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Abstract

In this paper, we consider the sequence of positive linear operators Lα,β
n,r

depending on three non-negative parameters; an integer r and two reals α
and β such that α ≤ β, constructed by Stancu. We consider a Kantorovich-
type generalization of Stancu’s operators and investigate their convergence
properties in Lp-norm. Finally, we observe variation detracting property
for Stancu operator and its Kantorovich modification. Moreover, we show
that the Stancu operator satisfies an inequality that we call as variation p-
detracting, when the attached function is of bounded p-variation in the sense
of Riesz.
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1 Introduction

In [17], Stancu constructed the following Bernstein type positive linear oper-
ators

Lα,β
n,r (f ;x) :=

n∑
k=0

wn,k,r(x)f

(
k + α

n+ β

)
, x ∈ [0, 1], (1)

for f ∈ C[0, 1], where r is a non-negative integer parameter, n ∈ N such that
n > 2r, α and β are real parameters satisfying 0 ≤ α ≤ β and

wn,k,r(x) :=


(1− x) pn−r,k (x) ; 0 ≤ k < r
(1− x) pn−r,k (x) + xpn−r,k−r (x) ; r ≤ k ≤ n− r
xpn−r,k−r (x) ; n− r < k ≤ n

, (2)
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in which pn,k denote the Bernstein’s fundamental polynomials given by

pn,k(x) =

{ (
n
k

)
xk(1− x)n−k; 0 ≤ k ≤ n

0; k < 0 or k > n
, x ∈ [0, 1], n ∈ N (3)

It is clear that L0,0
n,0 = L0,0

n,1 = Bn, where Bn denote the classical Bernstein

operators [4]. Moreover, Lα,β
n,0 = Lα,β

n,1 = Bα,β
n , where Bα,β

n are the Bernstein-
Stancu operators [16]. For some interesting works related to Bernstein-Stancu
operators, we refer to [15], [8], [13] and references therein. As Stancu noticed
in his paper [17], It is pertinent to mention here that the operators L0,0

n,2 were

constructed by Brass [7]. Gonska [10] referred to L0,0
n,r as Brass-Stancu operators.

Note that by the definition of fundamental functions (2), Stancu’s operators
(1) can be expressed as

Lα,β
n,r (f ;x) :=

n−r∑
k=0

pn−r,k (x)

[
(1− x) f

(
k + α

n+ β

)
+ xf

(
k + r + α

n+ β

)]
(4)

and satisfy

Lα,β
n,r (f ; 0) = f

(
α

n+ β

)
and Lα,β

n,r (f ; 1) = f

(
n+ α

n+ β

)
.

It is well-known that since Bernstein polynomial are not suitable for approx-
imation of discontinuous functions (see [12, Section 1.9]), Kantorovich [11] re-
placed the point evaluation functionals with the integral means over small intervals
around the knots in the statement of the Bernstein polynomials and constructed
what are called as Kantorovich polynomials Kn : L1 [0, 1] −→ C [0, 1] given by

Kn (f ;x) =
n∑

k=0

pn,k (x) (n+ 1)

k+1
n+1∫
k

n+1

f (t) dt, x ∈ [0, 1], n ∈ N. (5)

Lorentz [12] proved Lp-approximation of functions f ∈ Lp [0, 1] by Kantorovich
polynomials, where Lp [0, 1] , 1 ≤ p < ∞, denotes the space of real-valued mea-
surable and pth power Lebesgue integrable over [0, 1] with norm

∥f∥p =


1∫

0

|f (x)|p dx


1/p

.

Let us denote the class of all absolutely continuous functions on [a, b] by
AC[a, b]. As is known, every absolutely continuous function is an indefinite in-
tegral of its own derivative. Hence, for f ∈ AC[0, 1], which means that f (x) =

f (0) +
x∫
0

f ′ (t) dt with f ′ ∈ L1[0, 1], Bernstein and Kantorovich operators satisfy

(Bn+1 (f ;x))
′ = Kn

(
f ′;x

)
(6)
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(see, e.g., [3]).

