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A NEW CLASS OF HARMONIC FUNCTIONS ASSOCIATED
WITH A (p,q)-RUSCHEWEYH OPERATOR
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Abstract

With the use of post-quantum or (p, ¢)-calculus, in this paper we define
a new class S%(n,p,q,a) of certain harmonic functions f € S? associated
with a (p, g)-Ruscheweyh operator R} . For functions in this class, we ob-
tain a necessary and sufficient convolution condition. A sufficient coefficient
inequality is given for functions f € S%(n,p,q,«). It is proved that this
coefficient inequality is necessary for functions in its subclass TS%(n, p, ¢, ).
Certain properties such as convexity, compactness and results on bounds,
extreme points are also derived for functions in the subclass TS% (n,p, ¢, ).
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1 Introduction

Jackson [9, 10] was the first to give some applications of quantum calculus
known as the g-calculus by introducing the g-analogues of derivative and integral.
Research work in connection with function theory and g-calculus was first intro-
duced by Ismail et al. [8]. Recently, the g-calculus and its generalization called
post-quantum calculus also known as the (p, g)-calculus has been involved in the
theory of analytic and harmonic functions in the work [1, 2, 4, 6, 7, 11, 13, 15,
16, 18] (see also [3]). Some definitions related to the (p, ¢)-calculus are as follows:

Definition 1. For 0 < ¢ < p <1, a (p, q)-derivative operator 0y 4 on an analytic
function h is defined by

h(pz)—h(gz)
- (z #0),
2) = (p—q)z
9y4h(2) {h,(o) 2o 0
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Note that limo, ;h(z) = W .
ote that limdl,h(z) = W' (p-)
Definition 2. For 0 < ¢ <p <1, a (p,q)-number [k, is defined by

= e

k — p—q’
[Klp.q { PPl b 20+ pgF 2 R B =2,3, .

Definition 3. For any non-negative integer k, a (p, q)-number factorial [k, 4! is
defined by

[k]p,q! = [1]p,q[2]p,q[3]p,q R [k]p,qa k#0 and [O]p,q! =L

Definition 4. For k > 0, a (p,q)-gamma function is defined by
Lpq(k+1) = [klpglpq(k) and [pq(l) =1.

For ke NU{0},
Fp,q(k +1) = [k]p,q!-

Definition 5. For k > 0 and for n € NU{0}, a (p, q)-shifted factorial ([k]pq)n is
defined by

(Klp.g)n = Dpglk+n) _ [[Klpglk+ Upglk +2lpg- .. [k +n—1]pg, ifneN,

p.q)n Ipq(k) 1, =0,

For a function h(z) = 2*, ke N=1{1,2,3,...}, we have
8p7q(zk) = [klpq 2,

where [k], 4 is defined by (1).

Let H denote the class of complex-valued functions f = u + ¢v which are
harmonic in the unit disk D ={z € C: |z| < 1}, where u and v are real-valued
harmonic functions in D. Functions f € 3 can also be expressed as f = h + 7,
where h and g are analytic in D, called the analytic and co-analytic parts of the
function f, respectively. The Jacobian of the function f = h + g is given by
Ji(2) = |W(2)]? — |¢'(2)|*. According to the Lewy [14], every harmonic function
f = h+9g € H is locally univalent and sense preserving in D if and only if
J¢(2) > 0 in D. By requiring harmonic function to be sense-preserving, we retain
some basic properties exhibited by analytic functions, such as the open mapping
property, the argument principal, and zeros being isolated (see for detail [5]). The
class of all univalent, sense preserving harmonic functions f = h + g € H, with
the normalized conditions h(0) = 0 = ¢(0) and h’'(0) = 1 is denoted by Sy. If
f=h+7g € Sy, then h and g are of the form:

h(z) =2+ Z a2 and g(z) = Z bzt (2)
k=2 k=1
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A subclass of functions f = h + g € Sy with the condition ¢’'(0) = 0 is denoted
by Sg){. ff=h+ge S%, then h and g are of the form:

h(z)=z+ Z a2 and g(z) = Z bz~ (3)
k=2 k=2

Further, if g(z) = 0, the class Sy reduces to the class A of normalized univalent
functions.

