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THE SCHOUTEN-VAN KAMPEN CONNECTION ON
QUASI-SASAKIAN MANIFOLDS

Ashis MONDAL!

Abstract

In the present paper, we study three-dimensional quasi-Sasakian man-
ifolds admitting the Schouten-van Kampen connection. We characterize
quasi-Sasakian manifolds and find certain curvature properties with respect
to the Schouten-van Kampen connection. Finally, we construct an example
of a three-dimensional quasi-Sasakian manifold admitting the Schouten-van
Kampen connection which verifies the results discussed in the present paper.
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1 Introduction

In [3], the notion of quasi-Sasakian manifold was introduced by D. E. Blair
to unify Sasakian and cosymplectic structure. S. Tanno [15] also added some re-
marks on quasi-Sasakian structures. Also, the properties of quasi-Sasakian man-
ifolds have been studied by several authors in papers [7, 8, 9]. The Schouten-van
Kampen connection have been introduced for non-holomorphic manifolds in pa-
pers [13, 17]. The Schouten-van Kampen connection on foliated manifolds have
been studied by A. Bejancu [1]. Recently, Z. Olszak studied the Schouten-van
Kampen connection on almost contact metric structure [11]. A. Yildiz studied
three-dimensional f-Kenmotsu manifolds with respect to the Schouten-van Kam-
pen connection [18]. Also, G. Ghosh studied Sasakian manifolds with respect to
the Schouten-van Kampen connection [6].

The projective curvature tensor is an important tensor from the differential
geometric point of view. Let M be an n-dimensional Riemannian manifold. If
there exist a one-to-one correspondence between each coordinate neighborhood
of M and a domain in Euclidean space such that any geodesic of Riemannian
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manifold corresponds to a straight line in the Euclidean space, then M is said to
be locally projectively flat. For n > 3, M is locally projectively flat if and only
if the well known projective curvature tensor vanishes. Here projective curvature
tensor P with respect to the Schouten-van Kampen connection is defined by [14]

P(X,Y)Z = R(X,Y)Z — ﬁ{é(}/, Z)X - S(X,2)Y},

for X,Y,Z € T(M), where R and S are curvature tensor and Ricci tensor of M
with respect to the Schouten-van Kampen connection, respectively.

The present paper is organized as follows: After the introduction, we give
some required preliminaries in Section 2. In Section 3, we consider projectively
flat and ¢-projectively flat quasi-Sasakian manifolds of dimension three with re-
spect to the Schouten-van Kampen connection. In the next section we study
locally ¢-symmetric three-dimensional quasi-Sasakian manifolds with respect to
the Schouten-van Kampen connection. In the last section, we cited an example of
a three-dimensional quasi-Sasakian manifold admitting the Schouten-van Kampen
connection to verify some results.

2 Preliminaries

Let M be an n(= 2m + 1)-dimensional connected differentiable manifold en-
dowed with an almost contact metric structure (¢,&,7,g), that is, ¢ is a (1,1)
tensor field, £ is a vector field, 7 is an 1-form and ¢ is compatible Riemannian
metric such that [2, 3, 4]

¢2X =-X+ n(X)ga 77(5) =1, ¢§=0, np=0, (1)
9(¢X,¢Y) = g(X,Y) — n(X)n(Y), (2)
g(X7¢Y):_g(¢X7Y)7 Q(X,f) :n(X)v (3)

for all X,Y € T'(M). The fundamental 2-form & of the manifold is defined by
O(X,Y) = g(X, 9Y),

for XY € T(M). M is said to be quasi-Sasakian if the almost contact structure
(¢,€,m,g) is normal and the fundamental 2-form is closed (d® = 0), which was
first introduced by Blair [3]. An almost complex structure J can be defined on the
product M x R of M and the real line R by J(X,t%) = (¢X —t£, (X)), where
t is a scalar field on M x R. If the structure J is complex analytic, the almost
contact metric structure (¢, &, n, g) is said to be normal. A necessary and sufficient
condition of an almost contact metric manifold to be normal is that the Nijehaus
tensor field N[¢, ¢] + 2 ® dn vanishes on M [2]. The rank of a quasi-Sasakian
structure is always odd [3], it is equal to 1 if the structure is cosymplectic and it
is equal to (2m + 1) if the structure is Sasakian.
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An almost contact metric manifold M of dimension three is quasi-Sasakian if
and only if [10]
Vx§=—-PF¢X, (4)

where X € T(M) and § is some function on M, such that £8 = 0, V being the
operator of covariant differentiation with respect to the Levi-Civita connection
on M. Hence a three-dimensional quasi-Sasakian manifold is cosymplectic if and
only if g = 0. For 8 = constant, the manifold reduces to a S-Sasakian manifold
and 8 =1 gives the Sasakian structure.