In [2], Bărbosu modified Bernstein-Stancu operators Bα,β
n in the sense of Kan-

torovich as

Kα,β
n (f ;x) =

n∑
k=0

pn,k (x) (n+ β + 1)

k+α+1
n+β+1∫
k+α

n+β+1

f (t) dt, x ∈ [0, 1], n ∈ N, (7)

for f ∈ L1 [0, 1], where 0 ≤ α ≤ β. Here, the author obtained uniform approx-

imation of f ∈ C[0, 1] by the sequence of the operators Kα,β
n (f) on [0, 1] and

gave some estimates for the rate of convergence. Çetin et al. [9] constructed and
studied the following operators what are called as Stancu-Kantorovich operators
by the authors:

Kα,β
n,r (f ;x) =

n∑
k=0

wn,k,r(x) (n+ β + 1)

k+α+1
n+β+1∫
k+α

n+β+1

f (t) dt (8)

for f ∈ L1 [0, 1] , x ∈ [0, 1] and n ∈ N. Let ev (t) := tv, t ∈ [0, 1], v = 0, 1, 2.

Below, we reproduce the first three moments of Kα,β
n,r from their work:

Kα,β
n,r (e0;x) = 1,

Kα,β
n,r (e1;x) =

nx

n+ β + 1
+

2α+ 1

2 (n+ β + 1)
,

Kα,β
n,r (e2;x) =

n2

(n+ β + 1)2

[
x2 +

(
1 +

r (r − 1)

n

)
x (1− x)

n

]
+

n (2α+ 1)x

(n+ β + 1)2
+

3α2 + 2α+ 1

3 (n+ β + 1)
.

The case for K0,0
n,r was studied in [6].

Unlike the relation between Bernstein and Kantorovich polynomials given by
(6), it doesn’t hold that (

Lα,β
n+1,r (f ;x)

)′
= Kα,β

n,r

(
f ′;x

)
for Stancu operators and their Kantorovich variant Kα,β

n,r for f ∈ AC [0, 1]. How-
ever, for our purposes, in this study we consider an alternative Kantorovich-type
generalization of the Stancu operators.

The paper is organized as follows:
In section 2; we consider a Kantorovich-type generalizationKα,β

n,r of the Stancu
operators, see (9), and observe Lp-approximation properties of these operators.

In section 3, We explore variation detracting property of the Stancu operator
Lα,β
n,r and for the Stancu-Kantorovich operator Kα,β

n,r given by (8). Moreover, by
using Riesz’ definition of function of bounded p-variation, we obtain an estimate,
what we call as p-variation detracting property, for the Stancu operator.
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2 Kantorovich-type generalization of Stancu opera-
tors

As in the case of Kantorovich operators [12, p.30], by taking into account of

the indefinite integral F (x) =
x∫
0

f (t) dt of f ∈ L1[0, 1] in (4) and differentiating

Lα,β
n+1,r (F ;x) with respect to x, we get the following operators(

Lα,β
n+1,r (F ;x)

)′
=

n−r∑
k=0

pn−r,k (x) (n+ 1− r)

(1− x)

k+α+1
n+β+1∫
k+α

n+β+1

f (t) dt+ x

k+r+α+1
n+β+1∫

k+r+α
n+β+1

f (t) dt



+

n+1−r∑
k=0

pn+1−r,k (x)

k+r+α
n+β+1∫
k+α

n+β+1

f (t) dt

= : Kα,β
n,r (f ;x) (9)

for x ∈ [0, 1], 0 ≤ α ≤ β, r ∈ N ∪ {0} and n ∈ N such that n > 2r. The
operators Kα,β

n,r (f ;x) can be regarded as a Kantorovich-type generalization of the

Stancu operators, which involve the Stancu-Kantorovich operators Kα,β
n,r given by