The convolution of two analytic functions f(z) = Y oo, axz® and g(z) =
S22, bi2® is defined by (f * g)(2) = S5, axbrz®. The convolution of two har-
monic functions f = h+g and F = H+G is defined by (f*F)(2) = gxG+h* H.
A function f € Sy is said to be starlike of order a if

sree{gf(z)}>a 0<a<l)

f(2)

and the class of all harmonic functions which are starlike of order « is denoted by
St (a), where Df(z) = zh/(z) — z¢/(2). A function f € Sy is said to be convex of
order o if Df € S};(a) and the class of all harmonic functions which are convex
of order « is denoted by S (a). Classes S7;(«) and S¥ () were investigated by
Jahangiri [12]. Recently, a g-analogue of the Ruscheweyh operator was introduced
by Kanas and Raducanu [13] (see also [15]). Motivated with this g-analogue of
Ruscheweyh operator, we define a (p,q)-analogue of the Ruscheweyh operator
Ry, A— Aoforder n (n>—1) by

Ry h(z) = h(2) x ¢(p, g, n + 1;2), (4)
where
N —  ([Klpa)n &
¢(p7qan + 1; Z) =z+ ; 71_‘17’(1(2: 1)Z

which converges absolutely in the unit disk D. For simplicity, we denote

([Flp.g)n

Yk = Lpgn+1)

The operator Ry, for n € Ng = NU {0} may also be defined by

RO h(z) = h(2), R}, h(z)=Rpqh(z)=20pqh(2),

20p,qO0pq(2h(2z 203 ,(zh(2))
R = SRt = S
20" (2" 1h(z
R;L7qh<z) — paq([n]pq! ( )) (6)

Observe that
z
Ryghl2) = 1)« By (12 ). ™



92 O. Mishra and P. Sharma

and

Py o0
Rpq <1—z> = z+ Z[k]p,qzk
k=2
z

= . 8
(1—pz) (1—qz2) )
If p = 1, the operator R}, is called a g-analogue of the Ruscheweyh operator
denoted by Ry (see in [13][15]). As (in case p = 1) ¢ — 1, the operator Ry,
reduces to the Ruscheweyh operator R", defined by Ruscheweyh in [19].
A (p, g)-Salagean operator D} : A — A is defined [1] by

Dg’qh(z) = h(z), Dzl,’qh(z) = 20p qh(2)
Dyih(z) = zﬁp’q(D;?q_lh((z)),m eN

and a modified (p, g)-Salagean operator D', for harmonic function f = h +7 is
defined for any m € Ny by ([1]):

Dy f(z) =D, h(z) + (=1)" D g(2).

Involving the Ruscheweyh operator R; , defined by (6), a (p, ¢)-modified Ruscheweyh
operator R . for a harmonic function f = h + g is defined for any n € Ny by

Ry.qf (2) = Ry h(z) + (=1)"Rp 19(2), (9)

If p = 1, the operator R}, reduces to the operator Ry defined in [16] and (in
case p = 1) as ¢ — 1 the operator R} reduces to the modified Ruscheweyh
operator R" for f = h4+g see in [17]. We denote R} f(z) = Rpf(z) and
observe that for f = h + g, R, ,f(2) = Dpof(2) = 20p4h(2) — 20p49(2) and

Rp.qRpaf(2) = D]%,qf(z) = Df),qh(z) + Diqg(z).
We now define a class S¥(n,p, g, @) of the functions f € S% that satisfy the

condition .
§R€ { :RZMI(:Rp,qf)(z)
Ry f(2)

In particular, we denote the classes S%(0,p, g, «) and S%(1,p, g, @), respectively,
by (p,q)-Sj;(a) and (p,q)-S§;(a) and are called the classes of (p,q)-harmonic
starlike and (p, ¢)-harmonic convex functions of order «.

As (in case p = 1) ¢ — 1, the classes (p,q)-S};(«) and (p, q)-S§;(«), respec-
tively, reduce to the classes Si () and S (o) of functions f € S%. For p = 1,
the class S?I (n,p, q, &) was studied by Murugusundaramoorthy and Jahangiri [16,
(vi), p.82] for the functions f € Sy.

