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Series III: Mathematics and Computer Science, Vol. 1(63), No. 2 - 2021, 103-114

https://doi.org/10.31926/but.mif.2021.1.63.2.9

THE SCHOUTEN-VAN KAMPEN CONNECTION ON
QUASI-SASAKIAN MANIFOLDS

Ashis MONDAL1

Abstract

In the present paper, we study three-dimensional quasi-Sasakian man-
ifolds admitting the Schouten-van Kampen connection. We characterize
quasi-Sasakian manifolds and find certain curvature properties with respect
to the Schouten-van Kampen connection. Finally, we construct an example
of a three-dimensional quasi-Sasakian manifold admitting the Schouten-van
Kampen connection which verifies the results discussed in the present paper.
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1 Introduction

In [3], the notion of quasi-Sasakian manifold was introduced by D. E. Blair
to unify Sasakian and cosymplectic structure. S. Tanno [15] also added some re-
marks on quasi-Sasakian structures. Also, the properties of quasi-Sasakian man-
ifolds have been studied by several authors in papers [7, 8, 9]. The Schouten-van
Kampen connection have been introduced for non-holomorphic manifolds in pa-
pers [13, 17]. The Schouten-van Kampen connection on foliated manifolds have
been studied by A. Bejancu [1]. Recently, Z. Olszak studied the Schouten-van
Kampen connection on almost contact metric structure [11]. A. Yildiz studied
three-dimensional f -Kenmotsu manifolds with respect to the Schouten-van Kam-
pen connection [18]. Also, G. Ghosh studied Sasakian manifolds with respect to
the Schouten-van Kampen connection [6].

The projective curvature tensor is an important tensor from the differential
geometric point of view. Let M be an n-dimensional Riemannian manifold. If
there exist a one-to-one correspondence between each coordinate neighborhood
of M and a domain in Euclidean space such that any geodesic of Riemannian
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manifold corresponds to a straight line in the Euclidean space, then M is said to
be locally projectively flat. For n ≥ 3, M is locally projectively flat if and only
if the well known projective curvature tensor vanishes. Here projective curvature
tensor P̃ with respect to the Schouten-van Kampen connection is defined by [14]

P̃ (X,Y )Z = R̃(X,Y )Z − 1

n− 1
{S̃(Y,Z)X − S̃(X,Z)Y },

for X,Y, Z ∈ T (M), where R̃ and S̃ are curvature tensor and Ricci tensor of M
with respect to the Schouten-van Kampen connection, respectively.

The present paper is organized as follows: After the introduction, we give
some required preliminaries in Section 2. In Section 3, we consider projectively
flat and φ-projectively flat quasi-Sasakian manifolds of dimension three with re-
spect to the Schouten-van Kampen connection. In the next section we study
locally φ-symmetric three-dimensional quasi-Sasakian manifolds with respect to
the Schouten-van Kampen connection. In the last section, we cited an example of
a three-dimensional quasi-Sasakian manifold admitting the Schouten-van Kampen
connection to verify some results.

2 Preliminaries

Let M be an n(= 2m + 1)-dimensional connected differentiable manifold en-
dowed with an almost contact metric structure (φ, ξ, η, g), that is, φ is a (1, 1)
tensor field, ξ is a vector field, η is an 1-form and g is compatible Riemannian
metric such that [2, 3, 4]

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, ηφ = 0, (1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2)

g(X,φY ) = −g(φX, Y ), g(X, ξ) = η(X), (3)

for all X,Y ∈ T (M). The fundamental 2-form Φ of the manifold is defined by

Φ(X,Y ) = g(X,φY ),

for X,Y ∈ T (M). M is said to be quasi-Sasakian if the almost contact structure
(φ, ξ, η, g) is normal and the fundamental 2-form is closed (dΦ = 0), which was
first introduced by Blair [3]. An almost complex structure J can be defined on the
product M ×R of M and the real line R by J(X, t ddt) = (φX− tξ, η(X) d

dt), where
t is a scalar field on M × R. If the structure J is complex analytic, the almost
contact metric structure (φ, ξ, η, g) is said to be normal. A necessary and sufficient
condition of an almost contact metric manifold to be normal is that the Nijehaus
tensor field N [φ, φ] + 2ξ ⊗ dη vanishes on M [2]. The rank of a quasi-Sasakian
structure is always odd [3], it is equal to 1 if the structure is cosymplectic and it
is equal to (2m+ 1) if the structure is Sasakian.
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An almost contact metric manifold M of dimension three is quasi-Sasakian if
and only if [10]

