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PROJECTILE MOTION UNDER QUADRATIC AIR
RESISTENCE VIA MULTISTEP-DIFFERENTIAL

TRANSFORMATION METHOD

Jihad ASAD ∗,1, Afnan BABA’A 2 and Rania WANNAN 3

Abstract

The projectile motion system was examined in this study when air resis-
tance was present (we only looked at the situation of quadratic air resistance).
First, we used Newtonian mechanics to derive the equation governing the
system. Second, the study focused on the projectile motion’s characteristics,
namely its maximum height and maximum horizontal range. Additionally,
we used simulation plots to apply the Differential Transform Method (DTM)
and the Multistep Differential Transform Method (Ms-DTM) to solve the
equations found. This allowed us to discuss the projectile’s trajectory. We
computed the flying time and the maximum range by comparing our findings
with experimental data from published research. In the end, the absolute er-
rors were computed to find the optimal numerical approach to solve this
problem.
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1 Introduction

Projectile motion has numerous real-world uses, including conflicts and sports
(particularly baseball, tennis, javelin throw, and many others) [20]. The equa-
tions governing projectile motion systems can be set up using either Lagrangian
or Newtonian mechanics. The effect of air resistance is typically ignored in under-
graduate texts, although it must be included in order to produce more accurate

1∗ Corresponding author, Department of Physics, Faculty of Applied Sciences, Palestine
Technical University-Kadoorie , e-mail: j.asad@ptuk.edu.ps

2Department of Mathematics, Faculty of Applied Sciences, Palestine Technical University-
Kadoorie , e-mail: a.f.babaa@student.ptuk.edu.ps

3Department of Mathematics, Faculty of Applied Sciences, Palestine Technical University-
Kadoorie , e-mail: r.wannan@ptuk.edu.ps



40 Afnan Baba’a, Jihad Asad and Rania Wannan

results. We look for numerical methods to solve the resulting equations because
they cannot be solved analytically in the case of air resistance.

Galileo was the first scientist to study projectile motion, and he held that grav-
ity was the only factor that could effectively affect a projectile [7]. Unlike Galileo,
Harriot [12, 19] made an effort to create models that take into consideration how
air resistance affects projectiles. Drawing from the firsthand knowledge of rescuers
and artillerymen during his day, Harriot postulated that the asymmetry resulting
from the impact of air was a common feature of all feasible trajectories.

Furthermore, by using Newtonian mechanics, differential equations that de-
scribe the projectiles’ motion—with or without air resistance—can be obtained.
These equations can be solved precisely in the situation of no air resistance to de-
termine certain projectile characteristics including time of flight, maximum height,
and maximum horizontal range. However, adding air resistance leads to more
complex equations, particularly for quadratic air resistance, and calculating them
analytically is no longer as simple as it once was. After translating the equations to
polar coordinates as in the study [21], some researchers choose to solve these equa-
tions numerically, for example, using the Lambert W function. A more thorough
analysis of projectile motion with squared air resistance was later provided [22],
with a particular emphasis on low-angle trajectory approximation. Apart from
the aforementioned references, there exist several works that have been conducted
utilizing diverse approaches; for instance, one may consult [1, 3–5, 8, 10, 11, 14, 18]
and the references included therein.

In this work, we focus our research on quadratic air resistance and its effect on
projectile motion. We have organized the remainder of the paper as follows: Part
2 presents a mathematical description of projectile motion under quadratic air
resistance. In Part 3, the system describing the motion of the bullet is solved by
the differential transform method (DTM) and the multi-step differential transform
method (Ms-DTM). Some numerical results with discussions are presented in Sect.
4. Finally, the paper was concluded with the conclusion in Section 5.

2 Mathematical modeling of the projectile motion
under the influence of air resistance

Consider a projectile of mass (m) projected in space (in two dimensions); one
along the horizontal axis (x−axis) and the other along the vertical axis (y−axis).
Assuming the launching angle with horizontal range is θ. In addition, we choose
the projection position to be (xo = 0, yo)and initial velocity be v⃗o at a timet = 0.
Thus, we can write:

v⃗o = vxoî+ vyoĵ. (1)

where vxo = vo cos θ, and vyo = vo sin θ
This motion ends wheny = yo witht ̸= 0, this means that projectile returns

back to the same level of projection. Note here that the angle of projection is in
the first quartile.
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It was proven in many texts that the air resistance
−→
F (−→v ) is not a simple

function but in general it takes the form [2]

−→
F (−→v ) = −B1

−→v −B2
−→v |−→v | . (2)

in which B1, and B2are constants whose values depend on the size and the shape
of the projectile. One can see from (2) that air resistance either be a linear or
quadratic or more complicated a combination of them. Dealing with linear term
is a trivial problem, so we will focus our attention on the case where air resistance
is quadratic one.

