A NEW CLASS OF HARMONIC FUNCTIONS ASSOCIATED WITH A (p, q)-RUSCHEWEYH OPERATOR

Omendra MISHRA ${ }^{1}$ and Poonam SHARMA ${ }^{*, 2}$

Abstract

With the use of post-quantum or (p, q)-calculus, in this paper we define a new class $S_{H}^{0}(n, p, q, \alpha)$ of certain harmonic functions $f \in S_{H}^{0}$ associated with a (p, q)-Ruscheweyh operator $\mathcal{R}_{p, q}^{n}$. For functions in this class, we obtain a necessary and sufficient convolution condition. A sufficient coefficient inequality is given for functions $f \in S_{H}^{0}(n, p, q, \alpha)$. It is proved that this coefficient inequality is necessary for functions in its subclass $\mathcal{T} S_{H}^{0}(n, p, q, \alpha)$. Certain properties such as convexity, compactness and results on bounds, extreme points are also derived for functions in the subclass $\mathcal{T} S_{H}^{0}(n, p, q, \alpha)$.

2010 Mathematics Subject Classification: 30C45

Key words: Harmonic functions, (p,q)-calculus, univalent harmonic functions, the Ruscheweyh operator

1 Introduction

Jackson $[9,10]$ was the first to give some applications of quantum calculus known as the q-calculus by introducing the q-analogues of derivative and integral. Research work in connection with function theory and q-calculus was first introduced by Ismail et al. [8]. Recently, the q-calculus and its generalization called post-quantum calculus also known as the (p, q)-calculus has been involved in the theory of analytic and harmonic functions in the work $[1,2,4,6,7,11,13,15$, $16,18]$ (see also [3]). Some definitions related to the (p, q)-calculus are as follows:

Definition 1. For $0<q<p \leq 1, a(p, q)$-derivative operator $\partial_{p, q}$ on an analytic function h is defined by

$$
\partial_{p, q} h(z)= \begin{cases}\frac{h(p z)-h(q z)}{p-q) z} & (z \neq 0), \tag{1}\\ h^{\prime}(0) & (z=0) .\end{cases}
$$

[^0]Note that $\lim _{q \rightarrow p} \partial_{p, q} h(z)=h^{\prime}(p z)$.
Definition 2. For $0<q<p \leq 1, a(p, q)$-number $[k]_{p, q}$ is defined by

$$
[k]_{p, q}=\left\{\begin{array}{c}
\frac{p^{k}-q^{k}}{p-q}, k \in \mathbb{C} \\
p^{k-1}+p^{k-2} q+\cdots+p q^{k-2}+q^{k-1}, k=2,3, \ldots
\end{array}\right.
$$

Definition 3. For any non-negative integer k, a (p, q)-number factorial $[k]_{p, q}$! is defined by

$$
[k]_{p, q}!=[1]_{p, q}[2]_{p, q}[3]_{p, q} \ldots[k]_{p, q}, \quad k \neq 0 \quad \text { and } \quad[0]_{p, q}!=1 .
$$

Definition 4. For $k>0, a(p, q)$-gamma function is defined by

$$
\Gamma_{p, q}(k+1)=[k]_{p, q} \Gamma_{p, q}(k) \quad \text { and } \quad \Gamma_{p, q}(1)=1 .
$$

For $k \in \mathbb{N} \cup\{0\}$,

$$
\Gamma_{p, q}(k+1)=[k]_{p, q}!.
$$

Definition 5. For $k>0$ and for $n \in \mathbb{N} \cup\{0\}$, a (p, q)-shifted factorial $\left([k]_{p, q}\right)_{n}$ is defined by

$$
\left([k]_{p, q}\right)_{n}=\frac{\Gamma_{p, q}(k+n)}{\Gamma_{p, q}(k)}= \begin{cases}{[k]_{p, q}[k+1]_{p, q}[k+2]_{p, q} \ldots[k+n-1]_{p, q},} & \text { if } n \in \mathbb{N}, \\ 1, & \text { if } n=0 .\end{cases}
$$

For a function $h(z)=z^{k}, \quad k \in \mathbb{N}=\{1,2,3, \ldots\}$, we have

$$
\partial_{p, q}\left(z^{k}\right)=[k]_{p, q} z^{k-1},
$$

where $[k]_{p, q}$ is defined by (1).
Let \mathcal{H} denote the class of complex-valued functions $f=u+i v$ which are harmonic in the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$, where u and v are real-valued harmonic functions in \mathbb{D}. Functions $f \in \mathcal{H}$ can also be expressed as $f=h+\bar{g}$, where h and g are analytic in \mathbb{D}, called the analytic and co-analytic parts of the function f, respectively. The Jacobian of the function $f=h+\bar{g}$ is given by $J_{f}(z)=\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2}$. According to the Lewy [14], every harmonic function $f=h+\bar{g} \in \mathcal{H}$ is locally univalent and sense preserving in \mathbb{D} if and only if $J_{f}(z)>0$ in \mathbb{D}. By requiring harmonic function to be sense-preserving, we retain some basic properties exhibited by analytic functions, such as the open mapping property, the argument principal, and zeros being isolated (see for detail [5]). The class of all univalent, sense preserving harmonic functions $f=h+\bar{g} \in \mathcal{H}$, with the normalized conditions $h(0)=0=g(0)$ and $h^{\prime}(0)=1$ is denoted by $S_{\mathcal{H}}$. If $f=h+\bar{g} \in S_{\mathcal{H}}$, then h and g are of the form:

$$
\begin{equation*}
h(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \quad \text { and } \quad g(z)=\sum_{k=1}^{\infty} b_{k} z^{k} . \tag{2}
\end{equation*}
$$

A subclass of functions $f=h+\bar{g} \in S_{\mathcal{H}}$ with the condition $g^{\prime}(0)=0$ is denoted by $S_{\mathcal{H}}^{0}$. If $f=h+\bar{g} \in S_{\mathcal{H}}^{0}$, then h and g are of the form:

$$
\begin{equation*}
h(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \quad \text { and } \quad g(z)=\sum_{k=2}^{\infty} b_{k} z^{k} . \tag{3}
\end{equation*}
$$

Further, if $g(z) \equiv 0$, the class $S_{\mathcal{H}}$ reduces to the class \mathcal{A} of normalized univalent functions.

