integral
which is convex combination of nabla and delta integrals. Recently, Bilal et al.
[7] extended Jensen’s inequality via diamond integrals on time scales calculus
(approximate symmetric integrals).

In the past few decades, many generalizations, improvements, refinements, and
variants of the results for n-convex functions have been extrapolated by various in-
vestigators. Smoljak Kalamir [20] have extended some Steffensen-type inequalities
to time scales by using the diamond-« integral. In [5], author have utilized Green’s
function and Hermite interpolating polynomial, to extend Jensen’s functional for
n-convex functions from Jensen’s inequality involving diamond integrals.

Lidstone polynomials are useful to generalize a large number of inequalities. In
[18], Gazi¢ et al. have provided Jensen’s inequality and its converses for 2n-convex
functions with the help of Lidstone’s interpolating polynomials. In [6], author
have utilized Lidstone’s interpolating polynomial to extend Jensen’s inequality
via diamond integrals for 2n-convex functions. In [3], authors have obtained new
entropic bounds via delta integrals using Lidstone interpolating polynomial.

In Section 2, first of all some basic definitions and results of time scales calculus
are given. After that Lidstone interpolating polynomial and its series represen-
tation is recalled. Section 3 contains results containing Csiszar divergence via
diamond integral for the n—convex function. In Section 4, bounds of different
divergence measures are estimated. Section 5 provides relationship of Mandelbrot
entropy with other entropies. Lastly, manuscript is concluded in Section 6.
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2 Preliminaries

In this section, some basics of the mathematical theory of time scales are given.

Time scale T is a nonempty closed subset of real numbers. Some famous
examples of time scales are Z, Cantor set and N.

Let r € T, forward jump operators is

o(r)=inf{veT:v>r}, (1)
and and backward jump operators is
p(r) :==sup{v e T:v <r}. (2)

Delta Integral [11, Definition 1.71]
A mapping H : T — (—o0, 00) is called the delta antiderivative of h : [by, be|T =
[b1, 0] T — (=00, 00) if HA(¢) = h(¢) holds true V ¢ € T*. The delta integral
of h is )
2
| mOn¢ = (e - HOw) Q)
1
Nabla Integral [11, Definition 8.42]

A mapping G : T — (—o0,00) is called the nabla antiderivative of g :
[b1, bo]r — (—00,00) if GV(¢) = g(¢) V(¢ € T*. The nabla integral of g is

b2
| a9 = 6(ea) - G, (4)
1
In [22], authors have defined diamond-alpha integral given as follows:
Consider [ : [by,b2]T — R is a continuous mapping and by, by € T(b; < by).
The diamond alpha integral of [ is given as

b2 b2 b2
[ 10an= [ atmans [Ca-apmve 0<a<i ()
bl bl bl
if ylis A and (1 —~)l is V integrable on [by, ba|T .
In case o = 0, we have nabla-integral and for a« = 1, we have delta-integral.
In [13], real valued function + is given as follows:

= lim U(x) - Y
V(@) = z}%az o(x)+ 2z — 2y — p(x)’ (6)

Clearly,

%, if z is dense;
v(z) = %, if z is not dense .

In general 0 < ~(z) < 1.
In [14], diamond integral is defined as follows:
Diamond Integral ([14])
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Assume that g : [b1,b2]T — R is a continuous function and by, by € T(b; < b2).
The <{-integral of ¢ is given as

bo bo bo
/ g(Q0¢= [ AL+ / (1= 4()g(OVE 0<v(O) <1, (1)

by b1 b1

where vg is A and (1 —)g is V integrable on [by, ba|r

For monotonicity, additive, reflexive and multiplicative properties of
{O-integrals see [14].

Throughout the paper we assumed that:

Al: © := [bl, b2]"]1‘, with b1,be € T and by < bo.

A2: The set of all probability densities is denoted by ' =: {g such that g :

© = R,g(n) >0, [g g(n)dn=1}.
The following Theorem is provided by Bilal et al. in [10].