(8). Indeed, by (2), one has

Kα,β
n,r (f ;x) =

n+ 1− r

n+ β + 1
Kα,β

n,r (f ;x) +

n+1−r∑
k=0

pn+1−r,k (x)

k+r+α
n+β+1∫
k+α

n+β+1

f (t) dt. (10)

Thus, for f ∈ AC[0, 1] it holds that(
Lα,β
n+1,r (f ;x)

)′
= Kα,β

n,r

(
f ′;x

)
(11)

for the Stancu operators (4) and their Kantorovich-type generalization (9).
The operators Kα,β

n,r are positive and linear and their construction is useful for
the approximation of derivatives by the Stancu operators as well as for investi-
gation of their variation detracting property. In particular, for the special case
K0,0

n,r; we refer to [18] for approximation of derivatives and to [6] for variation
detracting results, respectively.

It is easy to see that

Kα,β
n,0 = Kα,β

n,1 = Kα,β
n,0 = Kα,β

n,1 = Kα,β
n ,

where Kα,β
n are the Kantorovich modification of the Bernstein-Stancu operators

given by [2]. It is obvious that when r = 0 the second sum in (9) disappears and
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K0,0
n,0 = K0,0

n,1 = Kn, where Kn are the well-known Kantorovich operators (5). Note

that since in the cases r = 0 and r = 1; Lα,β
n,r reduces to the Bernstein-Stancu

operator Bα,β
n [16], and similarly, Kα,β

n,r reduces to Kα,β
n given by (7), we can take

r ∈ N in the sequel without lose of generality.

2.1 Lp-Approximation properties

In this part, as in Kantorovich operators Kn (see [1]) we show that for every
f ∈ Lp [0, 1], each Kα,β

n,r is a bounded operator, mapping Lp [0, 1] into itself. Here,

we follow the similar arguments used in [6] for K0,0
n,r. But, we obtain a finer upper

bound for the norm of the operator Kα,β
n,r .

Theorem 1. If f ∈ Lp [0, 1] , 1 ≤ p < ∞, 0 ≤ α ≤ β, r ∈ N is a fixed integer
and n ∈ N is such that n > 2r, then we have∥∥∥Kα,β

n,r

∥∥∥ ≤ 1,

where
∥∥Kα,β

n,r

∥∥ denotes the operator norm of Kα,β
n,r .

Proof. It is clear that Kα,β
n,r (f ;x), given by (9), can be written as

Kα,β
n,r (f ;x)

=

(
1− r

n+ 1

) n−r∑
k=0

pn−r,k (x) (n+ 1)

(1− x)

k+α+1
n+β+1∫
k+α

n+β+1

f (t) dt+ x

k+r+1+α
n+β+1∫

k+r+α
n+β+1

f (t) dt



+
r

n+ 1

n+1−r∑
k=0

pn+1−r,k (x)

(
n+ 1

r

) k+r+α
n+β+1∫
k+α

n+β+1

f (t) dt.

Here, noting that φ (t) = |t|p , 1 ≤ p < ∞, t ∈ [0, 1], is convex, applying
Jensen’s inequality, since∣∣∣∣∣∣

x2∫
x1

f (t) dt

∣∣∣∣∣∣
p

≤ (x2 − x1)
p−1

x2∫
x1

|f (t)|p dt,
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where x1, x2 ∈ [0, 1], we find∣∣∣Kα,β
n,r (f ;x)

∣∣∣p
≤

(
1− r

n+ 1

) n−r∑
k=0

pn−r,k (x) (n+ 1)p

×

∣∣∣∣∣∣∣∣(1− x)

k+α+1
n+β+1∫
k+α

n+β+1

f (t) dt+ x

k+r+1+α
n+β+1∫

k+r+α
n+β+1

f (t) dt

∣∣∣∣∣∣∣∣
p

+
r

n+ 1

n+1−r∑
k=0

pn+1−r,k (x)