The convolution of two analytic functions $f(z)=\sum_{k=1}^{\infty} a_{k} z^{k}$ and $g(z)=$ $\sum_{k=1}^{\infty} b_{k} z^{k}$ is defined by $(f * g)(z)=\sum_{k=1}^{\infty} a_{k} b_{k} z^{k}$. The convolution of two harmonic functions $f=h+\bar{g}$ and $F=H+\bar{G}$ is defined by $(f * F)(z)=g * G+\overline{h * H}$. A function $f \in S_{\mathcal{H}}$ is said to be starlike of order α if

$$
\Re e\left\{\frac{\mathcal{D} f(z)}{f(z)}\right\}>\alpha \quad(0 \leq \alpha<1)
$$

and the class of all harmonic functions which are starlike of order α is denoted by $S_{H}^{*}(\alpha)$, where $\mathcal{D} f(z)=z h^{\prime}(z)-\overline{z g^{\prime}(z)}$. A function $f \in S_{\mathcal{H}}$ is said to be convex of order α if $\mathcal{D} f \in S_{H}^{*}(\alpha)$ and the class of all harmonic functions which are convex of order α is denoted by $S_{H}^{c}(\alpha)$. Classes $S_{H}^{*}(\alpha)$ and $S_{H}^{c}(\alpha)$ were investigated by Jahangiri [12]. Recently, a q-analogue of the Ruscheweyh operator was introduced by Kanas and Raducanu [13] (see also [15]). Motivated with this q-analogue of Ruscheweyh operator, we define a (p, q)-analogue of the Ruscheweyh operator $R_{p, q}^{n}: \mathcal{A} \rightarrow \mathcal{A}$ of order $n(n>-1)$ by

$$
\begin{equation*}
R_{p, q}^{n} h(z)=h(z) * \phi(p, q, n+1 ; z), \tag{4}
\end{equation*}
$$

where

$$
\phi(p, q, n+1 ; z)=z+\sum_{k=2}^{\infty} \frac{\left([k]_{p, q}\right)_{n}}{\Gamma_{p, q}(n+1)} z^{k}
$$

which converges absolutely in the unit disk \mathbb{D}. For simplicity, we denote

$$
\begin{equation*}
\psi_{k}=\frac{\left([k]_{p, q}\right)_{n}}{\Gamma_{p, q}(n+1)} \tag{5}
\end{equation*}
$$

The operator $R_{p, q}^{n}$ for $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ may also be defined by

$$
\begin{align*}
R_{p, q}^{0} h(z) & =h(z), \quad R_{p, q}^{1} h(z)=R_{p, q} h(z)=z \partial_{p, q} h(z) \\
R_{p, q}^{2} h(z) & =\frac{z \partial_{p, q} \partial_{p, q}(z h(z))}{[2]_{p, q}!}=\frac{z \partial_{p, q}^{2}(z h(z))}{[2]_{p, q}!}, \ldots \\
R_{p, q}^{n} h(z) & =\frac{z \partial_{p, q}^{n}\left(z^{n-1} h(z)\right)}{[n]_{p, q}!} \tag{6}
\end{align*}
$$

Observe that

$$
\begin{equation*}
R_{p, q} h(z)=h(z) * R_{p, q}\left(\frac{z}{1-z}\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{align*}
R_{p, q}\left(\frac{z}{1-z}\right) & =z+\sum_{k=2}^{\infty}[k]_{p, q} z^{k} \\
& =\frac{z}{(1-p z)(1-q z)} \tag{8}
\end{align*}
$$

If $p=1$, the operator $R_{p, q}^{n}$ is called a q-analogue of the Ruscheweyh operator denoted by R_{q}^{n} (see in [13][15]). As (in case $p=1$) $q \rightarrow 1$, the operator $R_{p, q}^{n}$ reduces to the Ruscheweyh operator R^{n}, defined by Ruscheweyh in [19].

A (p, q)-Salagean operator $D_{p, q}^{m}: \mathcal{A} \rightarrow \mathcal{A}$ is defined [1] by

$$
\begin{aligned}
D_{p, q}^{0} h(z) & =h(z), D_{p, q}^{1} h(z)=z \partial_{p, q} h(z) \\
D_{p, q}^{m} h(z) & =z \partial_{p, q}\left(D_{p, q}^{m-1} h((z)), m \in \mathbb{N}\right.
\end{aligned}
$$

and a modified (p, q)-Salagean operator $\mathcal{D}_{p, q}^{m}$ for harmonic function $f=h+\bar{g}$ is defined for any $m \in \mathbb{N}_{0}$ by ([1]):

$$
\mathcal{D}_{p, q}^{m} f(z)=D_{p, q}^{m} h(z)+(-1)^{m} \overline{D_{p, q}^{m} g(z)} .
$$

Involving the Ruscheweyh operator $R_{p, q}^{n}$ defined by (6), a (p, q)-modified Ruscheweyh operator $\mathcal{R}_{p, q}^{n}$ for a harmonic function $f=h+\bar{g}$ is defined for any $n \in \mathbb{N}_{0}$ by

$$
\begin{equation*}
\mathcal{R}_{p, q}^{n} f(z)=R_{p, q}^{n} h(z)+(-1)^{n} \overline{R_{p, q}^{n} g(z)}, \tag{9}
\end{equation*}
$$

If $p=1$, the operator $\mathcal{R}_{p, q}^{n}$ reduces to the operator \mathcal{R}_{q}^{n} defined in [16] and (in case $p=1$) as $q \rightarrow 1$ the operator $\mathcal{R}_{p, q}^{n}$ reduces to the modified Ruscheweyh operator \mathcal{R}^{n} for $f=h+\bar{g}$ see in [17]. We denote $\mathcal{R}_{p, q}^{1} f(z)=\underline{\mathcal{R}_{p, q} f(z)}$ and observe that for $f=h+\bar{g}, \mathcal{R}_{p, q} f(z)=\mathcal{D}_{p, q} f(z)=z \partial_{p, q} h(z)-\overline{z \partial_{p, q} g(z)}$ and $\mathcal{R}_{p, q} \mathcal{R}_{p, q} f(z)=\mathcal{D}_{p, q}^{2} f(z)=D_{p, q}^{2} h(z)+\overline{D_{p, q}^{2} g(z)}$.