In this paper, we introduce a (p, ¢)-analogue of Ruscheweyh operator for ana-
lytic and for harmonic functions and study a new class S%(n, P, q, ) of harmonic
functions associated with the (p,q)-Ruscheweyh operator. For functions in this
class, we obtain a necessary and sufficient convolution condition. A sufficient
coefficient inequality is given for functions f € S%(n,p,q,«). It is proved that

}>a, 0<a<l (10)
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this coefficient inequality is necessary for functions in its subclass TS%(n, p, ¢, ).
Certain properties such as convexity, compactness and results on extreme points,
bounds are also derived for functions in the subclass ‘.TS% (n,p,q,a). Throughout
the work we consider the values of p,q (0 < ¢ < p < 1) such that for any k € N,

> 1. (11)

2 Main results

Theorem 1. Let f € S%. Then the function f € S%(n,p,q, ) if and only if
Rpaf(2) x®(2;() #0  (CeC,[¢|=1,2€D\{0}), (12)

where

A= 2)(1+Q) = (1—p2)(1—g2) 2a+ ¢ — D}
(- p2) (1 —q2)(1 - 2)

A+ = 2) + (1 p2)(1— g2) 20+ ¢ — 1}
(- p2)(1 —a2)(1 - 2) |

D(2;¢) = (13)

Proof. Since at z =0
Ry o2 )(2)
Ry 0 f (2)
which proves by (10) that f € S%(n,p,q, ). Hence, for z € D\{0}, f =h+7g €
59 (n,p, q, ) if and only if
L (Bl ),
11—« Ry f(2) ¢(+1

=1,

(-1#CeCll=1)
or
(14 Q) { R (B3, (=) — @R, F(2)} — (€~ 1) { R0, F(2) — Ry, f(2)} # 0. (14)
On using (9), Ryq (R, ) (2) = Ry Ry 1)~ (~1)" By o B 19(2), Ry g R h(2) =

Ry h(z) * m and Ry h(z) = Ry h(z) x %, we express the condition
(14) as
n z z z
R ()« (14O~ a4 Q) o~ (= )
+a(¢—1) . i z]
ST z I A
ARG (4 O s a0 O T - Dy
—a(¢— 1)1 Z]

#0
which proves the result (12). O
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Taking n = 0,1, respectively we get following results for the classes (p,q)-
Sp(a) and (p, )-S5 (a) :

Corollary 1. Let f € SY.. Then the function f € (p,q)-Sy /() if and only if
f(2)x@(z¢) #0  (CeC (] =1,z D\{0}),

where ®(z; () 1is given by (13).

Corollary 2. Let f € SY.. Then the function f € (p,q)-S% () if and only if

Rpaf(2)x@(20) #0  (CeC ¢ =1,zeD\{0}),

where ®(z; () is given by (13).

Theorem 2. Let f = h+g € H, where h and g are given by (3). Then f €

Sy (n.p,q,) if
D Uk {(Fpg — )lar] + (klpg + @) [bel} <1 - o, (15)
k=2

where Yy, is given by (5).

Proof. Tt is clear that the theorem is true for the function f(z) = z . Let f = h+7,
where h and g of the form (3) and assume that there exist k € {2,3,...} such
that ar # 0 or by # 0. The condition (11) ensures that [k],, is an increasing
function of £ and hence the condition (15) implies

> [Klp.g (lak] + [g]) < (16)
k=2
Hence, we have
|Op.gh(2)| = 10pqg(2)| = 1 — Z[k]p,q|ak| ‘Z|k_1 - Z[k]p7q|bk| |Z’k_1
k=2 k=2
>1- Z‘Z Klp,qlak| + [k]p.qlbkl)
>1—|z] > 0

which proves as ¢ — p that the function f is locally univalent and sense-preserving
in D. Moreover, if 21, z9 € D and for some p, ¢ (0 < g < p < 1) such that pz; # gzo,

k
> (pz)' " (gz)*
=1

(k=2,3,...).

