A COMPREHENSIVE CLASS OF BI-UNIVALENT FUNCTIONS SUBORDINATE TO SHELL-LIKE CURVES

Nanjundan MAGESH ${ }^{1}$, Samy MURTHY ${ }^{2}$, Halit ORHAN ${ }^{*, 3}$ and Jayaraman SIVAPALAN ${ }^{4}$

Abstract

In the current work, we discuss certain stirring results of coefficient estimates of a unified class which is bridge between bi-starlike and bi-convex functions related to shell-like curves by means of subordination. Further, appropriate connections are discussed.

2000 Mathematics Subject Classification: 30C45, 30C50.
Key words: bi-univalent functions, bi-Mocanu convex functions, starlike functions, Shell-like curves, Fibonacci numbers.

1 Introduction

Let \mathscr{A} denote the class of functions of the form

$$
\begin{equation*}
\mathfrak{s}(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{D}=\{z: z \in \mathbb{C}$ and $|z|<1\}$. Further, by \mathscr{S} we shall denote the class of all functions in \mathscr{A} which are univalent in \mathbb{D}.

Let \mathscr{P} denote the class of Caratheodory functions of the form

$$
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots \quad(z \in \mathbb{D})
$$

which are analytic with $\Re\{p(z)\}>0$ (see [10]). It is well known that the following correspondence between the class \mathscr{P} and the class of Schwarz functions w exists:

[^0]$p \in \mathscr{P}$ if and only if $p(z)=1+w(z) / 1-w(z)$. Let $\mathscr{P}(\beta), 0 \leq \beta<1$, denote the class of analytic functions p in \mathbb{D} with $p(0)=1$ and $\Re\{p(z)\}>\beta$.

For analytic functions \mathfrak{s} and \mathfrak{j} in \mathbb{D}, \mathfrak{s} is said to be subordinate to \mathfrak{j} if \exists an analytic function w such that

$$
w(0)=0, \quad|w(z)|<1 \quad \text { and } \quad \mathfrak{s}(z)=\mathfrak{j}(w(z)) \quad(z \in \mathbb{D})
$$

This subordination will be denoted here by

$$
\mathfrak{s} \prec \mathfrak{j} \quad(z \in \mathbb{D})
$$

or, conventionally, by

$$
\mathfrak{s}(z) \prec \mathfrak{j}(z) \quad(z \in \mathbb{D}) .
$$

In particular, when \mathfrak{j} is univalent in \mathbb{D},

$$
\mathfrak{s} \prec \mathfrak{j} \quad(z \in \mathbb{D}) \Leftrightarrow \mathfrak{s}(0)=\mathfrak{j}(0) \quad \text { and } \quad \mathfrak{s}(\mathbb{D}) \subset \mathfrak{j}(\mathbb{D}) .
$$

Some of the important and well-investigated subclasses of the univalent function class \mathscr{S} include (for example) the class $\mathscr{S}^{*}(\alpha)$ of starlike functions of order α $(0 \leqq \alpha<1)$ in \mathbb{D} and the class $\mathscr{K}(\alpha)$ of convex functions of order $\alpha(0 \leqq \alpha<1)$ in \mathbb{D}, the class $\mathscr{S}^{*}(\varphi)$ of Ma-Minda starlike functions and the class $\mathscr{K}(\varphi)$ of MaMinda convex functions (φ is an analytic function with positive real part in \mathbb{D}, $\varphi(0)=1, \varphi^{\prime}(0)>0$ and φ maps \mathbb{D} onto a region starlike with respect to 1 and symmetric with respect to the real axis) (see [10]).

It is well known that every function $\mathfrak{s} \in \mathscr{S}$ has an inverse \mathfrak{s}^{-1}, defined by

$$
\mathfrak{s}^{-1}(\mathfrak{s}(z))=z \quad(z \in \mathbb{D})
$$

and

$$
\mathfrak{s}\left(\mathfrak{s}^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geqq \frac{1}{4}\right)
$$