For spherical objects projected in air the values forB1, and B2are related to
the diameter (D in meter) of the spherical objects projected and they are given
as [7]

B1 = 1.55× 10−4D;

B2 = 0.22D2. (3)

Below, we will discuss some properties of the projectile motion in the presence
of quadratic air resistance.

2.1 Quadratic air resistance

Assuming air resistance is quadratic, and then applying Newton’s second law
leads to:

ax = −Cv2x. (4)

ay = −g − Cv2y . (5)

Where C = B2
m .

As a result, the horizontal velocity and position at any time respectively read:

vx(t) =
vx0

Cvx0t+ 1
. (6)

x(t) =
1

C
Ln |Cvx0t+ 1| . (7)

On the other hand, the vertical velocity and position at any time respectively
read:

vy(t) =

√
g

C
tan

(
−
√

Cgt+ tan−1

√
C

g
vyo

)
. (8)

y(t)=
1

C

[
Ln

∣∣∣∣∣cos
(
−
√

Cgt+ tan−1

√
C

g
vy0

)∣∣∣∣∣−Ln

∣∣∣∣∣cos
(
tan−1

√
C

g
vy0

)
+yo

∣∣∣∣∣
]
.

(9)
Furthermore, time needed to reach maximum height (i.e, whenvy = 0) is:

t =
1√
Cg

tan−1

√
C

g
vy0 . (10)
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Also, the maximum height (ymax.) reads:

ymax =
−Ln

∣∣∣cos(tan−1
√

C
g vy0

)∣∣∣
C

+ y
o
. (11)

3 Numerical methods

3.1 Differential transform method (DTM)

One of the mathematical techniques for resolving ordinary differential equa-
tions (ODEs) problems is the DTM. It is important to remember that Zhou in
1986 [23] and Pukhov in 1982 [17] were the first to present this technique for
solving linear and nonlinear initial value issues in electrical circuit analysis. This
approach is based on Taylor series expansion and is both analytical and numerical
at the same time. A definition of DTM has been added in this subsection [2, 9].
A few significant theories were also mentioned.

3.1.1 Definition:
the differential of a function and Y (k) is defined as

Y (k) =
1

k!

[
dky(t)

dtk

]
t=to

. (12)

Where y(t) is the original function and Y(k) is the transformed function.
The inverse transformation is defined by

y (t) =
∞∑
k

(t− to)k

k!

dky(t)

dtk
|t=t0 . (13)

In Table 1 below we presented some basic functions that can be deduced using
the above definition [13], [16].

Table 1: Transformed functions and basic operation.
Original function Transformed function

(1) y (t) = y1(t)±y2(t) Y (k) = Y1(k)± Y2(k)

(2) y (t) = αyi(t) Y (k) = αYi(k) where α is constant

(3) y (t) = dyi(t)
dt Y (k) = (k + 1)Yi (k + 1)

(4) y (t) = d2yi(t)

dt2
Y (k) = (k + 1)(k + 2)Yi(k + 2) .

(5) y (t) = dnyi(t)
dtn Y (k) = (k+n)!

k! Yi(k + 1)

(6) y (t) = y1 (t) y2 (t) Y (k) =
∑k

k1=0 Y1(k1)Y2(k − k1)

(7) y (t) = tn Y (k) = δ(k − n)

where δ (k − n) =
1 k = n
0 k ̸= n
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Now, we will apply the DTM to solve our model. To do this, our first step is
writing our equations in a system of first order differential equations as follow:

From equation 4 we find the system for x−dimension quadratic air resistance
as:

dx

dt
= vx. (14)

dvx
dt

= −Cv2x. (15)

Let x=x1and ẋ = x2 we get:

dx1
dt

= x2. (16)

dx2
dt

= −Cx22 (17)

From equation 5 we get the system for y−dimension quadratic air resistance:

dy

dt
= vy. (18)

dvy
dt

= −g − Cv2y . (19)

Let y=y1and ẏ = y2
dy1
dt

= y2. (20)

dy2
dt

= −g − Cy22. (21)

Applying the DTM method to x -direction system we get:

X1 (k + 1) =
1

k + 1
X2(k). (22)