From (4) we have [10]
(Vx9)Y = B(g(X,Y)E = n(Y)X), ()

(VXW)Y = g(ngv Y) = _Bg(ng? Y)? (6)

for X,Y € T(M).
From (4) and (5) we get

Vx(Vy€) = ~(XB)eY — fH{g(X,Y)E —n(Y)X} — BoVxY,

which implies that

R(X,Y)§ = —(XB)gY + (YB)pX + B°[n(YV)X —n(X)Y], (7)
R(X,8)¢ = B2[X — n(X)¢] (8)

and
R(X,§Y = —(XB)gY + B[g(X,Y)¢ — n(Y)X]. (9)

In a three-dimensional Riemannian manifold we have

R(X,Y)Z =g(Y,2)QX — g(X, Z)QY + S(Y,Z)X — 8(X, Z)Y

l9(Y, 2)X — g(X, Z)Y], (10)

N3

where @ is the Ricci operator, ie., ¢g(QX,Y) = S(X,Y) and r is the scalar
curvature of the manifold. The Ricci tensor S of M is given by [11]

r

S(Y.2) = (5=B%)g(¥. 2)+ (36 D n(Y n(Z2)=n(¥)dB(oZ) —n(Z)dB(6Y) (11)
where r is the scalar curvature of M. Now from (10) and (11) we get
QY = (5 — B + (362 = Dn(Y)¢ — n(Y) (dgradd) — dB(¢Y)S,  (12)

where the gradient of a function f is related to the exterior derivative df by the
formula df (X) = g(gradf, X).
From (11) we have

S(Y,€) =26%(Y) — dB(¢Y), (13)
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S(Y,0Z) = S(Y, Z) — 28°n(Y)n(Z). (14)

_ For an almost contact metric manifold the Schouten-van Kampen connection
V is given by [12]

VxY =VxY —n(Y)Vxé+ (Vxn)(Y)E. (15)

Let M be a three-dimensional quasi-Sasakian manifold. Then from the above
equation we have

VxY = VxY + (Y)$X + Bg(X, 9Y)E. (16)

The curvature tensor and Ricci tensor of a three-dimensional quasi-Sasakian man-
ifold with respect to the Levi-Civita connection (V) and Schouten-van Kampen

connection (V) is given by [12]

R(X,Y)Z = R(X,Y)Z + (XB){g(Y,0Z)§ +n(Z)oY '}
— (YB){9(X, 02)§ +n(Z)¢X}
+B8H9(X, Z)n(Y)E — g(Y, Z)n(X)€ +n(X)n(2)Y

—n(Y)(2)X + g(X,02)9Y — g(Y,9Z)p X}, (17)
S(Y,2) = S(Y,Z) + (oY) (B)n(Z) — 28°n(Y)n(Z), (18)
QY = QY + (¢Y)(B)¢ — 28°n(Y)E, (19)
F=r-262 (20)

where R, () and 7 are curvature tensor, Ricci tensor and scalar curvature of the
Schouten-van Kampen connection (V).

3 Projective curvature tensor and ¢-projectively flat
on quasi-Sasakian manifolds with respect to the
Schouten-van Kampen connection

In this section, we study projectively flat three-dimensional quasi-Sasakian
manifold M with respect to the Schouten-van Kampen connection. In a three-
dimensional quasi-Sasakian manifold, the projective curvature tensor with respect
to the Schouten-van Kampen connection is given by

P(X,Y)Z = R(X,Y)Z — %{S(Y, Z)X - S(X,2)Y}. (21)

If P = 0, then the manifold M is called projectively flat with respect to the
Schouten-van Kampen connection.
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Theorem 1. Let M be a three-dimensional quasi-Sasakian manifold with respect
to the Schouten-van Kampen connection. Then the following statements are equiv-
alent:
(i) M is projectively flat with respect to the Schouten-van Kampen connection,
(i) M s Ricci flat with respect to the Schouten-van Kampen connection,
(iii) B is a constant.

Proof. Let M be a projectively flat manifold with respect to the Schouten-van
Kampen connection. Then from (21) we have
R(X,Y)Z = %{S(Y, )X - S(X,2)Y}, (22)

i.e., .