(
n+ 1

r

)p

∣∣∣∣∣∣∣∣
k+r+α
n+β+1∫
k+α

n+β+1

f (t) dt

∣∣∣∣∣∣∣∣
p

≤ (n+ 1− r)
n−r∑
k=0

pn−r,k (x)

(
n+ 1

n+ β + 1

)p−1

×

(1− x)

k+α+1
n+β+1∫
k+α

n+β+1

|f (t)|p dt+ x

k+r+1+α
n+β+1∫

k+r+α
n+β+1

|f (t)|p dt



+

n+1−r∑
k=0

pn+1−r,k (x)

(
n+ 1

n+ β + 1

)p−1

k+r+α
n+β+1∫
k+α

n+β+1

|f (t)|p dt.

Since n+1
n+β+1 ≤ 1, it readily follows that

(
n+1

n+β+1

)p
≤ n+1

n+β+1 for p ≥ 1. There-

fore, we can take
(

n+1
n+β+1

)p−1
≤ 1 in the last formula and obtain that∣∣∣Kα,β

n,r (f ;x)
∣∣∣p

≤ (n+ 1− r)

n−r∑
k=0

pn−r,k (x)

(1− x)

k+α+1
n+β+1∫
k+α

n+β+1

|f (t)|p dt+ x

k+r+1+α
n+β+1∫

k+r+α
n+β+1

|f (t)|p dt



+
n+1−r∑
k=0

pn+1−r,k (x)

k+r+α
n+β+1∫
k+α

n+β+1

|f (t)|p dt. (12)
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Integrating (12) over [0, 1], using the well-known beta integral, we get

1∫
0

∣∣∣Kα,β
n,r (f ;x)

∣∣∣p dx
≤ 1

n− r + 2

n−r∑
k=0

(n− r − k + 1)

k+α+1
n+β+1∫
k+α

n+β+1

|f (t)|p dt+ (k + 1)

k+r+1+α
n+β+1∫

k+r+α
n+β+1

|f (t)|p dt



+
1

n− r + 2

n+1−r∑
k=0

k+r+α
n+β+1∫
k+α

n+β+1

|f (t)|p dt

= : I1 + I2. (13)

Since n− r > r, for I1, we have

I1 =
1

n− r + 2

(
r−1∑
k=0

+

n−r∑
k=r

)
(n− r − k + 1)

k+α+1
n+β+1∫
k+α

n+β+1

|f (t)|p dt

+
1

n− r + 2

(
n−2r∑
k=0

+
n−r∑

k=n−2r+1

)
(k + 1)

k+r+1+α
n+β+1∫

k+r+α
n+β+1

|f (t)|p dt.

Replacing k with k − r in the last two sums in I1, we find

I1 =
1

n− r + 2

[
r−1∑
k=0

(n− r − k + 1) +

n−r∑
k=r

(n− 2r + 2) +

n∑
k=n−r+1

(k − r + 1)

]

×

k+α+1
n+β+1∫
k+α

n+β+1

|f (t)|p dt. (14)
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On the other hand, for I2, one has

I2 =
1

n− r + 2

n+1−r∑
k=0

k+r+α
n+β+1∫
k+α

n+β+1

|f (t)|p dt

=
1

n− r + 2

n+1−r∑
k=0


k+α+1
n+β+1∫
k+α

n+β+1

+

k+α+2
n+β+1∫

k+α+1
n+β+1

+ · · ·+

k+α+r
n+β+1∫

k+α+r−1
n+β+1

 |f (t)|p dt

=
1

n− r + 2

n+1−r∑
k=0

r−1∑
i=0

k+α+1+i
n+β+1∫

k+α+i
n+β+1

|f (t)|p dt

=
1

n− r + 2

r−1∑
i=0

n+1−r∑
k=0

k+α+1+i
n+β+1∫

k+α+i
n+β+1

|f (t)|p dt. (15)