Theorem 1. Assume that the mapping ¢ : [0,00) — (—00,00) is convexr on
[01,02] C [0,00) and o1 <1< pa. Ifly,lo € E and

glsﬁjg <o VCET,
then
/ z2<o¢>(ll<o><>< Lo+ L% ) (8)
o I2(¢) T 02— 01 02 — 01 '

If suppositions of Theorem 1 remain valid, then it is possible to define the
following functional F 1(¢) involving Csiszar divergence for diamond integrals:

F16) = 2 olo) + 2ol - [ mcm(ﬁ;g)oc, (9)
where ¢ is defined on [g1, 02].
Remark 1. If suppositions of Theorem 1 remain valid, then F1(¢) > 0.

In [26], Widder proved the following result:

Lemma 1. If ¢ € C*°([0,1]), then
1
50 = 3 [ (018, (1— 1 + 6(0) +/Gnts¢2"
r=0 0
where V.. is a polynomial of degree 2r + 1 defined by the relations
Uo(t) =4, U0 (t) = U1 (t), U, (0) = T, (1) =0,mn > 1

and

(10)
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is homogeneous Green’s function of the differential operator Cﬁi—i on [0, 1], and with
the successive iterates of G(t,s).

1
Glt,s) = / G (6 p)Cur(p.5)dp, 1> 2. (11)
0

The Lidstone polynomial can be expressed in terms of Gy (t,5) as

1
/Gn (t,5)sds. (12)
0

In [2], Lidstone series representation of ¢ € C?"[vy, 1] is

n—1 1
r) = ;0 (vy — V1)2T¢QT(V1)\IJT <:22__51> + ; (vp — V1)2T¢ZT(V2)\IIT <:2__II//11>

+ (v — 1) 1/G ( —n tou >¢2”(t)dt. (13)

V2_V1 V2 — 11

3 Main results

In this section, first of all, an identity involving Csiszar divergence for diamond
integrals is established by utilizing Lidstone polynomial:

Theorem 2. Let the suppositions of Theorem 1 are true and ¢ € C™ [vy,1v2]. If
Gy, is defined as in (11), then

B L (9) 02— 1 1-—01
1ottt = [ )0 1) 00 = £ Lo(01) + T2

n—1

_ Z(VQ _ V1)2r¢(2r) (Vl) I <¢7~< vg —t >
r=0
n—1

Vg =1
_ (V2 _ V1)2r¢(21“) (1/2) 1 <¢r< t—up )
Vo — V1

r=0

v2 t—v —v
_ (1/2 _ V1)2n71 / Fl (Gn< 1 1 >
” V9 — V1 V9 — 11
where

t—v -1 — v 1-— —v
F1<1/Jr< 1 )) _ 02 ¢T<91 1> + 01 ¢T<Q2 1>
Vo — 11 02 — 01 Vo — 11 02 — 01 Vg — U1

_/@¢T<ll(79)—V112(19)><>19’ (15)

vp — 1

)
)
> 2n) (s) ds,

(14)
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and

F1<Gn<t_yl,5_yl>>— QQ_lGn<Q1_V1,5_V1>
Vg —V1 V2 — 11 02 — 01 Vo —VlV1 V2 — U1
1-— -V §—V ll(ﬁ)_yl §—U
n 01 Gn<Q2 1 1)—/l2(19)Gn(12w) 1><>19' (16)
e

02 — 01 ve — 11 Vg — 1 R A 2
Proof. Employ (13) in (9) and the linearity of F 1(-) to obtain (14). O

The next Theorem is concerning with Csiszar type linear functional for 2n-
convex function.

Theorem 3. Assume that suppositions of Theorem 2 are true and ¢ is 2n-convex
function with ¢ € C?" [v1,vs]. If

t— _
e ) EL a7
Vyp — 1 Vg — U
then

2= oo + o —ole) - [ @ 5 )0

02 — 01 02 — 01

Bt (o (228)) e (125
(18)

Proof. Since the function ¢ is 2n-convex, therefore ¢ is 2n-times differentiable
and ¢(")(.) > 0. Use Theorem 2 with (17) to obtain (18). O

Theorem 4. Let the suppositions of Theorem 2 are true and | € E with ¢ €
C*[O©,R] be an 2n-convex function.

(a) If n is odd, then (18) holds.
(b) If (18) holds, and

n—1

TZ:O(W —v1)”" [Q“QT) (1) Fa <¢r (;;2_:1))
+ 6 (v2) Fy <w< - ))} >0, (19)

Vg =11

then

2 oo+ o oe) - [ w@e( 5 )ovzo. o

02 — 01 02 — 01

vo—v1’ va—11

Proof. Since Gy is convex and G, | 4 5’“) > 0 for odd n, therefore (17)

is valid. Furthermore, ¢ is 2n-convex function, hence one can use Remark 1 and
Theorem 3 to obtain (20). O
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Remark 2. If one select set of real numbers as time scale and n = 1 then (20)
is same as [17, (2.1)].