where

$$
\mathfrak{s}^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots .
$$

A function $\mathfrak{s} \in \mathscr{A}$ is said to be bi-univalent in \mathbb{D} if both $\mathfrak{s}(z)$ and $\mathfrak{s}^{-1}(z)$ are univalent in \mathbb{D}. Let Σ denote the class of bi-univalent functions in \mathbb{D} given by (1). Recently, in their pioneering work on the subject of bi-univalent functions, Srivastava et al. [23] actually revived the study of the coefficient problems involving bi-univalent functions. Various subclasses of the bi-univalent function class Σ were introduced and non-sharp estimates on the first two coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ in the Taylor-Maclaurin series expansion (1) were found in several recent investigations (see, for example, $[1,2,3,4,5,7,11,12,13,14,15,18,19,21,22,24,25]$ and references therein). The afore-cited papers on the subject were actually motivated by the pioneering work of Srivastava et al. [23]. However, the problem to find the coefficient bounds on $\left|a_{n}\right|(n=3,4, \ldots)$ for functions $\mathfrak{s} \in \Sigma$ is still an open problem.

The classes $\mathscr{S} \mathscr{L}(\tilde{\phi})$ and $\mathscr{K} \mathscr{S}(\tilde{\phi})$ of shell-like functions and convex shell-like functions are respectively, characterized by $z \mathfrak{s}^{\prime} / \mathfrak{s}(z) \prec \tilde{\phi}(z)$ or $1+z^{2} \mathfrak{s}^{\prime \prime} / \mathfrak{s}^{\prime}(z) \prec$ $\tilde{\phi}(z)$, where $\tilde{\phi}(z)=\left(1+\varsigma^{2} z^{2}\right) /\left(1-\varsigma z-\varsigma^{2} z^{2}\right), \varsigma=(1-\sqrt{5}) / 2 \approx-0.618$. The classes $\mathscr{S} \mathscr{L}(\tilde{\phi})$ and $\mathscr{K} \mathscr{S}(\tilde{\phi})$ were introduced and studied by Sokół [20] and Dziok et al. [8] respectively (see also [9, 17]). The function $\tilde{\phi}$ is not univalent in \mathbb{D}, but it is univalent in the disc $|z|<(3-\sqrt{5}) / 2 \approx 0.38$. For example, $\tilde{\phi}(0)=$ $\tilde{\phi}(-1 / 2 \varsigma)=1$ and $\tilde{\phi}\left(e^{\mp} \arccos (1 / 4)\right)=\sqrt{5} / 5$ and it may also be noticed that $1 /|\varsigma|=|\varsigma| / 1-|\varsigma|$ which shows that the number $|\varsigma|$ divides $(0,1)$ such that it fulfills the golden section. The image of the unit circle $|z|=1$ under $\tilde{\phi}$ is a curve described by the equation given by $(10 x-\sqrt{5}) y^{2}=(\sqrt{5}-2 x)(\sqrt{5} x-1)^{2}$, which is translated and revolved trisectrix of Maclaurin. The curve $\tilde{\phi}\left(r e^{i t}\right)$ is a closed curve without any loops for $0<r \leq r_{0}=(3-\sqrt{5}) / 2 \approx 0.38$. For $r_{0}<r<1$, it has a loop and for $r=1$, it has a vertical asymptote. Since ς satisfies the equation $\varsigma^{2}=1+\varsigma$, this expression can be used to obtain higher powers ς^{n} as a linear function of lower powers, which in turn can be decomposed all the way down to a linear combination of ς and 1 . The resulting recurrence relationships yield Fibonacci numbers ϑ_{n}

$$
\varsigma^{n}=\vartheta_{n} \varsigma+\vartheta_{n-1} .
$$

Recently Raina and Sokół [17], taking $\varsigma z=t$, showed that

$$
\begin{equation*}
\tilde{\phi}(z)=\frac{1+\varsigma^{2} z^{2}}{1-\varsigma z-\varsigma^{2} z^{2}}=1+\sum_{n=2}^{\infty}\left(\vartheta_{n-1}+\vartheta_{n+1}\right) \varsigma^{n} z^{n} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\vartheta_{n}=\frac{(1-\varsigma)^{n}-\varsigma^{n}}{\sqrt{5}}, \quad \varsigma=\frac{1-\sqrt{5}}{2} ; \quad n=12, \cdots . \tag{3}
\end{equation*}
$$