9(R(X,Y)Z,W) = S{S(Y, 2)g(X, W) = S(X, Z)g(Y, W)} (23)

Using (17) and (19) in (23) we get
R(X,Y, 2, W) + (XB){g(Y, 6Z)n(W) + n(Z)g(6Y, W)}
— (YB{9(X, 0Z)n(W) +n(Z)g(¢X, W)}

+8Hg(X, Z)n(Y )n(W) — ( Zn(X)n(W) +n(X)n(2)g(Y, W)
—n(Y)n(2)9(X, W) + 9(X, $Z)g(6Y, W) — g(Y, 6Z)g(6 X, W)}

= LIS(V.2) + (9¥)5n(2) - a2
— SI8(X,2) + (6X)Bn(2) — 2n(X)n(Z)lg(¥, W), (24)
Taking X = W = ¢ in (24), we get
S(Y.2) = 56 Zn(Y) — (d8)(6L)n(Y) ~ (67 )Bn(2). (25)
Putting this value in (19), we have

S(Y,Z) = —(dB)(¢Z)n(Y). (26)

Clearly, if § is constant, then from (26) we have S(Y, Z) = 0; then from (22) we
have R(X,Y)Z=0.

Conversely, if R(X,Y)Z = 0, then using (13) and (18) in (22) we have
S (Y, Z) =0, provided S is constant.

Hence the theorem is proved. O

Definition 1. A quasi-Sasakian manifold M with respect to the Schouten-van
Kampen connection is said to be ¢-projectively flat if

¢*P(¢X, ¢Y)9Z = 0.
It can be easily seen that ¢2P(¢X, ¢Y)¢Z = 0 holds if and only if
9(P(¢X, ¢Y)pZ, ¢W) = 0, (27)
for X,Y, Z,W € T(M).
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Theorem 2. Let M be a three-dimensional quasi-Sasakian manifold with constant
structure function [ is ¢-projectively flat with respect to the the Schouten-van
Kampen connection. Then the manifold is an n-Einstein manifold.

Proof. Using (21) and (27), ¢-projectively flat means

G(RGX, 6Y)67,6W) = J{5(6Y,62)g(6X, 6W)
— S(6X,6Z)g(4Y, 6W)}. (28)

Let {e1,e2,£} be alocal orthonormal basis of the vector fields in M and using the
fact that {¢e1, pea, £} is also a local orthonormal basis, putting X = W = ¢; in
(28) and summing up with respect to ¢, we have

Zg (¢es, 9Y)$Z, de;) = Z{S OY, 0Z)g(dei, de;)

- S(cf)@i, ¢Z)g(dY, dei)}. (29)
Using (17) and (19) it can be easily verified that

9(R(ges, 6Y)9Z, pe;) + B29(pZ, ¢Y)

I
]

Zg (dei, 9Y)OZ, de;)

1

S(9Y, ¢Z) + 5%9(¢Y, 6 Z)

<.
I

A/_\

= S(¢Y,02) + Bg(oY, 62). (30)
Z ¢eza¢ez = <. (31)
2 =
Z (dei, Z)g(9Y, dei) = S(¢Y, 6Z). (32)

Using (30), (31) and (3 ) the equation (29) becomes

S(9Y,92) = —59(¢Y, ¢2). (33)

Putting Y = ¢Y and Z = ¢Z in (33) and using (1) and (18) with 8 =constant,
we get
S(Y, Z) = —Rg(Y. Z) + 28*n(Y)n(Z). (34)

Hence the proof. O

4 Locally ¢-symmetry with respect to the Schouten-
van Kampen connection

Definition 2. A quasi-Sasakian manifold M with respect to the Schouten-van
Kampen connection is called to be locally ¢-symmetric if

¢*(VwR)(X,Y)Z =0, (35)
for all vector fields X,Y, Z, W orthogonal to & on M.
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This notion was introduced by Takahashi [16], for Sasakian manifold.

Theorem 3. A three-dimensional non-cosymplectic quasi-Sasakian manifold is
locally ¢-symmetry with respect to the Schouten-van Kampen connection V if and
only if it is locally ¢-symmetry with respect the Levi-Civita connection V provided
B is constant.