Remark 3. Furthermore, it is possible to establish, Ostrowski and Griss-type
bounds accompanying to (14).

4 Estimation of divergence measures

In this section, bound of different divergence measures are estimated using
Theorem 2. In [8] authors have introduced differential entropy hj(X) via diamond
integral formalism, stated as follows:

Definition 1.

1
ha(X) = /@ o) 1og 2501 (21)

where g € E and the base of log’ is d for some fized d > 1.

Theorem 5. Assume that suppositions of Theorem 2 are true and ¢ is 2n-convex
function. If n is odd, then

02— 1
02 — 01

) Z or == x [ (o (255

el ) = L toaler) + -2 lor(e2) — [ 1(9)log (12(9)) 00

where hz(Z) is defined in (21).
Proof. Use ¢(z) = —log z in Theorem 3 to obtain (22). O

In [9], authors have defined KL divergence using diamond integral:

D, 1y) = /@ 1(()In <28)<>< (23)

Theorem 6. Assume that suppositions of Theorem 2 are true and ¢ is 2n-conver
function. If n is odd, then

i
L

—1 1-—
D(in,lp) < 2o ln(e) + _9911 o2ln(02) — Y (2r —2)!(ve — 1)

02

{ ar ((550) e (o)) e

where D(l1,12) is defined in (23).

ﬁ
Il
=)

Proof. Use ¢(z) = zlnz in Theorem 3 to obtain (24). O
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In [9], Jeffrey’s distance via diamond integral is stated as follows:

D (1, 12) 22/@(l1(0 15(¢)) In {ZEEHQC (25)

Theorem 7. Let the suppositions of Theorem 2 are true and ¢ be 2n-convex
function. If n is odd, then

-1 1—
2 (01— Dn(or) + —Z(0s — Dn(ga) = S (2 — 1y
02 — 01 02 — 01 e

Ao ) (+(252)
(o ) (o)) e

where Dj(l1,12) is defined in (25).

Dj(ly,12) <

Proof. Use ¢(z) = (2 — 1) In z in Theorem 3 to obtain (26). O
Definition 2. In [9], triangular discrimination using diamond integral is stated
as follows:
Da(ly,12) ‘:/ () - ll(O)QQC (27)
T Je o La(Q) +1(Q) '

Theorem 8. Assume that suppositions of Theorem 2 are true and ¢ be 2n-conver
function. If n is even, then

n—1

02—1 (01 —1)% 1—p1 (02 —1)*
Da(ly,12) < + 4(2r)(vo — 11
( ) 02—01 o01+1 02—01 02+1 Z >

[t (4 (50) et 1<¢T<:z_—yu11>>]’ .

where D (l1,12) is defined in (27).

Proof. Use ¢(z) = (22111)2 in Theorem 3 to obtain (28). O

4.1 Bounds of divergence measures in classical calculus

Now, we estimate different divergence measures in classical calculus by choos-
ing set of real numbers as time scale.

If one chooses set of real numbers as time scale in Theorem 3, then (18)
provides following new bound in classical calculus for Csiszar divergence:

/ ! <ﬁ>¢(ll“9))cw L b0+ 2% ()

l2(9) 02 — 01 02 — 01

_Z vo—v1) ¥ |6 (1n F1<wr< 2—_:1>>+¢(2T) (W)Fl(%(;_—y;l))]’
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where
t—11 02 — 1 01— 1 1-01 02 — 11
Fl(d’r( >> = ¢r< + ¢r
Vo — 11 02 — 01 V9 — 11 02 — 01 vg — U1

_ /@%(ll(ﬁ) - V152(§)>d19' (29)

Vp =11

If one chooses set of real numbers as time scale in Theorem 5-8 then (22),
(24), (26) and (28) provide following new bounds in classical calculus for dif-
ferential entropy, KL divergence, Jeffrey distance and Triangular discrimination,
respectively:

1 02 — 1—o /
l2(9¥) 1o dd > lo + lo — [ 12(¥)log (I2())dv
[ 120108 250 = 2 tor0) + = og(ea) — | 1a(9) o (1a(9)