X2 (k + 1) =
−C

(k + 1)

k∑
r=0

X2(r)X2(k − r). (23)

Then the solution can be written as:

x1 (t) =
n∑

k=0

X1 (k) ∗ tk. (24)

x2 (t) =
n∑

k=0

X2 (k) ∗ tk. (25)

While for y-direction system we get:

Y1 (k + 1) =
1

k + 1
Y2(k). (26)
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Y2 (k + 1) =
−1

(k + 1)

[
gδ (k) + C

k∑
r=0

Y2(r)Y2(k − r)

]
. (27)

Then the solutions can be written as:

y1 (t) =
n∑

k=0

Y1 (k) ∗ tk. (28)

y2 (t) =
n∑

k=0

Y2 (k) ∗ tk. (29)

3.2 Multistep differential transformation method (Ms-DTM)

By using DTM, we were able to identify precise and user-friendly solutions.
However, we also observed that DTM provides a good estimate of the correct
answer in short time intervals while exhibiting true behavior from the problem.
It provides series solutions over extended time intervals and increases accuracy in
compared to the Ms-DTM [6,15].

3.2.1 Definition
Let [0, T] be the interval for nonlinear initial value problem

f
(
t, y, y′, . . . , y(r)

)
= 0, y(r) (0) = ck for k = 0, 1, . . . , r − 1. (30)

can be expressed by finite series

y (t) =

N∑
n=0

ant
n. (31)

We assume the interval [0,T] is divided into M equal length subintervals:
[t0, t1] , [t1, t2] , . . . , [tM−1, tM ] with step size h= T

M , by using the nodes tm = m.h.

At the first interval [0, t1], we consider initial conditions y
(k)
1 (0) = ck, at this

term the DTM is applied to 11, and the solution is given as

y1 (t) =
N∑

n=0

a1nt
n, t ∈ [0, t1] . (32)

Then, when m ≥ 2 and at each subinterval [tm−1, tm], we consider the ini-

tial conditions y
(k)
m (tm−1) = y

(k)
m−1(tm−1)and applied the DTM 21 at [tm−1, tm],

where t0 in 12 is altered with tm−1.
The operation is repeated to generate a sequence of approximations ym (t), m

= 1, 2, · · ·, M, for the solution of y(t)

ym (t) =

N∑
n=0

amn(t− tm−1)
n, t ∈ [tm−1, tm] . (33)



Motion under quadratic air resistance 45

where N = K.M. In general, the Ms- DTM solution given as:

y (t) =

y1 (t) , t ∈ [0, t1]
y2 (t) , t ∈ [t1, t2]

:
ym (t) , t ∈ [tM−1, tM ]

. (34)

When we examine the step size h = T, we will see that the Ms-DTM technique
and the standard DTM approach are identical. In actuality, there is no distinction
between the two. Nonetheless, the goal of employing Ms-DTM is to provide a
longer-lasting, more precise solution. Now, when we apply the Ms-DTM method
to the system in the x-direction, we get:

X1m (k + 1) =
1

k + 1
X2m(k). (35)

X2m (k + 1) =
−C

(k + 1)

k∑
r=0

X2m(r)X2m(k − r). (36)

When m = 1 we use x11(0) = c1, x12(0) = c2. If m > 1 we use x1m(tm−1) =
x1m−1(tm−1), x2m(tm−1) = x2m−1(tm−1).

Then we get the following series solution

xi (t) =

∑n
k=0Xi1 (k) t

k, t ∈ [0, t1]∑n
k=0Xi2 (k) (t− t1)

k, t ∈ [t1, t2]
.
.
.∑n

k=0XiM (k) (t− tM−1)
k, t ∈ [tM−1, tM ]

i = 1, 2. (37)

While, applying the Ms-DTM method to the y-direction system we obtain:

Y1m (k + 1) =
1

k + 1
Y2m(k). (38)

Y2m (k + 1) =
−1

(k + 1)

[
gδ (k) + C

k∑
r=0

Y2m(r)Y2m(k − r)

]
. (39)

When m = 1 we use y11(0) = a1, y12(0) = a2. If m > 1 we use y1m(tm−1) =
y1m−1(tm−1), y2m(tm−1) = y2m−1(tm−1).

and we get the following series solution

yi (t) =

∑n
k=0 Yi1 (k) t

k, t ∈ [0, t1]∑n
k=0 Yi2 (k) (t− t1)

k, t ∈ [t1, t2]
.
.
.∑n

k=0 YiM (k) (t− tM−1)
k, t ∈ [tM−1, tM ]

i = 1, 2. (40)
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4 Simulation results and discussion

In this section we will study some specific cases, where reliable experimental
data for them can be found in Table 2 below.