We now define a class $S_{H}^{0}(n, p, q, \alpha)$ of the functions $f \in S_{H}^{0}$ that satisfy the condition

$$
\begin{equation*}
\Re e\left\{\frac{\mathcal{R}_{p, q}\left(\mathcal{R}_{p, q}^{n} f\right)(z)}{\mathcal{R}_{p, q}^{n} f(z)}\right\}>\alpha, \quad 0 \leq \alpha<1 . \tag{10}
\end{equation*}
$$

In particular, we denote the classes $S_{H}^{0}(0, p, q, \alpha)$ and $S_{H}^{0}(1, p, q, \alpha)$, respectively, by $(p, q)-S_{H}^{*}(\alpha)$ and $(p, q)-S_{H}^{c}(\alpha)$ and are called the classes of (p, q)-harmonic starlike and (p, q)-harmonic convex functions of order α.

As (in case $p=1$) $q \rightarrow 1$, the classes $(p, q)-S_{H}^{*}(\alpha)$ and $(p, q)-S_{H}^{c}(\alpha)$, respectively, reduce to the classes $S_{H}^{*}(\alpha)$ and $S_{H}^{c}(\alpha)$ of functions $f \in S_{H}^{0}$. For $p=1$, the class $S_{H}^{0}(n, p, q, \alpha)$ was studied by Murugusundaramoorthy and Jahangiri [16, (vi), p.82] for the functions $f \in S_{H}$.

In this paper, we introduce a (p, q)-analogue of Ruscheweyh operator for analytic and for harmonic functions and study a new class $S_{H}^{0}(n, p, q, \alpha)$ of harmonic functions associated with the (p, q)-Ruscheweyh operator. For functions in this class, we obtain a necessary and sufficient convolution condition. A sufficient coefficient inequality is given for functions $f \in S_{H}^{0}(n, p, q, \alpha)$. It is proved that
this coefficient inequality is necessary for functions in its subclass $\mathcal{T} S_{H}^{0}(n, p, q, \alpha)$. Certain properties such as convexity, compactness and results on extreme points, bounds are also derived for functions in the subclass $\mathcal{T} S_{H}^{0}(n, p, q, \alpha)$. Throughout the work we consider the values of $p, q(0<q<p \leq 1)$ such that for any $k \in \mathbb{N}$,

$$
\begin{equation*}
p+\frac{q^{k}}{[k]_{p, q}} \geq 1 \tag{11}
\end{equation*}
$$

2 Main results

Theorem 1. Let $f \in S_{\mathcal{H}}^{0}$. Then the function $f \in S_{H}^{0}(n, p, q, \alpha)$ if and only if

$$
\begin{equation*}
\mathcal{R}_{p, q}^{n} f(z) * \Phi(z ; \zeta) \neq 0 \quad(\zeta \in \mathbb{C},|\zeta|=1, z \in \mathbb{D} \backslash\{0\}) \tag{12}
\end{equation*}
$$

where

$$
\begin{align*}
\Phi(z ; \zeta) & =\frac{z\{(1-z)(1+\zeta)-(1-p z)(1-q z)(2 \alpha+\zeta-1)\}}{(1-p z)(1-q z)(1-z)} \tag{13}\\
& -\frac{\bar{z}\{(1+\zeta)(1-\bar{z})+(1-p \bar{z})(1-q \bar{z})(2 \alpha+\zeta-1)\}}{(1-p \bar{z})(1-q \bar{z})(1-\bar{z})}
\end{align*}
$$

Proof. Since at $z=0$

$$
\frac{\mathcal{R}_{p, q}\left(\mathcal{R}_{p, q}^{n} f\right)(z)}{\mathcal{R}_{p, q}^{n} f(z)}=1
$$

which proves by (10) that $f \in S_{H}^{0}(n, p, q, \alpha)$. Hence, for $z \in \mathbb{D} \backslash\{0\}, f=h+\bar{g} \in$ $S_{H}^{0}(n, p, q, \alpha)$ if and only if

$$
\frac{1}{1-\alpha}\left(\frac{\mathcal{R}_{p, q}\left(\mathcal{R}_{p, q}^{n} f\right)(z)}{\mathcal{R}_{p, q}^{n} f(z)}-\alpha\right) \neq \frac{\zeta-1}{\zeta+1}(-1 \neq \zeta \in \mathbb{C},|\zeta|=1)
$$

or

$$
\begin{equation*}
(1+\zeta)\left\{\mathcal{R}_{p, q}\left(\mathcal{R}_{p, q}^{n} f\right)(z)-\alpha \mathcal{R}_{p, q}^{n} f(z)\right\}-(\zeta-1)\left\{\mathcal{R}_{p, q}^{n} f(z)-\alpha \mathcal{R}_{p, q}^{n} f(z)\right\} \neq 0 \tag{14}
\end{equation*}
$$