’(le)k — (g22)"

k
< |zl|l_1pl_1qk_l|22\k_l < [k‘] 7
(pz1) — (gz2) 2 P

=1
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Hence, by (16), we have

|f(pz1) — f(gqz2)| = |h(pz1) — h(qz2)| — |g(pz1) — g(g22)|

> |pz1 — gz — Y _((p21)" — (g22))ak| — D (p21)* — (g22)F)bx
k=2 k=2
> z z > z z
zrpzl—qzﬂ(l—Z(pli_“ -2 1) ‘“)‘wk\)
= PA k=
> |pz1 — gz (1 - Z[k]nq‘ak‘ - Z[k]p,qwk’) >0
k=2 k=2

which proves that f is univalent in D. Now using the fact Re(w) > a <
1 —a+w| > |1+ a—wl, toshow f € S%(n,p,q,a), we prove that

’Rp,q(fRﬁq)f(Z) —(1+ ) (R ) f(2)
Rp.a(Rp ) f(2) + (1 = ) (R5 ) f(2)

<1, zeD (17)

or,

|Rpq(Rp ) f(2) + (1= @) (R ) (2)] = [Rpg(Rp ) f(2) = (1 + ) (R} ) f(2)] >0,

where the left-hand-side is

[e.o] o0

> (2 - a)lzl = Y (Fpg + 1 — a)dularl[zl* =D ([Klpg — 1+ @)ibelby]|2]*
k=2 k=2

—alz| - Z([k]p,q —1- a)¢k|ak||z|k
k=2

— > ([Klpg + 1+ )i bk 2

k=2

> [k -« _ kl,, +a _
> 2(1 - )l {1 =3 e = ot - Bt e } >0
k=2

if(15) holds. This completes the proof of Theorem 2.
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Definition 6. Let TS% (n,p, q,a) be the family of harmonic functions f = h+§ €
5% (n,p,q,a) such that for that value of n, functions h and g are of the form

h(z) =z — Z laglz® and  g(z) = (=1)" Z |bg |27, zeD (18)
k=2 k=2

Theorem 3. Let f = h + g, where h and g are of the form (18).Then f €
T5Y% (n,p, q,) if and only if the condition (15) holds.

Proof. The “if part” follows from Theorem 2. For the “only if” part, assume that
f€TS%(n,p,q,a), then from (17) we have

<1

' —az = 3 2 ([Klpg — 1 — @)t Jag| 28 — 332 o ([Klp.g + 1 + a)by|bp|ZF
(2— )z =232, ([klpg + 1 — @) P |ag| 28 = 32225 ([klpg — 1 + @) |be |2

for any z € D, where 1y, is given by (5). Since, £Re (w) < |w|, we have for real
value of z — 17,

Re < o+ 3 0o ([Klpg — 1 — a)thlar] + 3725 ([Klp,g + 1 + a)tby[by > -1
2—a =302 ([Klpg +1— ) Yrlar] — 02y ([Flpg — 1+ a) Yrlbe| ) —

which proves the inequality (15). O

In particular, we get the following results for the classes (p,q)-S}; () and
(p7 Q)_S?—I(a) :

Corollary 3. Let f = h+g, where h and g are of the form (18).Then f € (p,q)-
St («) if and only if the condition

Z {([K]p,q — )|ar| + ([klpg + ) [bg|} <1 —a,
k=2
holds.

Corollary 4. Let f = h+g, where h and g are of the form (18).Then f € (p,q)-
S% (o) if and only if the condition

> [Klpg {[Klpg — )lar] + (kg + @) [be]} <1 —a,
k=2

holds.

Remark 1. (in case p = 1) as ¢ — 17, Corollaries 3 and 4 coincide with the
results proved by Jahangiri [12] for the classes Sy;(o) and S§; ().

Theorem 4. The class ‘.]'S’?{(n,p,q,a) forms a convex and compact set.
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Proof. Let for t = 1,2, fy € T5%(n,p, ¢, a) be of the form

fi2) = 2= larl?® + (=)™ [beslz". (19)
k=2 k=2
Then for 0 < p <1,
A :Pfl(z)+(1_p>f2(z)
= z—Z (plar k| + (1 = p)lagkl) 2 + (=)™ Y (plbrel + (1 = p)|bail)Z*
k=2 k=2

and by Theorem (3), we have

Yk [(Kpg = @) {plarl + (1 = plagl} + (*pq + @) + (1= p)lb2,]}]
k=2

=Y Uk{([Flp.g — @)las il + ([klpg + @) [brrl}
=2

=) > Uil (Flpg — @)
k=2

<pl-a)+(1-p(l-a)=1-a,

([klp,g + )|bal}

where 1, is given by (5). Thus the function f € T5%(n,p, ¢, ). Hence, the class
TS% (n,p,q,a) is convex.