Table 2: The experimental data of the American Ministry of Defense, tables of
fire of one mortar [10] at θ = 45o , g =9.81 m/s2, B=0.0005, x0=y0= 0.
Case Initial value of veloc-

ity (v0) [m\s]
Time of flight (T) [s] Maximum Range (R)

[m]

1 101.8 14.4 971.96

2 112.16 15.7 1159.40

3 121.91 17 1348.67

4 131.36 18.2 1538.86

Using the two methods mentioned above, we will substitute the beginning
values and compare them with the exact answer 7, 9 . We note that the horizontal
and vertical velocities are equivalent because the angle = 45o.

Below we will discuss four different cases with different initial conditions.
The first case: projection with initial speed v0=101.8.
For this case, the positions x (t) and y(t) are calculated at certain value of

time. In Table 3 we reported the absolute error for these positions. As one can
see we consider the systematic increase in time as: 2, 4, 6, 8, 10, 12 and 14 seconds

Table 3: Absolute error calculated for the outcomes of the two techniques applied
in relation to the precise x - and y-dimensional solutions for scenario 1.

Absolute Error in (x ) Absolute Error in (y)

Time (s) DTM Ms-DTM DTM Ms-DTM

2 2.6919×10−6 1.233×10−10 1.4061×10−4 2.8534×10−9

4 3.2534×10−4 1.504×10−10 0.0163 1.8749×10−9

6 0.0053 1.2307×10−10 0.2548 5.6068×10−10

8 0.0375 6.5484×10−11 1.7561 3.3583×10−9

10 0.1702 8.1×10−12 7.7451 5.7133×10−9

12 0.5820 8.95×10−11 25.7799 6.4518×10−9

14 1.6379 1.738×10−10 70.6896 2.9466×10−9

The second case: projection with initial speed v0=112.16
Again, the positions x (t) and y(t) are calculated at certain value of time. In

Table 4 we reported the absolute error for these positions. As one can see we
consider the systematic increase in time as: 2, 4, 6, 8, 10, 12 and 14 seconds.



Motion under quadratic air resistance 47

Table 4: Absolute error calculated for the outcomes of the two techniques applied
in relation to the precise x- and y-dimensional solutions for scenario 2.

x -dimension y-dimension

Time (s) DTM Ms-DTM DTM Ms-DTM

2 5.2733×10−6 2.1078×10−10 1.8323×10−4 3.3951×10−9

4 6.3396×10−4 2.417×10−10 0.0212 1.8954×10−9

6 0.0102 1.7621×10−10 0.3308 1.4659×10−9

8 0.0724 6.03×10−11 2.2773 5.4134×10−9

10 0.3274 7.97×10−11 10.0395 9.1735×10−9

12 1.1161 2.292×10−10 33.4206 1.1805×10−8

14 3.1312 3.811×10−10 91.7065 1.1339×10−8

The third case: projection with initial speed v0=121.91
For this third case, the positions x (t) and y(t) are calculated at certain value

of time. In Table 5 we reported the absolute error for these positions. While, for
the fourth case we show our results in Table 6 As one can see we consider the
systematic increase in time as: 2, 4, 6, 8, 10, 12 and 14 seconds

Table 5: Absolute error calculated for the outcomes of the two techniques applied
in relation to the precise x - and y-dimensional solutions for scenario 3.

x -dimension y-dimension

Time (s) DTM (5) Ms-DTM (6,5) DTM (5) Ms-DTM (6,5)

2 9.3984×10−6 3.3350×10−10 2.3426×10−4 4.0072×10−9

4 0.0011 3.5817×10−10 0.0271 1.8939×10−9

6 0.0180 2.2771×10−10 0.4211 2.5093×10−9

8 0.1273 2.12×10−11 2.8954 7.6997×10−9

10 0.5741 2.186×10−10 12.7528 1.2899×10−8

12 1.9509 4.684×10−10 42.4331 1.7325×10−8

14 5.4582 7.17364×10−10 116.4324 1.9464×10−8

16 13.2506 9.5769×10−10 277.5415 1.5447×10−8

The fourth case: projection with initial speed v0=131.36
For this final case, the positions x (t) and y(t) are calculated at certain value

of time. In Table 6 we reported the absolute error for these positions. While, for
the fourth case we show our results in Table6. As one can see we consider the
systematic increase in time as: 2, 4, 6, 8, 10, 12 and 14 seconds
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Figure 1: The relationship between x and y for case 1