On using $(9), \mathcal{R}_{p, q}\left(\mathcal{R}_{p, q}^{n} f\right)(z)=R_{p, q} R_{p, q}^{n} h(z)-(-1)^{n} \overline{R_{p, q} R_{p, q}^{n} g(z)}, R_{p, q} R_{p, q}^{n} h(z)=$ $R_{p, q}^{n} h(z) * \frac{z}{(1-p z)(1-q z)}$ and $R_{p, q}^{n} h(z)=R_{p, q}^{n} h(z) * \frac{z}{1-z}$, we express the condition (14) as

$$
\begin{aligned}
& R_{p, q}^{n} h(z) *\left[(1+\zeta) \frac{z}{(1-p z)(1-q z)}-\alpha(1+\zeta) \frac{z}{1-z}-(\zeta-1) \frac{z}{1-z}\right. \\
& \left.+\alpha(\zeta-1) \frac{z}{1-z}\right] \\
& -(-1)^{n} \overline{R_{p, q}^{n} g(z)} *\left[(1+\zeta) \frac{\bar{z}}{(1-p \bar{z})(1-q \bar{z})}+\alpha(1+\zeta) \frac{\bar{z}}{1-\bar{z}}+(\zeta-1) \frac{\bar{z}}{1-\bar{z}}\right. \\
& \left.-\alpha(\zeta-1) \frac{\bar{z}}{1-\bar{z}}\right] \\
& \neq 0
\end{aligned}
$$

which proves the result (12).

Taking $n=0,1$, respectively we get following results for the classes (p, q) $S_{H}^{*}(\alpha)$ and $(p, q)-S_{H}^{c}(\alpha)$:

Corollary 1. Let $f \in S_{\mathscr{H}}^{0}$. Then the function $f \in(p, q)-S_{H}^{*}(\alpha)$ if and only if

$$
f(z) * \Phi(z ; \zeta) \neq 0 \quad(\zeta \in \mathbb{C},|\zeta|=1, z \in \mathbb{D} \backslash\{0\}),
$$

where $\Phi(z ; \zeta)$ is given by (13).
Corollary 2. Let $f \in S_{\mathcal{H}}^{0}$. Then the function $f \in(p, q)-S_{H}^{c}(\alpha)$ if and only if

$$
\mathcal{R}_{p, q} f(z) * \Phi(z ; \zeta) \neq 0 \quad(\zeta \in \mathbb{C},|\zeta|=1, z \in \mathbb{D} \backslash\{0\}),
$$

where $\Phi(z ; \zeta)$ is given by (13).
Theorem 2. Let $f=h+\bar{g} \in \mathcal{H}$, where h and g are given by (3). Then $f \in$ $S_{H}^{0}(n, p, q, \alpha)$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty} \psi_{k}\left\{\left([k]_{p, q}-\alpha\right)\left|a_{k}\right|+\left([k]_{p, q}+\alpha\right)\left|b_{k}\right|\right\} \leq 1-\alpha, \tag{15}
\end{equation*}
$$

where ψ_{k} is given by (5).
Proof. It is clear that the theorem is true for the function $f(z) \equiv z$. Let $f=h+\bar{g}$, where h and g of the form (3) and assume that there exist $k \in\{2,3, \ldots\}$ such that $a_{k} \neq 0$ or $b_{k} \neq 0$. The condition (11) ensures that $[k]_{p, q}$ is an increasing function of k and hence the condition (15) implies

$$
\begin{equation*}
\sum_{k=2}^{\infty}[k]_{p, q}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) \leq 1 . \tag{16}
\end{equation*}
$$

Hence, we have

$$
\begin{aligned}
\left|\partial_{p, q} h(z)\right|-\left|\partial_{p, q} g(z)\right| & \geq 1-\sum_{k=2}^{\infty}[k]_{p, q}\left|a_{k}\right||z|^{k-1}-\sum_{k=2}^{\infty}[k]_{p, q}\left|b_{k}\right||z|^{k-1} \\
& >1-|z| \sum_{k=2}^{\infty}\left([k]_{p, q}\left|a_{k}\right|+[k]_{p, q}\left|b_{k}\right|\right) \\
& \geq 1-|z|>0
\end{aligned}
$$

which proves as $q \rightarrow p$ that the function f is locally univalent and sense-preserving in \mathbb{D}. Moreover, if $z_{1}, z_{2} \in \mathbb{D}$ and for some $p, q(0<q<p \leq 1)$ such that $p z_{1} \neq q z_{2}$,

$$
\begin{gathered}
\left|\frac{\left(p z_{1}\right)^{k}-\left(q z_{2}\right)^{k}}{\left(p z_{1}\right)-\left(q z_{2}\right)}\right|=\left|\sum_{l=1}^{k}\left(p z_{1}\right)^{l-1}\left(q z_{2}\right)^{k-l}\right| \leq \sum_{l=1}^{k}\left|z_{1}\right|^{l-1} p^{l-1} q^{k-l}\left|z_{2}\right|^{k-l}<[k]_{p, q} \\
(k=2,3, \ldots) .
\end{gathered}
$$

Hence, by (16), we have

$$
\begin{aligned}
& \left|f\left(p z_{1}\right)-f\left(q z_{2}\right)\right| \geq\left|h\left(p z_{1}\right)-h\left(q z_{2}\right)\right|-\left|g\left(p z_{1}\right)-g\left(q z_{2}\right)\right| \\
& \quad \geq\left|p z_{1}-q z_{2}-\sum_{k=2}^{\infty}\left(\left(p z_{1}\right)^{k}-\left(q z_{2}\right)^{k}\right) a_{k}\right|-\left|\sum_{k=2}^{\infty} \overline{\left(\left(p z_{1}\right)^{k}-\left(q z_{2}\right)^{k}\right) b_{k}}\right| \\
& \quad \geq\left|p z_{1}-q z_{2}\right|\left(1-\sum_{k=2}^{\infty}\left|\frac{\left(p z_{1}\right)^{k}-\left(q z_{2}\right)^{k}}{p z_{1}-q z_{2}}\right|\left|a_{k}\right|-\sum_{k=2}^{\infty}\left|\frac{\left(p z_{1}\right)^{k}-\left(q z_{2}\right)^{k}}{p z_{1}-q z_{2}}\right|\left|b_{k}\right|\right) \\
& \quad>\left|p z_{1}-q z_{2}\right|\left(1-\sum_{k=2}^{\infty}[k]_{p, q}\left|a_{k}\right|-\sum_{k=2}^{\infty}[k]_{p, q}\left|b_{k}\right|\right) \geq 0
\end{aligned}
$$