Now, in the last line of (15); replacing k with k − i and changing the order of
the summations, it readily follows that

I2 =
1

n− r + 2

r−1∑
i=0

n−r+1+i∑
k=i

k+α+1
n+β+1∫
k+α

n+β+1

|f (t)|p dt

=
1

n− r + 2

(
r−1∑
k=0

k∑
i=0

+

n−r∑
k=r

r−1∑
i=0

+

n∑
k=n−r+1

r−1∑
i=k−n+r−1

) k+α+1
n+β+1∫
k+α

n+β+1

|f (t)|p dt

=
1

n− r + 2

[
r−1∑
k=0

(k + 1) +
n−r∑
k=r

r +
n∑

k=n−r+1

(n− k + 1)

]

×

k+α+1
n+β+1∫
k+α

n+β+1

|f (t)|p dt. (16)
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Substituting (14) and (16) into (13), we arrive at

1∫
0

∣∣∣Kα,β
n,r (f ;x)

∣∣∣p dx ≤

(
r−1∑
k=0

+

n−r∑
k=r

+

n∑
k=n−r+1

) k+α+1
n+β+1∫
k+α

n+β+1

|f (t)|p dt

=
n∑

k=0

k+α+1
n+β+1∫
k+α

n+β+1

|f (t)|p dt

=

n+α+1
n+β+1∫
α

n+β+1

|f (t)|p dt ≤
1∫

0

|f (t)|p dt.

Consequently, passing to Lp-norm, we obtain
∥∥Kα,β

n,r (f)
∥∥
p
≤ ∥f∥p for every

f ∈ Lp [0, 1], which completes the proof.

Remark 1. Taking into account of (8), the first three moments of the operators
Kα,β

n,r can be obtained from (10) by direct substitution. Using density of C[0, 1] in

Lp[0, 1], and the well-known Lusin theorem, we obtain limn→∞
∥∥Kα,β

n,r (f)− f
∥∥
p
=

0 for f ∈ Lp [0, 1] and for a fixed r ∈ N.

3 Variation detracting property

Let, as usual, V[0,1][f ] denote the total variation of the function of f . Also,
let TV [0, 1] denote the class of all functions of bounded variation on [0, 1] with
seminorm ∥f∥TV [0,1] := V[0,1][f ]. As is well-known, Lorentz [12] proved that each
Bernstein operator satisfies the inequality

V[0,1] [Bn (f)] ≤ V[0,1] [f ] for f ∈ TV [0, 1],

which is called as variation detracting property. Öksüzer et al. [13] obtained that

Bernstein-Stancu operator Bα,β
n = Lα,β

n,0 = Lα,β
n,1 is also variation detracting.

In this section, we show that each Stancu operator Lα,β
n,r and its Kantorovich

modification Kα,β
n,r given by (8) are variation detracting as well.

Theorem 2. If f ∈ TV [0, 1], r ∈ N is fixed and 0 ≤ α ≤ β, then

V[0,1]

[
Lα,β
n,r (f)

]
≤ V[0,1] [f ]

for every n ∈ N such that n > 2r.

Proof. Suppose that r ∈ N is fixed and f ∈ TV [0, 1]. Then, since Lα,β
n,r (f ;x) is

continuous on [0, 1] and
(
Lα,β
n,r (f ;x)

)′
is bounded on (0, 1), we have Lα,β

n,r (f ;x) is
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absolutely continuous on [0, 1]. Differentiating (4), we get(
Lα,β
n,r (f ;x)

)′
= (n− r)

n−1−r∑
k=0

pn−1−r,k (x)

{
(1− x)

[
f

(
k + 1 + α

n+ β

)
− f

(
k + α

n+ β

)]
+ x

[
f

(
k + r + 1 + α

n+ β

)
− f

(
k + r + α

n+ β

)]}
+

n−r∑
k=0

pn−r,k (x)

[
f

(
k + r + α

n+ β

)
− f

(
k + α

n+ β

)]
. (17)