_ nil (2r — Dl — 1) x [(Vll)mfl <¢T (l/yzz—_lft1>>

r=0

tﬂfﬂﬁﬂn<ggg>dﬁ

02 o In(oy) + 2 oaln(o2) = 3 (2 — 2)(va — 11)>
02— 01 02 — 01 e

[ (@) v (0 ()

IN

2
e (G5 ) (1 (252)

(o ) (0 (G=20)))

and

(12(9) — L (9))?
/@ lo(9) + 11(9) @

-1 —-1)? 1- —1)?
§Q2 (91 ) + 01 Qz 2427"
02—01 01+1 02—01 02+1

1 vy —t 1 t—uy
8 [(Vl + 1)2T+1F1<wr<1/2 - V1>> " (v2 + 1)2T+1F1<¢T<V2 - 1/1))}’

where [ 1 <¢7~ <Vt2_”l,11>> is defined in (29).

Z_Vl)
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4.2 Bounds of divergence measures in h-discrete calculus

Now we estimate bounds of different divergence measures in h-discrete cal-
culus. Moreover, bounds of some divergence measures in discrete calculus are
estimated.

If one chooses set hZ as time scale, where h > 0, in Theorem 3, then ¥ = hy €
hZ for some y € Z and (18) takes the form:

L[5 weae(ii)+ 3 o)
< 2 o)+ o2 oler) - :m —) [W () F 1 (w (22__:1))
0 e (wr (22))] o)
where

t—11 02— 1 01— 1-—0 02 — V1
F1<¢T< ))Z ¢r< + ¢r
Vo — 11 02 — 01 Vg — U1 02 — 01 Vg — U1

Fo1 7
—2@2]1_”1){2 (Li(h0) =1l (h0)) + (l1(h19)—1/1l2(h19))]. (31)
9=1t 9="141

If one chooses set hZ as time scale, where i > 0 in Theorem 5-8 then (22), (24),
(26) and (28) provide following new bounds in h-discrete calculus for differential
entropy, KL divergence, Jeffrey distance and Triangular discrimination:

h h h 1
— 1 !
9= 19:71—‘,-1
> 22— log(o1) + ——- log(e2)
02 — 0

X o n—1
_Z[ Z Io(h) log (11 (h9)) + Z lo(hd) log (ll(hﬁ))} —Z(Qr — D)l (va—11)*

_b _ r=0
19771 Y=7L+1

[t ((250) e (o)
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Z{ b (1 (h9) — Ia(h)) In <ZEZ§;>+ > (k) — Iy(h)) In (2%;)]

n—1

— Y1
S (852 B o (221)

(BB (o))

Z- 2 = 2
121[ " (la(h9) — (b)) s (lz(hﬂ)—ll(hﬁ))]

lo(h?) + 11 (h) . lo(h) + 11 ()
9=k 9=-L41

n—1

-1 -1 1- —1)2
02 (o1 —1) n 01 (02 24 (@) (vs — 1)’
02—01 o01+1 02—01 02+1

1 vy —t 1 t—u
- [(Vl PR (% <V2 — V1>> TSl <¢r (Vz - V1>>]’ (35)
where f (U% (;2_”;1>> is defined in (31).

Remark 4. Use h =1, by =0, by = p, [1(¥) = (l1)y and l2(9) = (l2)g, in (30)

to obtain following new bound for discrete Csiszdr divergence:

s[ee(iige) « Se(3)

=0 9=1

IA

02— 1 1—01
< —¢(01) + #(02)
02 — 01 02 — 01

n—1

PICRAG e (o (250 ) ) o oo (u (22)].
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where
t—v —1 — v 1-— — v
Fl(wr( 1)): 02 ¢T<Ql 1)+ 01 '(/J'r<02 1)
Vo — U] 02 — 01 Vo — V] 02 — 01 Vg — 11

_ 2(1/21—V1) [z_: ((11)19 - 1/1(Z2)79) + Z ((ll)g — 1/1([2)79)] . (36)
¥=1

¥=0

Remark 5. Use h =1, by =0, by = p, 1(¥) = (I1)y and l2(9) = (l2)y, in (32)

to obtain following new bound for discrete Shannon entropy:

12 1 P 1
2 [;:;)(b)ﬁlog (I2)w i 2(12)01% (12)19}

9
> 522__;1 log(o1) + ;2__%1 log(02)
p—1 P
- % [Z(lz)ﬁ log ((I2)9) + Z(lg)g log ((lz)ﬁ)}
=0 ¥=1

n—1
- Z (2r — Dl (vg —11)*
r=0

Wlﬁ Py — —i—WFl (o vy — 11 ., (37)
<[ (oo (250)) + e (o (525)

where F 1 <¢r <Ut2_",}1>) is defined in (36).