Table 6: Absolute error computed for the results of the methods with respect to
the exact solution for x -dimension and y-dimension for case 4.

x -dimension y-dimension

Time (s) DTM (5) Ms-DTM (6,5) DTM (5) Ms-DTM (6,5)

2 1.5764×10−5 5.0082×10−10 2.9634×10−4 4.7067×10−9

4 0.0019 5.0403×10−10 0.0341 1.8530×10−9

6 0.02998 2.6995×10−10 0.5302 3.7564×10−9

8 0.2109 7.28×10−11 3.6403 1.0341×10−8

10 0.9481 4.574×10−10 16.0156 1.7090×10−8

12 3.2130 8.5×10−10 53.2476 2.3337×10−8

14 8.9666 1.2338×10−9 146.0418 2.7907×10−8

16 21.7179 1.6005×10−9 348.0935 2.7848×10−8

18 47.2268 1.9452×10−9 745.5160 1.4672×10−8

In Figs.1,2,3and4, we simulated the relationship between the x position and
the y position of the projectile for the exact, DTM and Ms-DTM results. It is
clear from these figures that Ms-DTM is in an excellent agreement with the exact
results for all ranges, while DTM is an excellent agreement for short intervals only.

In Figs.5,6,7and8, we plotted the absolute errors in x and y of DTM and Ms-
DTM in comparison with exact results. The figures show that Ms-DTM has a
very small (neglected) absolute errors in comparison with the exact results while
as time goes on absolute errors between DTM and exact results increasing.

In Tables 7 and 8 we reported a comparison between the results obtained from
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Figure 2: The relationship between x and y for case 2

Figure 3: The relationship between x and y for case 3.
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Figure 4: The relationship between x and y for case 4.

Figure 5: Absolute error computed for the results of the DTM and Ms-DTM
methods compared with the exact solution for case 1.

Figure 6: Absolute error computed for the results of the DTM and Ms-DTM
methods compared with the exact solution for case 2.
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Figure 7: Absolute error computed for the results of the DTM and Ms-DTM
methods compared with the exact solution for case 3.

Figure 8: Absolute error computed for the results of the DTM and Ms-DTM
methods compared with the exact solution for case 4.
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Table 7: Comparison between the results obtained from the experimental time-of-
flight data with the results of the both methods and calculates the absolute error.
Initial velocity Time of flight (s) Error

Experimental
result

DTM Ms-DTM DTM Ms-DTM

101.8 14.4 12.94 13.54 1.46 .86

112.16 15.7 13.62 14.7 2.08 1

121.91 17.0 14.11 15.75 2.89 1.25

131.36 18.2 14.40 16.72 3.8 1.48

the experimental time-of-flight data and maximum range data respectively with
the results of the both methods and calculates the absolute error.

We note from the Table 7 that the errors rate increase as the velocity increases,
and by comparing the both methods, Ms-DTM is considered more accurate than
DTM, taking into account that the errors rate were calculated compared to the
experimental data.

Table 8: Comparison between the results obtained from the experimental maxi-
mum range data with the results of the both methods and calculates the percent-
age error.
Initial velocity Maximum Range (m) Error %

Experimental
result

DTM Ms-DTM DTM Ms-DTM

101.8 971.96 763.805 794.695 21.412 18.24

112.16 1159.40 861.001 918.912 25.74 20.74

121.91 1348.67 944.63 1036.33 29.91 23.11

131.36 1538.86 1013.02 1149.31 34.17 25.31

We note that in the table that the error percentage is rather high, and DTM
is considered higher than Ms-DTM.

5 Conclusions

In the present study, we have analyzed analytically the motion of the projec-
tiles under Quadratic Air Resistance , and numerically, using DTM and Ms-DTM
methods. The motion of the projectiles is subject to many interesting properties
such as time of flight, maximum height, maximum horizontal range, etc. Due to
the fact that the velocity of air resistance is quadratic, it was very difficult to
find analytical solutions for these properties. We have compared our numerical
results with the real data from the U.S. Department of Defense. We observed that
DTM provides very accurate results in very small-time intervals, while Ms- DTM
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provides very high-accurate results in all time intervals as one can see from the
figures and tables presented in this work. In conclusion, we recommend to study
the projectile motion under another numerical method to get the best method.
In real situation, the air resistance isn’t exactly linear or quadratic, but mixed
between the two, which is the cause of large percentage errors.
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