Since the total variation of an absolutely continuous function is the integral
of the absolute value of its derivative, one has

V[0,1]

[
Lα,β
n,r (f)

]
=

1∫
0

∣∣∣∣(Lα,β
n,r (f ;x)

)′∣∣∣∣ dx.
Making use of (17) in the last formula, using beta integral, we find

V[0,1]

[
Lα,β
n,r (f)

]
≤ 1

n− r + 1

n−1−r∑
k=0

[
(n− r − k)

∣∣∣∣f (k + 1 + α

n+ β

)
− f

(
k + α

n+ β

)∣∣∣∣
+(k + 1)

∣∣∣∣f (k + r + 1 + α

n+ β

)
− f

(
k + r + α

n+ β

)∣∣∣∣]
+

1

n− r + 1

n−r∑
k=0

r−1∑
i=0

∣∣∣∣f (k + α+ i+ 1

n+ β

)
− f

(
k + α+ i

n+ β

)∣∣∣∣ . (18)

Proceeding as in the evaluation of the summations in (14) and (16) in the
proof of Theorem 1, if we decompose the first and second sums in (18) into three
sums, we arrive at

V[0,1]

[
Lα,β
n,r (f)

]
≤

n−1∑
k=0

∣∣∣∣f (k + 1 + α

n+ β

)
− f

(
k + α

n+ β

)∣∣∣∣
≤

∣∣∣∣f ( α

n+ β

)
− f (0)

∣∣∣∣+ n−1∑
k=0

∣∣∣∣f (k + 1 + α

n+ β

)
− f

(
k + α

n+ β

)∣∣∣∣
+

∣∣∣∣f (1)− f

(
n+ α

n+ β

)∣∣∣∣
≤ V[0,1] [f ] (19)

for 0 ≤ α ≤ β. According to the special choices of α and β, we encounter with
the following cases for the particular partition of [0, 1] in (19):
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(i) For the case α = β = 0, the terms
∣∣∣f ( α

n+β

)
− f (0)

∣∣∣ and ∣∣∣f (1)− f
(
n+α
n+β

)∣∣∣
disappear (see [6]).

(ii) In the case 0 = α < β, the term
∣∣∣f ( α

n+β

)
− f (0)

∣∣∣ disappears.
(iii) In the case α > 0 and α = β, the term

∣∣∣f (1)− f
(
n+α
n+β

)∣∣∣ disappears.
This completes the proof.

Next result shows that each Stancu-Kantorovich operator Kα,β
n,r given by (8)

is also variation detracting. Note that the same result for K0,0
n,r was given in [5].

Theorem 3. If f ∈ TV [0, 1], r ∈ N is fixed and 0 ≤ α ≤ β, then

V[0,1]

[
Kα,β

n,r (f)
]
≤ V[0,1] [f ] (20)

for every n ∈ N such that n > 2r.

Proof. Suppose that r ∈ N be fixed and f ∈ TV [0, 1]. Then, we have Kα,β
n,r (f) ∈

AC[0, 1]. As in [3, Proposition 3.3], we set

Fα,β
n,k := (n+ β + 1)

k+1+α
n+β+1∫
k+α

n+β+1

f (t) dt =

1∫
0

f

(
k + α+ u

n+ β + 1

)
du, 0 ≤ k ≤ n.

By the definition of Stancu’s fundamental polynomials (2), Kα,β
n,r (f ;x) can be

expressed as

Kα,β
n,r (f ;x) =

n−r∑
k=0

pn−r,k (x)
[
(1− x)Fα,β

n,k + xFα,β
n,k+r

]
.