∇Xξ = −βφX, (4)

where X ∈ T (M) and β is some function on M , such that ξβ = 0, ∇ being the
operator of covariant differentiation with respect to the Levi-Civita connection
on M . Hence a three-dimensional quasi-Sasakian manifold is cosymplectic if and
only if β = 0. For β = constant, the manifold reduces to a β-Sasakian manifold
and β = 1 gives the Sasakian structure.

From (4) we have [10]

(∇Xφ)Y = β(g(X,Y )ξ − η(Y )X), (5)

(∇Xη)Y = g(∇Xξ, Y ) = −βg(φX, Y ), (6)

for X,Y ∈ T (M).
From (4) and (5) we get

∇X(∇Y ξ) = −(Xβ)φY − β2{g(X,Y )ξ − η(Y )X} − βφ∇XY,

which implies that

R(X,Y )ξ = −(Xβ)φY + (Y β)φX + β2[η(Y )X − η(X)Y ], (7)

R(X, ξ)ξ = β2[X − η(X)ξ] (8)

and
R(X, ξ)Y = −(Xβ)φY + β2[g(X,Y )ξ − η(Y )X]. (9)

In a three-dimensional Riemannian manifold we have

R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + S(Y,Z)X − S(X,Z)Y

− r

2
[g(Y,Z)X − g(X,Z)Y ], (10)

where Q is the Ricci operator, i.e., g(QX,Y ) = S(X,Y ) and r is the scalar
curvature of the manifold. The Ricci tensor S of M is given by [11]

S(Y,Z) = (
r

2
−β2)g(Y,Z)+(3β2− r

2
)η(Y )η(Z)−η(Y )dβ(φZ)−η(Z)dβ(φY ) (11)

where r is the scalar curvature of M . Now from (10) and (11) we get

QY = (
r

2
− β2)Y + (3β2 − r

2
)η(Y )ξ − η(Y )(φgradβ)− dβ(φY )ξ, (12)

where the gradient of a function f is related to the exterior derivative df by the
formula df(X) = g(gradf,X).

From (11) we have

S(Y, ξ) = 2β2η(Y )− dβ(φY ), (13)
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S(φY, φZ) = S(Y, Z)− 2β2η(Y )η(Z). (14)

For an almost contact metric manifold the Schouten-van Kampen connection
∇̃ is given by [12]

∇̃XY = ∇XY − η(Y )∇Xξ + (∇Xη)(Y )ξ. (15)

Let M be a three-dimensional quasi-Sasakian manifold. Then from the above
equation we have

∇̃XY = ∇XY + βη(Y )φX + βg(X,φY )ξ. (16)

The curvature tensor and Ricci tensor of a three-dimensional quasi-Sasakian man-
ifold with respect to the Levi-Civita connection (∇) and Schouten-van Kampen
connection (∇̃) is given by [12]

R̃(X,Y )Z = R(X,Y )Z + (Xβ){g(Y, φZ)ξ + η(Z)φY }
− (Y β){g(X,φZ)ξ + η(Z)φX}
+ β2{g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ + η(X)η(Z)Y

− η(Y )η(Z)X + g(X,φZ)φY − g(Y, φZ)φX}, (17)

S̃(Y, Z) = S(Y,Z) + (φY )(β)η(Z)− 2β2η(Y )η(Z), (18)

Q̃Y = QY + (φY )(β)ξ − 2β2η(Y )ξ, (19)

r̃ = r − 2β2, (20)

where R̃, Q̃ and r̃ are curvature tensor, Ricci tensor and scalar curvature of the
Schouten-van Kampen connection (∇̃).