This shows that the relevant connection of $\tilde{\phi}$ with the sequence of Fibonacci numbers ϑ_{n}, such that

$$
\vartheta_{0}=0, \quad \vartheta_{1}=1, \quad \vartheta_{n+2}=\vartheta_{n}+\vartheta_{n+1}
$$

for $n=0,1,2,3, \cdots$. Hence

$$
\begin{equation*}
\tilde{\phi}(z)=1+\varsigma z+3 \varsigma^{2} z^{2}+4 \varsigma^{3} z^{3}+7 \varsigma^{4} z^{4}+11 \varsigma^{5} z^{5}+\cdots \tag{4}
\end{equation*}
$$

We note that the function $\tilde{\phi}$ belongs to the class $\mathscr{P}(\beta)$ with $\beta=\frac{\sqrt{5}}{10} \approx 0.2236$ (see [17]). For more details one could refer recent works in this line from [1, 3, 4, $5,11,13,14,18,19]$ and references therein.
Definition 1. A function $\mathfrak{s} \in \Sigma$ of the form (1) belongs to the class $\mathscr{M} \mathscr{S}_{\Sigma}^{\kappa, v, \gamma}(\tilde{\phi})$ with $0 \leqq \kappa \leqq 1,0 \leqq v \leqq 1$ and $1 \leqq \gamma \leqq 2$, if the following conditions are satisfied:

$$
\begin{equation*}
\kappa\left(1+\frac{z \mathfrak{s}^{\prime \prime}(z)}{\mathfrak{s}^{\prime}(z)}\right)^{1-v}\left(\frac{z \mathfrak{s}^{\prime}(z)}{\mathfrak{s}(z)}\right)^{v}+(1-\kappa)\left(\frac{z \mathfrak{s}^{\prime}(z)}{\mathfrak{s}(z)}\right)^{\gamma} \prec \widetilde{\phi(z)}, \quad z \in \mathbb{D} \tag{5}
\end{equation*}
$$

and for $\mathfrak{j}(w)=\mathfrak{s}^{-1}(w)$

$$
\begin{equation*}
\kappa\left(1+\frac{w \mathfrak{j}^{\prime \prime}(w)}{\mathfrak{j}^{\prime}(w)}\right)^{1-v}\left(\frac{w \mathfrak{j}^{\prime}(w)}{\mathfrak{j}(w)}\right)^{v}+(1-\kappa)\left(\frac{w \mathfrak{j}^{\prime}(w)}{\mathfrak{j}(w)}\right)^{\gamma} \prec \widetilde{\phi(w)}, \quad w \in \mathbb{D}, \tag{6}
\end{equation*}
$$

where $\varsigma=\frac{1-\sqrt{5}}{2} \approx-0.618$.
Also, we note that the class $\mathscr{M} \mathscr{S}_{\Sigma}^{\kappa, v, \gamma}(\tilde{\phi})$ deduces to known classes introduced in [11] as given below:

1. $\mathscr{M} \mathscr{S}_{\Sigma}^{\kappa, 0,1}(\tilde{\phi}) \equiv \mathscr{M} \mathscr{S}_{\Sigma}^{\kappa}(\tilde{\phi})$
2. $\mathscr{M} \mathscr{S}_{\Sigma}^{1, v, 1}(\tilde{\phi}) \equiv \mathscr{L} \mathscr{S}_{\Sigma}^{v}(\tilde{\phi})$
3. $\mathscr{M} \mathscr{S}_{\Sigma}^{1,1,1}(\tilde{\phi}) \equiv \mathscr{S} \mathscr{L}_{\Sigma}(\tilde{\phi})$
4. $\mathscr{M} \mathscr{S}_{\Sigma}^{1,0,1}(\tilde{\phi}) \equiv \mathscr{K} \mathscr{S}_{\Sigma}(\tilde{\phi})$.

In view of a lemma given below, we prove the results of the current paper.
Lemma 1. [16] If $p \in \mathscr{P}$, then $\left|p_{i}\right| \leqq 2$ for each $i \in \mathbb{N}$.
In this investigation, we find the estimates for the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the subclass $\mathscr{M} \mathscr{S}_{\Sigma}^{\kappa, v, \gamma}(\tilde{\phi})$ Also, we obtain the Fekete-Szegö functional $\left|a_{3}-\nu a_{2}^{2}\right|$ for $\nu \in \mathbb{R}$.