Proof. Using (4), (6), (16) and (17) we have

(VwR)(X,Y)Z = (VwR)(X,Y)Z + {R(X,Y, Z,&) + (X B)g(Y, $2)
—(YB)9(X,90Z) + B*(9(X, Z)n(Y) — g(Y, Z)n(X))} B(¢W)
— Bg(eoW, R(X,Y)Z)¢. (36)
Now differentiating (17) with respect to W, we obtain
(VwR)(X,Y)Z = (VwR)(X,Y)Z
+ (XB){9(Y, 92)VwE +n(Z)(Vw )Y + (oY) (Vwn)(Z)}
— (YB{9(X,02)Vwl +n(Z)(Vwe) X + (¢X)(Vwn)(Z)}
+ 82{9(X, Z)(Vwn)Y € + g(X, Z)n(Y ) Viwé
—9(Y, 2)(Vwn)(X)§ — (Y, 2)n(X)Vwé + (Vwn) (X)n(2)Y
+n(2)(Vwn)(2)Y — (Vwn)(Y)n(Z)X —n(Y)(Vwn)(2)X
+9(X,02)(Vwo)Y — g(Y,0Z)(Vwe)(X)}
+2B(WB){g(X, Z)n(Y)E — g(Y, Z)n(X)E +n(X)n(Z2)¢
—n(Y)n(2)X + g(X,02)¢Y — g(Y,9Z)pX}. (37)

Using (4), (5) and (6) in (37) we get

(VwR)(X,Y)Z = (VwR)(X.Y)Z — B(XB){g(Y,$Z)oW — g(W,Y)n(Z)¢
+ (@Y)g(¢W, Z) + n(Z)n(Y)W'}
+ BYB){9(X,62)pW — g(W, X)n(Z)¢ + (¢ X)g(¢W, Z)
+n(Z)n(X)W}
+B3{ —9(X, Z)g(¢W,Y)§ — (sW)g(X, Z)n(Y)
+9(Y, 2)g(eW, X)& + (sW)g(Y, Z)n(X) — g(oW, X)n(2)Y
— 9(6W, Z)n(X)Y + g(¢W,Y )y >X+g<¢W Zn(Y)X
—g(W,Y)g(X,02)¢ +n(Y)g(X, 6Z)W + g(W, X)g(Y, pZ)¢
- n(X) (Y,0Z)W}
+28(WB{g(X, Z)n(Y )¢ — g(Y, Z)n(X)E +n(X)n(2)E
—n(Y)n(2)X + g(X,$2)¢Y — g(Y,0Z)pX }. (38)
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Using (38) in (36) we have

(VwR)(X,Y)Z = (VwR)(X,Y)Z + R(X,Y, Z,€)
+ BXBH{gW. Y )n(Z)§ —n(Z)n(Y)W — (¢Y)g(oW. Z)}
+ BB —g(W, X)n(Z2)§ + (¢ X)g(¢W, Z) + n(Z)n(X)W }
+ BH{—9(X, Z)g(sW, Y )¢ + g(Y, Z)g(oW, X )&
—g(eW, X)n(2) W, Z)n(X)Y
+ g(oW, Z)n(Y) W.Y)n(Z)
+n(Y)g(X, 92)W —n(X)g(Y, pZ)W
+g(W, X)g(Y,02)§ — g(W,Y)g(X, 9Z)E}
+2B(WB){g(X, Z)n(Y)E — g(Y, Z)n(X)E +n(X)n(Z2)¢
—n(Y)In(2)X + g9(X,9Z)pY —g(Y,92)p X}
— Bg(¢W, R(X,Y) Z)¢. (39)

Y)
Y —g(¢
X +g(o X

Using (1) we get

O*(VwR)(X,Y)Z = ¢*(VwR)(X,Y)Z + ¢*(R(X,Y, Z,&))
+ BXBH{=n(Zm(Y)§*W — (¢°Y)g(¢W, Z)}
+BYB){(¢*X)g(¢W, Z) + n(Z)n(X )" W'}
+ B {g(W, X)n(2)Y — g(¢W, X)n(Z)n(Y )&
+ g(@W, Z)n(X)Y — g(oW, Z)n(X)n(Y)E
= g( W, Y')n(Z)X + g(¢W, Y )n(X)n(Z2)¢
= g(@W, Z)n(Y)X + g(oW, Z)n(X)n(Y)E
= 9(Z, X)n(Y)W + g(¢Z, X)n(Y)n(W)E
+9(oZ, Y )n(XOW — g(#Z,Y )In(X)n(W)&}
+28(WB){n(Y)n(Z)X —n(Y)n(Z)n(X)§
+9(X,02)°Y — g(Y,02)° X }. (40)

(Z

Y -
X
X

Taking X, Y, Z, W orthogonal to ¢ and using (1), we get from above equation

G (VwR)(X,Y)Z = ¢*(Vw R)(X,Y)Z
+ BXB)g(oW, 2)(¢Y) — BY B)g(¢W, Z)(6X)
= 28(WB{g(X,92)(¢Y) + 9(Y, 92)(¢X)}. (41)

If B is constant, then (X3) = (Y3) = (W) =0 for all X,Y,W. Then from (41)

we have

¢*(VwR)(X,Y)Z = ¢*(VwR)(X,Y)Z.