On the other hand, let for t = 1,2,3,..., fi € TS%(n,p,q, a) be of the form (19).
Then by Theorem (3) for |z| <r (0 <7 < 1), we get

oo
|fe(2) <7 Z |ar | + [bekl) T
k=2

<rt(1=a) Y 2 (kg — ekl + (Elpg + 0)lbosl}r*

l1—«

where 1, is given by (5) and this proves that the class TS%(n,p, g, @) is locally
uniformly bounded. Let f = h + g, where h and g are given by (18). Further,
since for t = 1,2,3,..., fr € TSY(n,p,q, @) be of the form (19), by Theorem (3),
we have

D 0o — @lack] + ([Klpg + @) berl} <1 - @, (20)
k=2

where 1) is given by (5). If we assume that f; — f, then we conclude that
lat x| — |ak| and |by x| — |bg| as t — oo (k € N). Let o be the sequence of
partial sums of the series > ;7 o Yr{([klpq — @)|ax| + ([k]p,g + @)|bk|}. Then oy is



98 O. Mishra and P. Sharma

a non decreasing sequence and by (20) it is bounded above by (1 — «). Thus, it
is convergent and

S el (K — @lax] + (Kl + @)lbl} = lim oy <10
k=2
Thus the function f € TSY(n,p,q,a) and therefore the class TSY(n,p,q, ) is
compact . O
We can easily find the following result on bounds.

Theorem 5. Let f € TSY(n,p,q, ). Then for |z| =1 (r < 1),

_1_—0‘72 5 - 1_—ar2
T @ O

where 1y is given by (5) for k = 2.

Theorem 6. A function f € clcoTS%(n,p,q,«) if and only if

F(2) = (wr hil2) + vk gx(2)), (21)
k=1
where
= z 2)=z— l-a 2"
T G TR .
= 2 _1\n -« Ek _ .
w(e) = 2 () (=252 € D)

and Yy, is given by (5), xx, yp >0, k=1,2,3,..., 21 =1-=> 725 (zx +yg). In
particular, the extreme points of the class TSYy(n,p, g, ) are {h} and {gx} .

Proof. Let a function f satisfy (21). Then, we have

Ipg — @) Vi ([klpg + @)
such that
(-2, <¢’" [(“‘"]p’q =) e =+ e~ g a>]>

= l-a)(l-—z)<1-«

which proves that f € clcoTSY(n, p, g, o). Conversely, let f = h+§ € clcoTSY(n,p, g, @),
where h and g are of the form (18) and z; = 1 — > 72, (xx +yk). Set x =
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%ﬂ lax| and y, = M |bk|, k=2,3,..., we obtain the representa-
tion (21). Since,
Fz) = 2= larl® + (=)™ [belzF
k=2 k=2
o0 o0
(I—a)z, 4 (1—yr
= z— — = N (=1)" — " 7
kZZQ Vi ([klp,q — @) g Vi([klpg + @)
= Z—Z(z—hk xk-i-z (9x(z
k=2

= > (k hi(2) + vk ge(2)) -
k=1

From Theorem 3, we get the following result:

Corollary 5. Let f = h+g € TS%(n,p,q,a), where h and g are of the form
(18). Then
11—« 11—«
<————— and |bg| < i Ty k=2,3,4,..,
Vr([klp.qg — @) Vr([Klpg + )
where 1y, is given by (5). Equality occurs in these inequalities for the extremal
functions hy, and gy given by (22). Furthermore,

lag| <

lag] <1 and |bx| <1, k=2,3,4,.., (23)
Theorem 7. Let 0 < 8 < a < 1 and f,F € T5%(n,p,q,a). Then f«F €
St (n,p,q,a) C Sk (n,p,q,B).

Proof. Let f(z) = z—) pey lag|2F4-(—1)" Y ores |bg|Z¥ and F(z) = 2= heo | Ag| 24
(=1)" 322, | Be|z*F. Then

(f*F) =2+ lagl|Axlz" + > [bel| BilZ".

k=2 k=2

Since F € 759 (n P, q, ), with the use of (23) and Theorem 3, we get

> >~ o (Bea P oy + et B )
f_oj e \ak||Ak|+”f’q+“|b I24))

SZ¢ (k] 4 \k\+wwk|>§1

which proves the result. O
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