2 A Set of coefficient estimates

In the following theorem, we obtain coefficient estimates for functions in the class $\mathfrak{s} \in \mathscr{M} \mathscr{S}_{\Sigma}^{\kappa, v, \gamma}(\tilde{\phi})$.
Theorem 1. Let $\mathfrak{s}(z)$ of the form (1) be in the class $\mathscr{M} \mathscr{S}_{\Sigma}^{\kappa, v, \gamma}(\tilde{\phi})$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{2}{\mathscr{R}}}|\varsigma|, \quad\left|a_{3}\right| \leq \frac{|\varsigma| \mathscr{P}}{2 \mathscr{Q} \mathscr{R}} \tag{7}
\end{equation*}
$$

and for $\nu \in \mathbb{R}$,

$$
\left|a_{3}-\nu a_{2}^{2}\right| \leq \begin{cases}\frac{|\varsigma|}{2 \mathscr{Q}} & ; 0 \leq|\nu-1| \leq \frac{\mathscr{R}}{4|\varsigma| \mathscr{Q}} \tag{8}\\ \frac{2|1-\nu||\varsigma|^{2}}{\mathscr{R}} & ;|\nu-1| \geq \frac{\mathscr{R}}{4|\varsigma| \mathscr{Q}},\end{cases}
$$

where

$$
\begin{align*}
\mathscr{P} & =\varsigma\left((1-\kappa) \gamma(\gamma-3)+\kappa\left(v^{2}+5 v-8\right)\right)+2(1-3 \varsigma)[(1-\kappa) \gamma+\kappa(2-v)]^{2} \tag{9}\\
\mathscr{Q} & =(1-\kappa) \gamma+\kappa(3-2 v) \tag{10}
\end{align*}
$$

and

$$
\begin{equation*}
\mathscr{R}=\varsigma\left((1-\kappa) \gamma(1+\gamma)+\kappa\left(v^{2}-3 v+4\right)\right)+2(1-3 \varsigma)[(1-\kappa) \gamma+\kappa(2-v)]^{2} . \tag{11}
\end{equation*}
$$

Proof. Since $\mathfrak{s} \in \mathscr{M} \mathscr{S}_{\Sigma}^{\kappa, v, \gamma}(\tilde{\phi})$, from Definition 1 we have

$$
\begin{equation*}
\kappa\left(1+\frac{z \mathfrak{s}^{\prime \prime}(z)}{\mathfrak{s}^{\prime}(z)}\right)^{1-v}\left(\frac{z \mathfrak{s}^{\prime}(z)}{\mathfrak{s}(z)}\right)^{v}+(1-\kappa)\left(\frac{z \mathfrak{s}^{\prime}(z)}{\mathfrak{s}(z)}\right)^{\gamma}=\widetilde{\phi(\varphi(z))} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\kappa\left(1+\frac{w \mathfrak{j}^{\prime \prime}(w)}{\mathfrak{j}^{\prime}(w)}\right)^{1-v}\left(\frac{w \mathfrak{j}^{\prime}(w)}{\mathfrak{j}(w)}\right)^{v}+(1-\kappa)\left(\frac{w \mathbf{j}^{\prime}(w)}{\mathfrak{j}(w)}\right)^{\gamma}=\widehat{\phi(\chi(w)}\right), \tag{13}
\end{equation*}
$$

where $z, w \in \mathbb{D}$ and $g=\mathfrak{s}^{-1}$. Since $p \in \mathscr{P}$ and $p \prec \tilde{\phi}$. Then \exists an analytic function φ such that $|\varphi(z)|<1$ in \mathbb{D} and $p(z)=\tilde{\phi}(\varphi(z))$. Therefore, define the function

$$
\Phi(z)=\frac{1+\varphi(z)}{1-\varphi(z)}=1+\varphi_{1} z+\varphi_{2} z^{2}+\cdots
$$

is in the class \mathscr{P}. It follows that

$$
\varphi(z)=\frac{\Phi(z)-1}{\Phi(z)+1}=\frac{\varphi_{1}}{2} z+\left(\varphi_{2}-\frac{\varphi_{1}^{2}}{2}\right) \frac{z^{2}}{2}+\left(\varphi_{3}-\varphi_{1} \varphi_{2}+\frac{\varphi_{1}^{3}}{4}\right) \frac{z^{3}}{2}+\cdots
$$