which proves that f is univalent in \mathbb{D}. Now using the fact $\Re e(w)>\alpha \Leftrightarrow$ $|1-\alpha+w|>|1+\alpha-w|$, to show $f \in S_{H}^{0}(n, p, q, \alpha)$, we prove that

$$
\begin{equation*}
\left|\frac{\mathcal{R}_{p, q}\left(\mathcal{R}_{p, q}^{n}\right) f(z)-(1+\alpha)\left(\mathcal{R}_{p, q}^{n}\right) f(z)}{\mathcal{R}_{p, q}\left(\mathcal{R}_{p, q}^{n}\right) f(z)+(1-\alpha)\left(\mathcal{R}_{p, q}^{n}\right) f(z)}\right|<1, z \in \mathbb{D} \tag{17}
\end{equation*}
$$

or,

$$
\left|\mathcal{R}_{p, q}\left(\mathcal{R}_{p, q}^{n}\right) f(z)+(1-\alpha)\left(\mathcal{R}_{p, q}^{n}\right) f(z)\right|-\left|\mathcal{R}_{p, q}\left(\mathcal{R}_{p, q}^{n}\right) f(z)-(1+\alpha)\left(\mathcal{R}_{p, q}^{n}\right) f(z)\right|>0
$$

where the left-hand-side is

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\left|(2-\alpha) z+\sum_{k=2}^{\infty}\left([k]_{p, q}+1-\alpha\right) \psi_{k} a_{k} z^{k}-(-1)^{n} \sum_{k=2}^{\infty}\left([k]_{p, q}-1+\alpha\right) \psi_{k} \overline{b_{k} z^{k}}\right| \\
\quad-\mid-\alpha z+\sum_{k=2}^{\infty}\left([k]_{p, q}-1-\alpha\right) \psi_{k} a_{k} z^{k} \\
\quad-(-1)^{n} \sum_{k=2}^{\infty}\left([k]_{p, q}+1+\alpha\right) \psi_{k} \overline{b_{k} z^{k}} \mid \\
\geq \\
\quad(2-\alpha)|z|-\sum_{k=2}^{\infty}\left([k]_{p, q}+1-\alpha\right) \psi_{k}\left|a_{k}\right||z|^{k}-\sum_{k=2}^{\infty}\left([k]_{p, q}-1+\alpha\right) \psi_{k}\left|b_{k}\right||z|^{k} \\
\quad-\alpha|z|-\sum_{k=2}^{\infty}\left([k]_{p, q}-1-\alpha\right) \psi_{k}\left|a_{k}\right||z|^{k} \\
\quad-\sum_{k=2}^{\infty}\left([k]_{p, q}+1+\alpha\right) \psi_{k}\left|b_{k}\right||z|^{k} \\
\geq 2(1-\alpha)|z|\left\{1-\sum_{k=2}^{\infty} \frac{[k]_{p, q}-\alpha}{1-\alpha} \psi_{k}\left|a_{k}\right||z|^{k-1}-\frac{[k]_{p, q}+\alpha}{1-\alpha} \psi_{k}\left|b_{k}\right||z|^{k-1}\right\}>0,
\end{array}\right.
\end{aligned}
$$

if(15) holds. This completes the proof of Theorem 2.

Definition 6. Let $\mathcal{T} S_{H}^{0}(n, p, q, \alpha)$ be the family of harmonic functions $f=h+\bar{g} \in$ $S_{H}^{0}(n, p, q, \alpha)$ such that for that value of n, functions h and g are of the form

$$
\begin{equation*}
h(z)=z-\sum_{k=2}^{\infty}\left|a_{k}\right| z^{k} \quad \text { and } \quad g(z)=(-1)^{n} \sum_{k=2}^{\infty}\left|b_{k}\right| z^{k}, \quad z \in \mathbb{D} \tag{18}
\end{equation*}
$$

Theorem 3. Let $f=h+\bar{g}$, where h and g are of the form (18). Then $f \in$ $\mathcal{T} S_{H}^{0}(n, p, q, \alpha)$ if and only if the condition (15) holds.

Proof. The "if part" follows from Theorem 2. For the "only if" part, assume that $f \in \mathcal{T} S_{H}^{0}(n, p, q, \alpha)$, then from (17) we have

$$
\left|\frac{-\alpha z-\sum_{k=2}^{\infty}\left([k]_{p, q}-1-\alpha\right) \psi_{k}\left|a_{k}\right| z^{k}-\sum_{k=2}^{\infty}\left([k]_{p, q}+1+\alpha\right) \psi_{k}\left|b_{k}\right| \bar{z}^{k}}{(2-\alpha) z-\sum_{k=2}^{\infty}\left([k]_{p, q}+1-\alpha\right) \psi_{k}\left|a_{k}\right| z^{k}-\sum_{k=2}^{\infty}\left([k]_{p, q}-1+\alpha\right) \psi_{k}\left|b_{k}\right| \bar{z}^{k}}\right|<1
$$

for any $z \in \mathbb{D}$, where ψ_{k} is given by (5). Since, $\pm \Re e(w) \leq|w|$, we have for real value of $z \rightarrow 1^{-}$,

$$
\Re e\left(\frac{\alpha+\sum_{k=2}^{\infty}\left([k]_{p, q}-1-\alpha\right) \psi_{k}\left|a_{k}\right|+\sum_{k=2}^{\infty}\left([k]_{p, q}+1+\alpha\right) \psi_{k}\left|b_{k}\right|}{2-\alpha-\sum_{k=2}^{\infty}\left([k]_{p, q}+1-\alpha\right) \psi_{k}\left|a_{k}\right|-\sum_{k=2}^{\infty}\left([k]_{p, q}-1+\alpha\right) \psi_{k}\left|b_{k}\right|}\right) \leq 1
$$

which proves the inequality (15).
In particular, we get the following results for the classes $(p, q)-S_{H}^{*}(\alpha)$ and $(p, q)-S_{H}^{c}(\alpha)$:

Corollary 3. Let $f=h+\bar{g}$, where h and g are of the form (18). Then $f \in(p, q)$ $S_{H}^{*}(\alpha)$ if and only if the condition

$$
\sum_{k=2}^{\infty}\left\{\left([k]_{p, q}-\alpha\right)\left|a_{k}\right|+\left([k]_{p, q}+\alpha\right)\left|b_{k}\right|\right\} \leq 1-\alpha
$$

holds.
Corollary 4. Let $f=h+\bar{g}$, where h and g are of the form (18). Then $f \in(p, q)$ $S_{H}^{c}(\alpha)$ if and only if the condition

$$
\sum_{k=2}^{\infty}[k]_{p, q}\left\{\left([k]_{p, q}-\alpha\right)\left|a_{k}\right|+\left([k]_{p, q}+\alpha\right)\left|b_{k}\right|\right\} \leq 1-\alpha
$$

holds.
Remark 1. (in case $p=1$) as $q \rightarrow 1^{-}$, Corollaries 3 and 4 coincide with the results proved by Jahangiri [12] for the classes $S_{H}^{*}(\alpha)$ and $S_{H}^{c}(\alpha)$.

Theorem 4. The class $\mathcal{T} S_{H}^{0}(n, p, q, \alpha)$ forms a convex and compact set.

Proof. Let for $t=1,2, f_{t} \in \mathcal{T} S_{H}^{0}(n, p, q, \alpha)$ be of the form

$$
\begin{equation*}
f_{t}(z)=z-\sum_{k=2}^{\infty}\left|a_{t, k}\right| z^{k}+(-1)^{n} \sum_{k=2}^{\infty}\left|b_{t, k}\right| \bar{z}^{k} . \tag{19}
\end{equation*}
$$

Then for $0 \leq \rho \leq 1$,

$$
\begin{aligned}
f(t) & : \quad=\rho f_{1}(z)+(1-\rho) f_{2}(z) \\
& =z-\sum_{k=2}^{\infty}\left(\rho\left|a_{1, k}\right|+(1-\rho)\left|a_{2, k}\right|\right) z^{k}+(-1)^{n} \sum_{k=2}^{\infty}\left(\rho\left|b_{1, k}\right|+(1-\rho)\left|b_{2, k}\right|\right) \bar{z}^{k}
\end{aligned}
$$

and by Theorem (3), we have

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \psi_{k}\left[\left([k]_{p, q}-\alpha\right)\left\{\rho\left|a_{1, k}\right|+(1-\rho)\left|a_{2, k}\right|\right\}+\left([k]_{p, q}+\alpha\right)\left\{\rho\left|b_{1, k}\right|+(1-\rho)\left|b_{2, k}\right|\right\}\right] \\
& =\rho \sum_{k=2}^{\infty} \psi_{k}\left\{\left([k]_{p, q}-\alpha\right)\left|a_{1, k}\right|+\left([k]_{p, q}+\alpha\right)\left|b_{1, k}\right|\right\} \\
& +(1-\rho) \sum_{k=2}^{\infty} \psi_{k}\left\{\left([k]_{p, q}-\alpha\right)\left|a_{2, k}\right|+\left([k]_{p, q}+\alpha\right)\left|b_{2, k}\right|\right\} \\
& \leq \rho(1-\alpha)+(1-\rho)(1-\alpha)=1-\alpha
\end{aligned}
$$

where ψ_{k} is given by (5). Thus the function $f \in \mathcal{T} S_{H}^{0}(n, p, q, \alpha)$. Hence, the class $\mathcal{T} S_{H}^{0}(n, p, q, \alpha)$ is convex.
On the other hand, let for $t=1,2,3, \ldots, f_{t} \in \mathcal{T} S_{H}^{0}(n, p, q, \alpha)$ be of the form (19). Then by Theorem (3) for $|z| \leq r(0<r<1)$, we get

$$
\begin{aligned}
\left|f_{t}(z)\right| & \leq r+\sum_{k=2}^{\infty}\left(\left|a_{t, k}\right|+\left|b_{t, k}\right|\right) r^{k} \\
& \leq r+(1-\alpha) \sum_{k=2}^{\infty} \frac{\psi_{k}}{1-\alpha}\left\{\left([k]_{p, q}-\alpha\right)\left|a_{t, k}\right|+\left([k]_{p, q}+\alpha\right)\left|b_{t, k}\right|\right\} r^{k} \\
& \leq r+(1-\alpha) r^{2}
\end{aligned}
$$

where ψ_{k} is given by (5) and this proves that the class $\mathcal{T} S_{H}^{0}(n, p, q, \alpha)$ is locally uniformly bounded. Let $f=h+\bar{g}$, where h and g are given by (18). Further, since for $t=1,2,3, \ldots, f_{t} \in \mathcal{T} S_{H}^{0}(n, p, q, \alpha)$ be of the form (19), by Theorem (3), we have

$$
\begin{equation*}
\sum_{k=2}^{\infty} \psi_{k}\left\{\left([k]_{p, q}-\alpha\right)\left|a_{t, k}\right|+\left([k]_{p, q}+\alpha\right)\left|b_{t, k}\right|\right\} \leq 1-\alpha \tag{20}
\end{equation*}
$$

where ψ_{k} is given by (5). If we assume that $f_{t} \rightarrow f$, then we conclude that $\left|a_{t, k}\right| \rightarrow\left|a_{k}\right|$ and $\left|b_{t, k}\right| \rightarrow\left|b_{k}\right|$ as $t \rightarrow \infty(k \in \mathbb{N})$. Let σ_{k} be the sequence of partial sums of the series $\sum_{k=2}^{\infty} \psi_{k}\left\{\left([k]_{p, q}-\alpha\right)\left|a_{k}\right|+\left([k]_{p, q}+\alpha\right)\left|b_{k}\right|\right\}$. Then σ_{k} is
a non decreasing sequence and by (20) it is bounded above by $(1-\alpha)$. Thus, it is convergent and

$$
\sum_{k=2}^{\infty} \psi_{k}\left\{\left([k]_{p, q}-\alpha\right)\left|a_{k}\right|+\left([k]_{p, q}+\alpha\right)\left|b_{k}\right|\right\}=\lim _{k \rightarrow \infty} \sigma_{k} \leq 1-\alpha
$$

Thus the function $f \in \mathcal{T} S_{H}^{0}(n, p, q, \alpha)$ and therefore the class $\mathcal{T} S_{H}^{0}(n, p, q, \alpha)$ is compact.