Therefore, proceeding as in (17), we have(
Kα,β

n,r (f ;x)
)′

= (n− r)
n−r−1∑
k=0

pn−r−1,k (x)
{
(1− x)

[
Fα,β
n,k+1 − Fα,β

n,k

]
+ x

[
Fα,β
n,k+r+1 − Fα,β

n,k+r

]}
+

n−r∑
k=0

pn−r,k (x)
[
Fα,β
n,k+r − Fα,β

n,k

]
. (21)
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Reasoning as in the proof of Theorem 2, from (21), we find

V[0,1]

[
Kα,β

n,r (f)
]

=

1∫
0

∣∣∣∣(Kα,β
n,r (f ;x)

)′∣∣∣∣ dx
≤ 1

n− r + 1

n−r−1∑
k=0

{
(n− r − k)

∣∣∣Fα,β
n,k+1 − Fα,β

n,k

∣∣∣+ (k + 1)
∣∣∣Fα,β

n,k+r+1 − Fα,β
n,k+r

∣∣∣}
+

1

n− r + 1

n−r∑
k=0

r−1∑
i=0

∣∣∣Fα,β
n,k+1+i − Fα,β

n,k+i

∣∣∣ (22)

Now, again, proceeding as in the formulas for (14) and (16) in the proof of
Theorem 1, from (22), one has

V[0,1]

[
Kα,β

n,r (f)
]
≤

n−1∑
k=0

∣∣∣Fα,β
n,k+1 − Fα,β

n,k

∣∣∣ .
Now, it remains only to show that

n−1∑
k=0

∣∣∣Fα,β
n,k+1 − Fα,β

n,k

∣∣∣ ≤ V[0,1] [f ], which is

obtained by using similar argument to the proof of in [3, Proposition 3.3]. Indeed,

setting uα,β−1 := 0, uα,βk := k+α+u
n+β+1 , 0 ≤ k ≤ n, and uα,βn+1 := 1, and noting that{

uα,βk

}n+1

k=−1
is a particular partition of [0, 1], it readily follows that

n−1∑
k=0

∣∣∣Fα,β
n,k+1 − Fα,β

n,k

∣∣∣ ≤ 1∫
0

n−1∑
k=0

∣∣∣f (uα,βk+1

)
− f

(
uα,βk

)∣∣∣ du
≤

1∫
0

n∑
k=−1

∣∣∣f (uα,βk+1

)
− f

(
uα,βk

)∣∣∣ du
≤V[0,1] [f ] ,

which verifies (20), and completes the proof.

4 p-Variation detracting

In [14], Riesz introduced the concept of bounded p-variation (1 ≤ p < ∞) for
a function f : [a, b] → R as

V p
[a,b][f ] := sup

{
n−1∑
k=0

|f (xk+1)− f (xk)|p

(xk+1 − xk)
p−1 : {xk}nk=0 ∈ P[a, b]

}
< ∞,
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where P[a, b] denotes the set of all possible partitions {xk}nk=0 of [a, b] such that
a = x0 < x1 < · · · < xn = b. Let us denote the class of functions of bounded
p-variation on [a, b] by TVp[a, b]. In the case 1 < p < ∞, Riesz proved that

f ∈ TVp[a, b] ⇐⇒ f ∈ AC[a, b] and f ′ ∈ Lp[a, b] (23)

and that
V p
[a,b][f ] =

∥∥f ′∥∥p
p
. (24)

In this part, we show that the Stancu operator is p-variation detracting,
namely we have

Theorem 4. If f ∈ TVp[0, 1], 1 < p < ∞, r ∈ N is fixed and 0 ≤ α ≤ β, then

V p
[0,1]

[
Lα,β
n,r (f)

]
≤ V p

[0,1][f ]

for every n ∈ N such that n > 2r.