and

$$
\begin{align*}
\tilde{\phi}(\varphi(z))= & 1+\tilde{\phi}\left(\frac{\varphi_{1}}{2} z+\left(\varphi_{2}-\frac{\varphi_{1}^{2}}{2}\right) \frac{z^{2}}{2}+\left(\varphi_{3}-\varphi_{1} \varphi_{2}+\frac{\varphi_{1}^{3}}{4}\right) \frac{z^{3}}{2}+\cdots\right) \\
& +\tilde{\phi}_{2}\left(\frac{\varphi_{1}}{2} z+\left(\varphi_{2}-\frac{\varphi_{1}^{2}}{2}\right) \frac{z^{2}}{2}+\left(\varphi_{3}-\varphi_{1} \varphi_{2}+\frac{\varphi_{1}^{3}}{4}\right) \frac{z^{3}}{2}+\cdots\right)^{2} \\
& +\tilde{\phi}_{3}\left(\frac{\varphi_{1}}{2} z+\left(\varphi_{2}-\frac{\varphi_{1}^{2}}{2}\right) \frac{z^{2}}{2}+\left(\varphi_{3}-\varphi_{1} \varphi_{2}+\frac{\varphi_{1}^{3}}{4}\right) \frac{z^{3}}{2}+\cdots\right)^{3} \\
& +\cdots \\
= & 1+\frac{\tilde{\phi}_{1} \varphi_{1}}{2} z+\left(\frac{1}{2}\left(\varphi_{2}-\frac{\varphi_{1}^{2}}{2}\right) \tilde{\phi}_{1}+\frac{\varphi_{1}^{2}}{4} \tilde{\phi}_{2}\right) z^{2} \\
& +\left(\frac{1}{2}\left(\varphi_{3}-\varphi_{1} \varphi_{2}+\frac{\varphi_{1}^{3}}{4}\right) \tilde{\phi}_{1}+\frac{1}{2} \varphi_{1}\left(\varphi_{2}-\frac{\varphi_{1}^{2}}{2}\right) \tilde{\phi}_{2}+\frac{\varphi_{1}^{3}}{8} \tilde{\phi}_{3}\right) z^{3} \\
& +\cdots . \tag{14}
\end{align*}
$$

Similarly, \exists an analytic function χ such that $|\chi(w)|<1$ in \mathbb{D} and $p(w)=\tilde{\phi}(\chi(w))$. Therefore, the function

$$
\Psi(w)=\frac{1+\chi(w)}{1-\chi(w)}=1+\chi_{1} w+\chi_{2} w^{2}+\cdots
$$

is in the class \mathscr{P}. It follows that

$$
\chi(w)=\frac{\Psi(w)-1}{\Psi(w)+1}=\frac{\chi_{1}}{2} w+\left(\chi_{2}-\frac{\chi_{1}^{2}}{2}\right) \frac{w^{2}}{2}+\left(\chi_{3}-\chi_{1} \chi_{2}+\frac{\chi_{1}^{3}}{4}\right) \frac{w^{3}}{2}+\cdots
$$