Remark 6. Use h =1, by =0, by = p, 11(9) = (I1)y and l2(¥) = (I2)y, in (33)
to obtain following new bound for discrete Kullback-Leibler divergence:

S (1)« S0 ()

=0

02 — 1 1—o01
< In + In — 2r — 2)(vg — v
s 0" (o1) po— (02) ( N (2 =

- [(Vl)lzr‘lH(wT(VV;—_th)) " (V2)12’”_1F1(¢r<:2_—yvll)>]’ (38)

where F 1 <¢r <Vt2_",}1>) is defined in (36).

A

Remark 7. Use h =1, by =0, by = p, 1(9) = (I1)y and l2(¥) = (I2)y, in (34)
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to obtain following new bound for discrete Jeffrey’s distance:

-1

s[5 - () - - (5]

9=0 9—=1 2
<2 1)) + ——2 (0 — 1) In(ez)
02 — 01 2 1
n—1
B 2 2r—1)! (2r—-2)! vy —t
22 K )z <m>2“>“(‘”’“(u2ul>)
(

where F 1 <¢r <Vt2_”l/11>) is defined in (36).

Remark 8. Use h =1, by =0, by = p, 1(¥) = (I1)y and l2(V) = (I2)y, in (35)

to obtain following new bound for discrete triangular discrimination:

1 p1 ((lQ)ﬁ — ll u 12 19 - ll )
- +
2 [Z (I2)y + ( ll ; (I2)y + (I1)w ]

=0

n—1

—1 (o1 -1 1-— —-1)?
< = (e —1) + o1 102 24 2r ) (vg — 1)
-0 o+l  o0-o0 92+1 =

1 Vg—f 1 f—Vl
* [(Vl + 1)2”1&(%(”2 - V1>> " (v2 + 1)2’”“F1 <¢T<V2 - Vl)ﬂ’

where [ 1 <¢r <V2 V1>) is defined in (36).

4.3 Bounds of divergence measures in ¢-calculus

Now, we estimate bounds of different divergence measures in g-calculus.
If one chooses set ¢, ¢ > 1 as time scale, in Theorem 3, then ¥ = ¢¥ € ¢™°
for some y € Ny. Further if b = ¢ and by = ¢”, then (18) takes the form:

1

L[S e (1) + z <§;5323>]

m= m=

QQ—]_ 1
P(01) +
02 — 01 Q—Q

[«W (m)m(wr@ 2_:1>> + ¢><2T>< 2) F 1 <¢< Z_”;l))}

<
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where
t—v —1 — v 1-— —v
F1<1/1r< 1) _ 02 ¢r(01 1>+ 01 ¢r<92 1>
Vo — 11 02 — 01 Vo — 11 02 — 01 by =

p—1 P
g+ f)(_yj_ ) [ g™t (l1(qm)—v1l2(qm))+z qm+1(l1(qm)—V1l2(qm)):|.

m=1 m=2

(40)

If one chooses set ¢™°, ¢ > 1 as time scale and b; = ¢ and by = ¢ in Theorem
5-8 then (22), (24), (26) and (28) provide following new bounds in g-discrete
calculus for differential entropy, Kullback-Leibler divergence, Jeffrey’s distance
and Triangular discrimination, respectively:

g—17224 1 P 1
m+1 m m—1 m
— q" " la(¢™) log —— + q" l2(q™) log ]
q+1L; 24" log oy 2 "™ s s

02— 1 1
> log(o1) +
01 02

[ () + e (0]

m=1 m=2
0 0 n—1
2 — — 01
< ——o1ln(o1) + 021n(02) — (2r — 2)!(vg — 1)
02— 01 02 — 01 —o