We can easily find the following result on bounds.
Theorem 5. Let $f \in \mathcal{T} S_{H}^{0}(n, p, q, \alpha)$. Then for $|z|=r(r<1)$,

$$
r-\frac{1-\alpha}{\psi_{2}\left([2]_{p, q}-\alpha\right)} r^{2}<|f(z)|<r+\frac{1-\alpha}{\psi_{2}\left([2]_{p, q}-\alpha\right)} r^{2}
$$

where ψ_{2} is given by (5) for $k=2$.
Theorem 6. A function $f \in \operatorname{clco} \mathcal{T} S_{H}^{0}(n, p, q, \alpha)$ if and only if

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty}\left(x_{k} h_{k}(z)+y_{k} g_{k}(z)\right), \tag{21}
\end{equation*}
$$

where

$$
\begin{align*}
h_{1}(z) & =z, \quad h_{k}(z)=z-\frac{1-\alpha}{\psi_{k}\left([k]_{p, q}-\alpha\right)} z^{k} \tag{22}\\
g_{k}(z) & =z+(-1)^{n} \frac{1-\alpha}{\psi_{k}\left([k]_{p, q}+\alpha\right)} \bar{z}^{k} \quad(k=2,3, \ldots, z \in \mathbb{D})
\end{align*}
$$

and ψ_{k} is given by (5), $x_{k}, y_{k} \geq 0, k=1,2,3, \ldots, x_{1}=1-\sum_{k=2}^{\infty}\left(x_{k}+y_{k}\right)$. In particular, the extreme points of the class $\mathcal{T} S_{H}^{0}(n, p, q, \alpha)$ are $\left\{h_{k}\right\}$ and $\left\{g_{k}\right\}$.

Proof. Let a function f satisfy (21). Then, we have

$$
f(z)=z-(1-\alpha) \sum_{k=2}^{\infty}\left(\frac{x_{k}}{\psi_{k}\left([k]_{p, q}-\alpha\right)} z^{k}-(-1)^{n} \frac{y_{k}}{\psi_{k}\left([k]_{p, q}+\alpha\right)} \bar{z}^{k}\right)
$$

such that

$$
\begin{aligned}
& (1-\alpha) \sum_{k=2}^{\infty}\left(\psi_{k}\left[\left([k]_{p, q}-\alpha\right) \frac{x_{k}}{\psi_{k}\left([k]_{p, q}-\alpha\right)}+\left([k]_{p, q}-\alpha\right) \frac{y_{k}}{\psi_{k}\left([k]_{p, q}+\alpha\right)}\right]\right) \\
= & (1-\alpha)\left(1-x_{1}\right) \leq 1-\alpha
\end{aligned}
$$

which proves that $f \in \operatorname{clco} \mathcal{T} S_{H}^{0}(n, p, q, \alpha)$. Conversely, let $f=h+\bar{g} \in \operatorname{clco} \mathcal{T} S_{H}^{0}(n, p, q, \alpha)$, where h and g are of the form (18) and $x_{1}=1-\sum_{k=2}^{\infty}\left(x_{k}+y_{k}\right)$. Set $x_{k}=$
$\frac{\psi_{k}\left([k]_{p, q}-\alpha\right)}{1-\alpha}\left|a_{k}\right|$ and $y_{k}=\frac{\psi_{k}\left([k]_{p, q}+\alpha\right)}{1-\alpha}\left|b_{k}\right|, \quad k=2,3, \ldots$, we obtain the representation (21). Since,

$$
\begin{aligned}
f(z) & =z-\sum_{k=2}^{\infty}\left|a_{k}\right| z^{k}+(-1)^{n} \sum_{k=2}^{\infty}\left|b_{k}\right| \bar{z}^{k} \\
& =z-\sum_{k=2}^{\infty} \frac{(1-\alpha) x_{k}}{\psi_{k}\left([k]_{p, q}-\alpha\right)} z^{k}+(-1)^{n} \sum_{k=2}^{\infty} \frac{(1-\alpha) y_{k}}{\psi_{k}\left([k]_{p, q}+\alpha\right)} \bar{z}^{k} \\
& =z-\sum_{k=2}^{\infty}\left(z-h_{k}(z)\right) x_{k}+\sum_{k=2}^{\infty}\left(g_{k}(z)-z\right) y_{k} \\
& =\sum_{k=1}^{\infty}\left(x_{k} h_{k}(z)+y_{k} g_{k}(z)\right) .
\end{aligned}
$$

From Theorem 3, we get the following result:
Corollary 5. Let $f=h+\bar{g} \in \mathcal{T} S_{H}^{0}(n, p, q, \alpha)$, where h and g are of the form (18). Then

$$
\left|a_{k}\right| \leq \frac{1-\alpha}{\psi_{k}\left([k]_{p, q}-\alpha\right)} \quad \text { and } \quad\left|b_{k}\right| \leq \frac{1-\alpha}{\psi_{k}\left([k]_{p, q}+\alpha\right)}, \quad k=2,3,4, \ldots,
$$

where ψ_{k} is given by (5). Equality occurs in these inequalities for the extremal functions h_{k} and g_{k} given by (22). Furthermore,

$$
\begin{equation*}
\left|a_{k}\right| \leq 1 \quad \text { and } \quad\left|b_{k}\right| \leq 1, \quad k=2,3,4, \ldots \tag{23}
\end{equation*}
$$