3 Projective curvature tensor and φ-projectively flat
on quasi-Sasakian manifolds with respect to the
Schouten-van Kampen connection

In this section, we study projectively flat three-dimensional quasi-Sasakian
manifold M with respect to the Schouten-van Kampen connection. In a three-
dimensional quasi-Sasakian manifold, the projective curvature tensor with respect
to the Schouten-van Kampen connection is given by

P̃ (X,Y )Z = R̃(X,Y )Z − 1

2
{S̃(Y,Z)X − S̃(X,Z)Y }. (21)

If P̃ = 0, then the manifold M is called projectively flat with respect to the
Schouten-van Kampen connection.
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Theorem 1. Let M be a three-dimensional quasi-Sasakian manifold with respect
to the Schouten-van Kampen connection. Then the following statements are equiv-
alent:

(i) M is projectively flat with respect to the Schouten-van Kampen connection,
(ii) M is Ricci flat with respect to the Schouten-van Kampen connection,
(iii) β is a constant.

Proof. Let M be a projectively flat manifold with respect to the Schouten-van
Kampen connection. Then from (21) we have

R̃(X,Y )Z =
1

2
{S̃(Y,Z)X − S̃(X,Z)Y }, (22)

i.e.,

g(R̃(X,Y )Z,W ) =
1

2
{S̃(Y,Z)g(X,W )− S̃(X,Z)g(Y,W )}. (23)

Using (17) and (19) in (23) we get

R(X,Y, Z,W ) + (Xβ){g(Y, φZ)η(W ) + η(Z)g(φY,W )}
− (Y β){g(X,φZ)η(W ) + η(Z)g(φX,W )}
+ β2{g(X,Z)η(Y )η(W )− g(Y,Z)η(X)η(W ) + η(X)η(Z)g(Y,W )

− η(Y )η(Z)g(X,W ) + g(X,φZ)g(φY,W )− g(Y, φZ)g(φX,W )}

=
1

2
[S(Y,Z) + (φY )βη(Z)− 2β2η(Y )η(Z)]g(X,W )

− 1

2
[S(X,Z) + (φX)βη(Z)− 2β2η(X)η(Z)]g(Y,W ). (24)

Taking X = W = ξ in (24), we get

S(Y,Z) = S(ξ, Z)η(Y )− (dβ)(φZ)η(Y )− (φY )βη(Z). (25)

Putting this value in (19), we have

S̃(Y,Z) = −(dβ)(φZ)η(Y ). (26)

Clearly, if β is constant, then from (26) we have S̃(Y, Z) = 0; then from (22) we
have R̃(X,Y )Z=0.

Conversely, if R̃(X,Y )Z = 0, then using (13) and (18) in (22) we have
S̃(Y, Z) = 0, provided β is constant.

Hence the theorem is proved.

Definition 1. A quasi-Sasakian manifold M with respect to the Schouten-van
Kampen connection is said to be φ-projectively flat if

φ2P̃ (φX, φY )φZ = 0.

It can be easily seen that φ2P̃ (φX, φY )φZ = 0 holds if and only if

g(P̃ (φX, φY )φZ, φW ) = 0, (27)

for X,Y, Z,W ∈ T (M).
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Theorem 2. Let M be a three-dimensional quasi-Sasakian manifold with constant
structure function β is φ-projectively flat with respect to the the Schouten-van
Kampen connection. Then the manifold is an η-Einstein manifold.

Proof. Using (21) and (27), φ-projectively flat means

g(R̃(φX, φY )φZ, φW ) =
1

2
{S̃(φY, φZ)g(φX, φW )

− S̃(φX, φZ)g(φY, φW )}. (28)

Let {e1, e2, ξ} be a local orthonormal basis of the vector fields in M and using the
fact that {φe1, φe2, ξ} is also a local orthonormal basis, putting X = W = ei in
(28) and summing up with respect to i, we have

2∑
i=1

g(R̃(φei, φY )φZ, φei) =
1

2

2∑
i=1

{S̃(φY, φZ)g(φei, φei)

− S̃(φei, φZ)g(φY, φei)}. (29)

Using (17) and (19) it can be easily verified that

2∑
i=1

g(R̃(φei, φY )φZ, φei) =

2∑
i=1

g(R(φei, φY )φZ, φei) + β2g(φZ, φY )

= S(φY, φZ) + β2g(φY, φZ)

= S̃(φY, φZ) + β2g(φY, φZ). (30)

2∑
i=1

g(φei, φei) = 2. (31)

2∑
i=1

S̃(φei, φZ)g(φY, φei) = S̃(φY, φZ). (32)

Using (30), (31) and (32), the equation (29) becomes

S̃(φY, φZ) = −β2g(φY, φZ). (33)

Putting Y = φY and Z = φZ in (33) and using (1) and (18) with β =constant,
we get

S(Y,Z) = −β2g(Y, Z) + 2β2η(Y )η(Z). (34)

Hence the proof.