Proof. Suppose that f ∈ TVp[0, 1]. Then, we have f ∈ AC[a, b] and f ′ ∈
Lp[a, b] by (23). Hence, we immediately have Lα,β

n,r (f ;x) ∈ AC[0, 1] and(
Lα,β
n,r (f ;x)

)′
= Kα,β

n−1,r

(
f ′;x

)
∈ Lp[0, 1]

by (11) and Theorem 1. Thus, from (23), we have Lα,β
n,r (f) ∈ TVp[0, 1]. In view

of (17) and (24), we get

V p
[0,1]

[
Lα,β
n,r (f)

]
=

1∫
0

∣∣∣∣(Lα,β
n,r (f ;x)

)′∣∣∣∣p dx. (25)

Now, as in Theorem 1, from Jensen’s inequality, we get∣∣∣∣(Lα,β
n,r (f ;x)

)′∣∣∣∣p
≤

(
1− r

n

) n−1−r∑
k=0

pn−1−r,k (x)n
p

×
∣∣∣∣(1− x)

[
f

(
k + 1 + α

n+ β

)
− f

(
k + α

n+ β

)]
+x

[
f

(
k + r + 1 + α

n+ β

)
− f

(
k + r + α

n+ β

)]∣∣∣∣p
+
r

n

n−r∑
k=0

pn−r,k (x)n
p

∣∣∣∣∣
r−1∑
i=0

1

r

[
f

(
k + i+ 1 + α

n+ β

)
− f

(
k + i+ α

n+ β

)]∣∣∣∣∣
p

≤ np−1

{
(n− r)

n−1−r∑
k=0

pn−1−r,k (x)

[
(1− x)

∣∣∣∣f (k + 1 + α

n+ β

)
− f

(
k + α

n+ β

)∣∣∣∣p
+x

∣∣∣∣f (k + r + 1 + α

n+ β

)
− f

(
k + r + α

n+ β

)∣∣∣∣p]
+

r−1∑
i=0

n−r∑
k=0

pn−r,k (x)

∣∣∣∣f (k + i+ 1 + α

n+ β

)
− f

(
k + i+ α

n+ β

)∣∣∣∣p
}
, (26)
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where, by means of the fact that
r−1∑
i=0

1
r = 1, we have used Jensen’s inequality

for the last sum. Now, taking into account the fact that np−1 ≤ (n+ β)p−1 for
p > 1 and β ≥ 0, and integrating (26) over [0, 1], using beta integral, from (25)
we reach to

V p
[0,1]

[
Lα,β
n,r (f)

]
≤ (n+ β)p−1

n− r + 1

{
n−1−r∑
k=0

[
(n− r − k)

∣∣∣∣f (k + 1 + α

n+ β

)
− f

(
k + α

n+ β

)∣∣∣∣p
+(k + 1)

∣∣∣∣f (k + r + 1 + α

n+ β

)
− f

(
k + r + α

n+ β

)∣∣∣∣p]
+

r−1∑
i=0

n−r∑
k=0

∣∣∣∣f (k + i+ 1 + α

n+ β

)
− f

(
k + i+ α

n+ β

)∣∣∣∣p
}
.

Again, reasoning exactly as in the evaluation for the summations in (14) and
(16) in Theorem 1, we conclude

V p
[0,1]

[
Lα,β
n,r (f)

]
≤

≤
n−1∑
k=0

(n+ β)p−1

∣∣∣∣f (k + 1 + α

n+ β

)
− f

(
k + α

n+ β

)∣∣∣∣p
≤ (n+ β)p−1

{∣∣∣∣f ( α

n+ β

)
− f (0)

∣∣∣∣p α1−p

+

n−1∑
k=0

∣∣∣∣f (k + 1 + α

n+ β

)
− f

(
k + α

n+ β

)∣∣∣∣p + ∣∣∣∣f (1)− f

(
n+ α

n+ β

)∣∣∣∣p (β − α)1−p

}
≤ V p

[0,1] [f ] ,

which completes the proof.

We note here that in the submission version of the paper, the formula (26)
was evaluated by multiplying-dividing the term (n+β) p. The anonymous referee
provided a supplementary remark in his/her report that we adopted and used in
the current version, which made the formula simpler.
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calcul de probabilités, Commun. Soc. Math. Kharkov 13 (1912-1913), 1–2.
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