Theorem 7. Let $0 \leq \beta<\alpha<1$ and $f, F \in \mathcal{T} S_{H}^{0}(n, p, q, \alpha)$. Then $f * F \in$ $S_{H}^{0}(n, p, q, \alpha) \subset S_{H}^{0}(n, p, q, \beta)$.
Proof. Let $f(z)=z-\sum_{k=2}^{\infty}\left|a_{k}\right| z^{k}+(-1)^{n} \sum_{k=2}^{\infty}\left|b_{k}\right| \bar{z}^{k}$ and $F(z)=z-\sum_{k=2}^{\infty}\left|A_{k}\right| z^{k}+$ $(-1)^{n} \sum_{k=2}^{\infty}\left|B_{k}\right| \bar{z}^{k}$. Then

$$
(f * F)=z+\sum_{k=2}^{\infty}\left|a_{k}\right|\left|A_{k}\right| z^{n}+\sum_{k=2}^{\infty}\left|b_{k}\right|\left|B_{k}\right| \bar{z}^{k}
$$

Since $F \in \mathcal{T} S_{H}^{0}(n, p, q, \alpha)$, with the use of (23) and Theorem 3, we get

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \psi_{k}\left(\frac{[k]_{p, q}-\beta}{1-\beta}\left|a_{k}\right|\left|A_{k}\right|+\frac{[k]_{p, q}+\beta}{1-\beta}\left|b_{k}\right|\left|B_{k}\right|\right) \\
\leq & \sum_{k=2}^{\infty} \psi_{k}\left(\frac{[k]_{p, q}-\alpha}{1-\alpha}\left|a_{k}\right|\left|A_{k}\right|+\frac{[k]_{p, q}+\alpha}{1-\alpha}\left|b_{k}\right|\left|B_{k}\right|\right) \\
& \leq \sum_{k=2}^{\infty} \psi_{k}\left(\frac{[k]_{p, q}-\alpha}{1-\alpha}\left|a_{k}\right|+\frac{[k]_{p, q}+\alpha}{1-\alpha}\left|b_{k}\right|\right) \leq 1
\end{aligned}
$$

which proves the result.

References

[1] Ahuja, Om P., Cetinkaya, A., Ravichandran, V., Harmonic univalent functions defined by post quantum calculas operators, Acta Univ. Sapientiae, Mathematica, 11 (2019), no. 1, 5-17.
[2] Altinkaya and Yalçin, S., Faber polynomial coefficient estimates for biunivalent functions of complex order based on subordinate conditions involving of the Jackson (p, q)-derivative, Miskolc Math. Notes 18 (2017), no. 2, 555-572.
[3] Araci, S., Duran, Uğur., Acikgoz, M. and Srivastava, H., A certain (p, q)derivative operator and associated divided differences, Journal of Inequalities and Applications (2016) 2016:301 DOI 10.1186/s13660-016-1240-8.
[4] Burban., M.I. and Klimyk, A., P, Q-differentiation, P, Q-integration, and P, Q-hypergeometric functions related to quantum groups, Integral Transform. Spec. Funct. 2 (1994), no. 1, 15-36.
[5] Duren, P., Hengartner, W. and Laugesen, S.R., The argument principle for harmonic functions, Amer. Math. Monthly 103 (1996), no. 5, 411-415.
[6] Govindaraj, M. and Sivasubramanian, S., On a class of analytic functions related to conic domains involving q-calculus, Anal. Math. 43 (2017), no. 3, 475-487.
[7] Hussain, S., Khan, S., Zaighum A.M. and Darus, M., Certain subclass of analytic functions related with conic domains and associated with Salagean q-differential operator, AIMS Mathematics, 2 (2017), no. 4, 622-634, 2017. DOI: 10.3934/Math.2017.4.622
[8] Ismail Merkes E. and Styer, D., A generalization of starlike functions, Complex Variables Theory Appl. 14 (1990), no. 1-4, 77-84.
[9] Jackson, F., On q-functions and a certain difference operator, Earth Environ. Sci. Trans. R. Soc. of Edinb., 46 (1909), no. 2, 253-281.
[10] Jackson, H.F., On q-definite integrals, Q. J. Pure Appl. Math., 41(15), 193203 (1910).
[11] Jahangiri, M.J., Harmonic univalent functions defined by q-calculus operator, International journal of Mathematical analysis and applications 5 (2018), no. 2, 39-43.
[12] Jahangiri, M.J., Harmonic functions starlike in the unit disk, J. Math. Anal. Appl. 235 (1999), no. 2, 470-477.
[13] Kanas, S. and Răducanu, D., Some class of analytic functions related to conic domains, Math. Slovaca 64 (2014), no. 5, 1183-1196.
[14] Lewy, H., On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), no. 10, 689-692.
[15] Mahmood, S. and Sokól, J., New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator, Results Math. 71 (2017), no. 3-4, 1345-1357.
[16] Murugusundaramoorthy, G. and Jahangiri, M.J., Ruscheweyth-type harmonic functions defined by q-differential operators, Khayyam J. Math. 5 (2019), no. 1, 79-88.
[17] Murugusundaramoorthy, G. and Vijaya, K., On certain classes of harmonic functions involving Ruscheweyh derivatives, Bull. Calcutta Math. Soc. 96 (2004), no. 2, 99-108.
[18] Polatoğlu, Y., Uçar, F. and Yilmaz, B., q-starlike functions of order alpha, TWMS J. App. Eng. Math. 8 (2018), no. 1, 186-192. DOI: 10.26837/jaem. 428337
[19] Ruscheweyh, S., New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.

[^0]: ${ }^{1}$ Department of Mathematics and Computer Science, Babu Banarasi Das University, Lucknow e-mail: mishraomendra@gmail.com
 ${ }^{2 *}$ Corresponding author, Department of Mathematics \& Astronomy, University of Lucknow, Lucknow 226007 India, e-mail: sharma_poonam@lkouniv.ac.in