4 Locally φ-symmetry with respect to the Schouten-
van Kampen connection

Definition 2. A quasi-Sasakian manifold M with respect to the Schouten-van
Kampen connection is called to be locally φ-symmetric if

φ2(∇̃W R̃)(X,Y )Z = 0, (35)

for all vector fields X,Y, Z,W orthogonal to ξ on M .
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This notion was introduced by Takahashi [16], for Sasakian manifold.

Theorem 3. A three-dimensional non-cosymplectic quasi-Sasakian manifold is
locally φ-symmetry with respect to the Schouten-van Kampen connection ∇̃ if and
only if it is locally φ-symmetry with respect the Levi-Civita connection ∇ provided
β is constant.

Proof. Using (4), (6), (16) and (17) we have

(∇̃W R̃)(X,Y )Z = (∇W R̃)(X,Y )Z + {R(X,Y, Z, ξ) + (Xβ)g(Y, φZ)

− (Y β)g(X,φZ) + β2(g(X,Z)η(Y )− g(Y,Z)η(X))}β(φW )

− βg(φW, R̃(X,Y )Z)ξ. (36)

Now differentiating (17) with respect to W , we obtain

(∇W R̃)(X,Y )Z = (∇WR)(X,Y )Z

+ (Xβ){g(Y, φZ)∇W ξ + η(Z)(∇Wφ)Y + (φY )(∇W η)(Z)}
− (Y β){g(X,φZ)∇W ξ + η(Z)(∇Wφ)X + (φX)(∇W η)(Z)}
+ β2{g(X,Z)(∇W η)Y ξ + g(X,Z)η(Y )∇W ξ

− g(Y,Z)(∇W η)(X)ξ − g(Y,Z)η(X)∇W ξ + (∇W η)(X)η(Z)Y

+ η(Z)(∇W η)(Z)Y − (∇W η)(Y )η(Z)X − η(Y )(∇W η)(Z)X

+ g(X,φZ)(∇Wφ)Y − g(Y, φZ)(∇Wφ)(X)}
+ 2β(Wβ){g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ + η(X)η(Z)ξ

− η(Y )η(Z)X + g(X,φZ)φY − g(Y, φZ)φX}. (37)

Using (4), (5) and (6) in (37) we get

(∇W R̃)(X,Y )Z = (∇WR)(X,Y )Z − β(Xβ){g(Y, φZ)φW − g(W,Y )η(Z)ξ

+ (φY )g(φW,Z) + η(Z)η(Y )W}
+ β(Y β){g(X,φZ)φW − g(W,X)η(Z)ξ + (φX)g(φW,Z)

+ η(Z)η(X)W}
+ β3{−g(X,Z)g(φW, Y )ξ − (φW )g(X,Z)η(Y )

+ g(Y,Z)g(φW,X)ξ + (φW )g(Y,Z)η(X)− g(φW,X)η(Z)Y

− g(φW,Z)η(X)Y + g(φW, Y )η(Z)X + g(φW,Z)η(Y )X

− g(W,Y )g(X,φZ)ξ + η(Y )g(X,φZ)W + g(W,X)g(Y, φZ)ξ

− η(X)g(Y, φZ)W}
+ 2β(Wβ){g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ + η(X)η(Z)ξ

− η(Y )η(Z)X + g(X,φZ)φY − g(Y, φZ)φX}. (38)



110 Ashis Mondal

Using (38) in (36) we have

(∇̃W R̃)(X,Y )Z = (∇WR)(X,Y )Z +R(X,Y, Z, ξ)