It completes the proof of the theorem.
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5 Example

In this section we have cited an example [5] of a three-dimensional quasi-
Sasakian manifold with respect to the Schouten-Van Kampen connection.

We consider the three-dimensional manifold M = {(z,y,2) € R3 2z # 0},
where (x,7, z) are the standard coordinates in R3. The vector fields

0 0 0 0

el = = —Y—, €y = —, e3 = —,
Y7 o y@z 2 oy T 0z

are linearly independent at each point of M. Let g be the Riemannian metric
defined by

gle1,e3) = g(ea, e3) = g(e1,e2) =0,
gler,e1) = g(ez,e2) = g(es, e3) = 1.

Let n be the 1-form defined by n(Z) = g(Z, e3), for any Z € x(M). Let ¢ be
the (1,1) tensor field defined by ¢(e1) = —ea, ¢d(e2) = e1, ¢(e3) = 0. Then using
the linearity of ¢ and g we have

nles) =1, ¢*Z=-Z+n(2)es, g(¢Z,¢W)=g(Z,W)—n(Z)n(W),

for any Z,W € x(M). Thus for e3 = &, (¢, &, 1, g) defines an almost contact metric
structure on M. Now, by direct computations we obtain

[617 62] = €3, [627 63] = 07 [617 63] =0.

The Riemannian connection V of the metric tensor g, given by the Koszul’s for-
mula is

29(VxY,Z) = Xg(Y,Z)+Yg(Z,X) - Zg(X,Y) - g(X,[Y, Z]) — g(Y, [X, Z])
+9(Z,[X,Y]).

By Koszul formula

1 1
v61e3 = —3€2, V61€2 = 3€3, velel = 07
1 1
v8263 = 5617 v€262 = O) v€261 = —5€3,
1
Vezes =0, Vesea = 5e1, Vese1 = —5ea.
From above we see that the manifold satisfies (4) for g = —%, and e3 = £. Hence

the manifold is a quasi-Sasakian three-manifold.
With the help of the above results it can be verified that

R(ey,ez)e3 = 0, R(ea, e3)es = Tea, R(e1,e3)es = tei,
R(e1,e2)es = —3ey, R(ez, e3)e2 = ge3, R(e1,e3)e2 = 0,
R(el, 62)61 = %62, R(EQ, 63)61 =0, R(ela 63)61 = ie?)-

Now we consider the Schouten-Van Kampen connection adapted to this example.
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Using (16) and above result we have

?6163 == _(6 + %)627 ?6162 - 6 + %)637 ?6161 == 07
Veses = (84 3)er, Ve,e2 =0, Veser = —(B + 3)es,
v6363 = 0, v€362 = %61; vegel = _562'

By the above results, we can easily obtain the non-vanishing components of the
curvature tensor with respect to the Schouten-van Kampen connection as follows:

Rer, ez)es = —(B+ 3) i
}?(61, 62)62 = _{(5 + %)2 + %}61, R(€27 63)62 =

Rler,es)er = {3+ (B+ 5))}e2,  Rlea,es)er =0,

2e3, R(ea, e3)es = 5(B+ 3)ea,
—3(B+ 3)es,

R(er, e3)es = $(B+ 3)e,
R(eh 63)62 =0,
R(e1,e3)er = —%(5 + %)63
For g = —%, with the help of above results we get Ricci tensor as follows:

1 1 1
S(er,er) = 5 S(ez, e2) = — S(es,e3) = 9

S(el, 61) =

~ 1
y 5(62,62) = —5, 5(63,63) =0.

N |

Therefore 7 = 322 S(e;, e;) = —1and 7 = S22, S(ei, e;) = 0. Thus the manifold
M is Ricci flat with respect to the Schouten-van Kampen connection. Therefore
Theorem 1 is verified.

Acknowledgement. The author is thankful to the referee for his/her valu-
able suggestions in the improvement of the paper.
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