L (v G) e ()
Z; [ pil " (1(g™) — 12(¢™)) In <§;EZ:§)

m=1
+ i ¢" 7 ((@") ~ l2(q™)) In <l1(qm)>]

m=2 lz(qm)
02— 1 -0
< —1)In + —1)In
- Ql(@l ) In(o1) o 91(92 ) In(g2)

B[S B2 (o(25)

r=0
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(2r — 1)! (2r—2)! t—u
+ ( (VQ)QT + (VZ)ZT—l 1/}7‘ vy — 1 ’

g—1[% o (g™ — lg™)’ i (l2(g™ = 1 (q™))
{Z" NPTy *Z ™)+ 11(g™) ]

2

n—1

-1 -1 1- —1)?
02 (01 —1) n 01 (02 24 (2 (s — 1)
02—01 o01+1 02—01 02+1

1 vy — t 1 t—1,
8 [(Vl + 1)2”+1F1<wr<’/2 - V1>> " (v2 + 1)2T+1F1(¢T<’/2 - ’/1))}’

where [ <¢r <m>> is defined in (40).

IN

5 Zipf-Mandelbrot law

The Zipf-Mandelbrot law is a discrete probability distribution named after
the George Kingsley Zipf who proposed a simpler distribution known as Zipf’s
law, and the mathematician Mandelbrot, who later on generalized it. The ‘Zipf-
Mandelbrot law’ via probability mass function can be given as

1

B d)=—"—"F7"—— =1,... 41
f(sp, e d) oL, T heP (41)
where
P
p c,d = (42)
=1
p€N,c>0and d € RT are parameters.
The Zipf-Mandelbrot entropy defined as follows:
2(H:e,d) = zp: ") I3, ). (43)
y &y j{p,cd v C) p,c,d
Use (l2), = m in (37) to obtain
1—
2(H; e, d) > 22— log(01) + — log(02)
02 — 01 — 01
175 1 P 1
- = —————log ((I1),) + —————log ((I1),
2| 22 g oe (00 + X (e o (001

_ p_: (2r — )l — 1) x [(Vll)mfl <¢T<ul;2—:1>>
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()] o
where

t—u 02— 1 01— 1—01 02—V
Fl(wr( )) z/»( + Uy -
Vo — ] 02 — 01 Vo — V1 02 — 01 Vo — V1

p—1 p

1
a 2(V2—V1)[;((ZI)T (r+cd9{pcd +r21 () C(rto)y pr,cd)]

Remark 9. Inequality (44) provides relationship between Mandelbrot entropy (43)
and discrete Shannon entropy.

— 1 _ 1 : :
Use (ll)T = m and (ZZ)T == m mn (38) to obtain
dy — In(r +¢) In(r + ¢2)
Z(H;c1,d i S 24
( ;C1, 1) 2%p7617d1 |: — (,r, +Cl)d1 + g (T+ Cl)dl
_ i n—1
+In(Hp ep.a,) = 0 — o012 In(o1) — o — o1 = 0y In(g2) + Z (2r —2)!(vy — 1)
r=0

. [(Vl)lzr‘lﬂ(wr(:;—_;l)) " (V2)12”_1F1(¢r<:2_—VV11)>]’ 45)
where

t—v —1 — v 1-— — v
Fl(wr( 1 >) _ 02 ¢T<Ql 1) T 01 ¢T<Q2 1)
Vo — 1] 02 — 01 Vo — U] 02 — 01 Vo — V1

1 i 1
s S
22 — 1) [ = (r+ )BT, (r 4 0)93C 0

1 141
+ = .
; ((7" +e) i Hp ey a (Pt C)df}cp,cyd)]

Remark 10. Inequality (45) provides relationship between Mandelbrot entropy
(43) and discrete Kullback-Leibler divergence:

_ 1 _ 1 :
Remark 11. MOTCO’U@’F, use (ll)r = m and (12)1‘ = m m
(39) to get relationship between Mandelbrot entropy (43) and discrete Jeffrey’s

distance.

6 Conclusion

In this work, Lidstone polynomial is utilized to prove some inequalities con-
taining divergence measures for diamond integrals. Bounds of different divergence
measures are obtained by utilizing particular convex functions. The obtained new
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findings are the generalisations of the results proved in [3]. It is possible to study
inequalities involving different divergence measures via Abel-Gontscharoff inter-
polation and Montgomery identity on time scales. Which may be included in
future task.
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