+ β(Xβ){g(W,Y )η(Z)ξ − η(Z)η(Y )W − (φY )g(φW,Z)}
+ β(Y β){−g(W,X)η(Z)ξ + (φX)g(φW,Z) + η(Z)η(X)W}
+ β3{−g(X,Z)g(φW, Y )ξ + g(Y,Z)g(φW,X)ξ

− g(φW,X)η(Z)Y − g(φW,Z)η(X)Y

+ g(φW,Z)η(Y )X + g(φW, Y )η(Z)X

+ η(Y )g(X,φZ)W − η(X)g(Y, φZ)W

+ g(W,X)g(Y, φZ)ξ − g(W,Y )g(X,φZ)ξ}
+ 2β(Wβ){g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ + η(X)η(Z)ξ

− η(Y )η(Z)X + g(X,φZ)φY − g(Y, φZ)φX}
− βg(φW, R̃(X,Y )Z)ξ. (39)

Using (1) we get

φ2(∇̃W R̃)(X,Y )Z = φ2(∇WR)(X,Y )Z + φ2(R(X,Y, Z, ξ))

+ β(Xβ){−η(Z)η(Y )φ2W − (φ3Y )g(φW,Z)}
+ β(Y β){(φ3X)g(φW,Z) + η(Z)η(X)φ2W}
+ β3{g(φW,X)η(Z)Y − g(φW,X)η(Z)η(Y )ξ

+ g(φW,Z)η(X)Y − g(φW,Z)η(X)η(Y )ξ

− g(φW, Y )η(Z)X + g(φW, Y )η(X)η(Z)ξ

− g(φW,Z)η(Y )X + g(φW,Z)η(X)η(Y )ξ

− g(φZ,X)η(Y )W + g(φZ,X)η(Y )η(W )ξ

+ g(φZ, Y )η(X)W − g(φZ, Y )η(X)η(W )ξ}
+ 2β(Wβ){η(Y )η(Z)X − η(Y )η(Z)η(X)ξ

+ g(X,φZ)φ3Y − g(Y, φZ)φ3X}. (40)

Taking X,Y, Z,W orthogonal to ξ and using (1), we get from above equation

φ2(∇̃W R̃)(X,Y )Z = φ2(∇WR)(X,Y )Z

+ β(Xβ)g(φW,Z)(φY )− β(Y β)g(φW,Z)(φX)

− 2β(Wβ){g(X,φZ)(φY ) + g(Y, φZ)(φX)}. (41)

If β is constant, then (Xβ) = (Y β) = (Wβ) = 0 for all X,Y,W . Then from (41)
we have

φ2(∇̃W R̃)(X,Y )Z = φ2(∇WR)(X,Y )Z.

It completes the proof of the theorem.
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5 Example

In this section we have cited an example [5] of a three-dimensional quasi-
Sasakian manifold with respect to the Schouten-Van Kampen connection.

We consider the three-dimensional manifold M = {(x, y, z) ∈ R3, z 6= 0},
where (x, y, z) are the standard coordinates in R3. The vector fields

e1 =
∂

∂x
− y ∂

∂z
, e2 =

∂

∂y
, e3 =

∂

∂z
,

are linearly independent at each point of M. Let g be the Riemannian metric
defined by

g(e1, e3) = g(e2, e3) = g(e1, e2) = 0,

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e3), for any Z ∈ χ(M). Let φ be
the (1,1) tensor field defined by φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0. Then using
the linearity of φ and g we have

η(e3) = 1, φ2Z = −Z + η(Z)e3, g(φZ, φW ) = g(Z,W )− η(Z)η(W ),

for any Z,W ∈ χ(M). Thus for e3 = ξ, (φ, ξ, η, g) defines an almost contact metric
structure on M. Now, by direct computations we obtain

[e1, e2] = e3, [e2, e3] = 0, [e1, e3] = 0.

The Riemannian connection ∇ of the metric tensor g, given by the Koszul’s for-
mula is

2g(∇XY, Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y,Z])− g(Y, [X,Z])

+g(Z, [X,Y ]).

By Koszul formula

∇e1e3 = −1
2e2, ∇e1e2 = 1

2e3, ∇e1e1 = 0,
∇e2e3 = 1

2e1, ∇e2e2 = 0, ∇e2e1 = −1
2e3,

∇e3e3 = 0, ∇e3e2 = 1
2e1, ∇e3e1 = −1

2e2.