and

$$
\begin{align*}
\tilde{\phi}(\chi(w))= & 1+\tilde{\phi}\left(\frac{\chi_{1}}{2} w+\left(\chi_{2}-\frac{\chi_{1}^{2}}{2}\right) \frac{w^{2}}{2}+\left(\chi_{3}-\chi_{1} \chi_{2}+\frac{\chi_{1}^{3}}{4}\right) \frac{w^{3}}{2}+\cdots\right) \\
& +\tilde{\phi}_{2}\left(\frac{\chi_{1}}{2} w+\left(\chi_{2}-\frac{\chi_{1}^{2}}{2}\right) \frac{w^{2}}{2}+\left(\chi_{3}-\chi_{1} \chi_{2}+\frac{\chi_{1}^{3}}{4}\right) \frac{w^{3}}{2}+\cdots\right)^{2} \\
& +\tilde{\phi}_{3}\left(\frac{\chi_{1}}{2} w+\left(\chi_{2}-\frac{\chi_{1}^{2}}{2}\right) \frac{w^{2}}{2}+\left(\chi_{3}-\chi_{1} \chi_{2}+\frac{\chi_{1}^{3}}{4}\right) \frac{w^{3}}{2}+\cdots\right)^{3} \\
& +\cdots \\
= & 1+\frac{\tilde{\phi}_{1} \chi_{1}}{2} w+\left(\frac{1}{2}\left(\chi_{2}-\frac{\chi_{1}^{2}}{2}\right) \tilde{\phi}_{1}+\frac{\chi_{1}^{2}}{4} \tilde{\phi}_{2}\right) w^{2} \\
& +\left(\frac{1}{2}\left(\chi_{3}-\chi_{1} \chi_{2}+\frac{\chi_{1}^{3}}{4}\right) \tilde{\phi}_{1}+\frac{1}{2} \chi_{1}\left(\chi_{2}-\frac{\chi_{1}^{2}}{2}\right) \tilde{\phi}_{2}+\frac{\chi_{1}^{3}}{8} \tilde{\phi}_{3}\right) w^{3} \\
& +\cdots . \tag{15}
\end{align*}
$$

By virtue of (12), (13), (14) and (15), we have

$$
\begin{gather*}
{[(1-\kappa) \gamma+\kappa(2-v)] a_{2}=\frac{\varphi_{1} \varsigma}{2},} \tag{16}\\
2[(1-\kappa) \gamma+\kappa(3-2 v)] a_{3}-\left[(1-\kappa) \gamma(3-\gamma)-\kappa\left(v^{2}+5 v-8\right)\right] \frac{a_{2}^{2}}{2} \\
=\frac{1}{2}\left(\varphi_{2}-\frac{\varphi_{1}^{2}}{2}\right) \varsigma+\frac{3 \varphi_{1}^{2}}{4} \varsigma^{2}, \tag{17}\\
-[(1-\kappa) \gamma+\kappa(2-v)] a_{2}=\frac{\chi_{1} \varsigma}{2}, \tag{18}
\end{gather*}
$$

and

$$
\begin{align*}
& {\left[(1-\kappa) \gamma(5+\gamma)+\kappa\left(v^{2}-11 v+16\right)\right] \frac{a_{2}^{2}}{2}-2[(1-\kappa) \gamma+\kappa(3-2 v)] a_{3} } \\
= & \frac{1}{2}\left(\chi_{2}-\frac{\chi_{1}^{2}}{2}\right) \varsigma+\frac{3 \chi_{1}^{2}}{4} \varsigma^{2} . \tag{19}
\end{align*}
$$

From (16) and (18), we obtain

$$
\varphi_{1}=-\chi_{1}
$$

and

$$
\begin{align*}
2[(1-\kappa) \gamma+\kappa(2-v)]^{2} a_{2}^{2} & =\frac{\left(\varphi_{1}^{2}+\chi_{1}^{2}\right) \varsigma^{2}}{4} \\
a_{2}^{2} & =\frac{\left(\varphi_{1}^{2}+\chi_{1}^{2}\right) \varsigma^{2}}{8[(1-\kappa) \gamma+\kappa(2-v)]^{2}} . \tag{20}
\end{align*}
$$

By adding (17) and (19), we have

$$
\begin{align*}
& \left((1-\kappa) \gamma(1+\gamma)+\kappa\left(v^{2}-3 v+4\right)\right) a_{2}^{2} \\
= & \frac{1}{2}\left(\varphi_{2}+\chi_{2}\right) \varsigma-\frac{1}{4}\left(\varphi_{1}^{2}+\chi_{1}^{2}\right) \varsigma+\frac{3}{4}\left(\varphi_{1}^{2}+\chi_{1}^{2}\right) \varsigma^{2} . \tag{21}
\end{align*}
$$

By substituting (20) in (21), we reduce that

$$
\begin{equation*}
a_{2}^{2}=\frac{\left(\varphi_{2}+\chi_{2}\right) \varsigma^{2}}{2 \mathscr{R}} . \tag{23}
\end{equation*}
$$

Now, applying Lemma 1, we obtain

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\sqrt{2}|\varsigma|}{\sqrt{\mathscr{R}}} \tag{24}
\end{equation*}
$$