From above we see that the manifold satisfies (4) for β = −1
2 , and e3 = ξ. Hence

the manifold is a quasi-Sasakian three-manifold.

With the help of the above results it can be verified that

R(e1, e2)e3 = 0, R(e2, e3)e3 = 1
4e2, R(e1, e3)e3 = 1

4e1,
R(e1, e2)e2 = −3

4e1, R(e2, e3)e2 = 1
4e3, R(e1, e3)e2 = 0,

R(e1, e2)e1 = 3
4e2, R(e2, e3)e1 = 0, R(e1, e3)e1 = 1

4e3.

Now we consider the Schouten-Van Kampen connection adapted to this example.
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Using (16) and above result we have

∇̃e1e3 = −(β + 1
2)e2, ∇̃e1e2 = (β + 1

2)e3, ∇̃e1e1 = 0,

∇̃e2e3 = (β + 1
2)e1, ∇̃e2e2 = 0, ∇̃e2e1 = −(β + 1

2)e3,

∇̃e3e3 = 0, ∇̃e3e2 = 1
2e1, ∇̃e3e1 = −1

2e2.

By the above results, we can easily obtain the non-vanishing components of the
curvature tensor with respect to the Schouten-van Kampen connection as follows:

R̃(e1, e2)e3 = −(β + 1
2)2e3, R̃(e2, e3)e3 = 1

2(β + 1
2)e2,

R̃(e1, e2)e2 = −{(β + 1
2)2 + 1

2}e1, R̃(e2, e3)e2 = −1
2(β + 1

2)e3,

R̃(e1, e2)e1 = {12 + (β + 1
2)2)}e2, R̃(e2, e3)e1 = 0,

.

R̃(e1, e3)e3 = 1
2(β + 1

2)e1,

R̃(e1, e3)e2 = 0,

R̃(e1, e3)e1 = −1
2(β + 1

2)e3

For β = −1
2 , with the help of above results we get Ricci tensor as follows:

S(e1, e1) = −1

2
, S(e2, e2) = −1

2
, S(e3, e3) =

1

2
.

S̃(e1, e1) =
1

2
, S̃(e2, e2) = −1

2
, S̃(e3, e3) = 0.

Therefore r =
∑3

i=1 S(ei, ei) = −1
2 and r̃ =

∑3
i=1 S̃(ei, ei) = 0. Thus the manifold

M is Ricci flat with respect to the Schouten-van Kampen connection. Therefore
Theorem 1 is verified.
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37-60.

[2] Blair, D.E., Contact manifolds in Riemannian geometry, Lecture notes in
Math. 509, Springer-Verlag, Berlin-New York, 1976.

[3] Blair, D.E., The theory of quasi-Sasakian structure, J. Differential Geom. 1
(1967), 331-345.

[4] Blair, D.E., Riemannian geometry of contact and symplectic manifolds,
Birkhauser, Boston, 2002.



Schouten-van Kampen connection on quasi-Sasakian manifolds 113

[5] De, U.C. and Mondal, A.K., 3-dimensional quasi-Sasakian manifolds and
Ricci solitons, SUT J. Math. 48 (2012), 71-81.

[6] Ghosh, G., On Schouten-van Kampen connection in Sasakian manifolds, Bol.
Soc. Paran. Math. 36 (2018), 171-182.

[7] Gonzalez, J.C. and Chinea, D., Quasi-Sasakian homogeneous structures on
the generalized Heisenberg group H(p, 1), Proc. Amer. Soc. 105 (1989), 173-
184.

[8] Kanemaki, S., Quasi-Sasakian manifolds, Tohoku Math. J. 29 (1977), 227-
233.

[9] Kanemaki, S., On quasi-Sasakian manifolds, Differential Geometry Banach
center Publ., 12 (1984), 95-125.

[10] Olszak, Z., Normal almost contact metric manifolds of dimension three, Ann.
Polon. Math. 47 (1986), 41-50.

[11] Olszak, Z., The Schouten-van Kampen affine connection adapted an almost
(para) contact metric structure, Publ. De L’ins. Math. 94 (2013), 31-42.
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