By subtracting (19) from (17), we obtain

$$
\begin{equation*}
a_{3}=\frac{\left(\varphi_{2}-\chi_{2}\right) \varsigma}{8 \mathscr{Q}}+a_{2}^{2} . \tag{25}
\end{equation*}
$$

Hence by Lemma 1, we have

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left(\left|\varphi_{2}\right|+\left|\chi_{2}\right|\right)|\varsigma|}{8 \mathscr{Q}}+\left|a_{2}\right|^{2} \leq \frac{|\varsigma|}{2 \mathscr{Q}}+\left|a_{2}\right|^{2} . \tag{26}
\end{equation*}
$$

Then in view of (24), we obtain

$$
\left|a_{3}\right| \leq \frac{|\varsigma| \mathscr{P}}{2 \mathscr{Q} \mathscr{R}} .
$$

From (25), we have for $\nu \in \mathbb{R}$

$$
\begin{equation*}
a_{3}-\nu a_{2}^{2}=\frac{\left(\varphi_{2}-\chi_{2}\right) \varsigma}{8 \mathscr{Q}}+(1-\nu) a_{2}^{2} . \tag{27}
\end{equation*}
$$

By substituting (23) in (27), we have

$$
\begin{align*}
a_{3}-\nu a_{2}^{2} & =\frac{\left(\varphi_{2}-\chi_{2}\right) \varsigma}{8 \mathscr{Q}}+(1-\nu)\left(\frac{\left(\varphi_{2}+\chi_{2}\right) \varsigma^{2}}{2 \mathscr{R}}\right) \\
& =\left(\Phi(\nu)+\frac{\varsigma}{8 \mathscr{Q}}\right) \varphi_{2}+\left(\Phi(\nu)-\frac{\varsigma}{8 \mathscr{Q}}\right) \chi_{2} \tag{28}
\end{align*}
$$

where

$$
\Phi(\nu)=\frac{(1-\nu) \varsigma^{2}}{2 \mathscr{R}} .
$$

Thus by taking modulus of (28), we conclude that

$$
\left|a_{3}-\nu a_{2}^{2}\right| \leq \begin{cases}\frac{|\varsigma|}{2 \mathscr{Q}} & ; 0 \leq|\Phi(\nu)| \leq \frac{|\varsigma|}{8 \mathscr{Q}} \\ 4|\Phi(\nu)| & ;|\Phi(\nu)| \geq \frac{|\varsigma|}{8 \mathscr{Q}}\end{cases}
$$

which leads to the desired inequlity (8).

3 Corollaries and consequences

Corollary 1. Let $\mathfrak{s} \in \mathscr{A}$ of the form (1) be in the class $\mathscr{M} \mathscr{S}_{\Sigma}^{\kappa}(\tilde{\phi})$. Then

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{|\varsigma|}{\sqrt{\varsigma(1+\kappa)+(1-3 \varsigma)(1+\kappa)^{2}}}, \\
& \left|a_{3}\right| \leq \frac{|\varsigma|\left[(1-3 \varsigma)(1+\kappa)^{2}-\varsigma(1+3 \kappa)\right]}{2(1+2 \kappa)\left(\varsigma(1+\kappa)+(1-3 \varsigma)(1+\kappa)^{2}\right)}
\end{aligned}
$$

and for $\nu \in \mathbb{R}$,

$$
\left|a_{3}-\nu a_{2}^{2}\right| \leq \begin{cases}\frac{|\varsigma|}{2(1+2 \kappa)} & ; 0 \leq|\nu-1| \leq C(\varsigma, \kappa) \\ \frac{|1-\nu||\varsigma|^{2}}{\varsigma(1+\kappa)+(1-3 \varsigma)(1+\kappa)^{2}} & ;|\nu-1| \geq C(\varsigma, \kappa),\end{cases}
$$

where $C(\varsigma, \kappa)=\frac{\varsigma(1+\kappa)+(1-3 \varsigma)(1+\kappa)^{2}}{2|\varsigma|(1+2 \kappa)}$.
Corollary 2. Let $\mathfrak{s} \in \mathscr{A}$ of the form (1) be in the class $\mathscr{L} \mathscr{S}_{\Sigma}^{v}(\tilde{\phi})$. Then

$$
\begin{align*}
& \left|a_{2}\right| \leq \frac{\sqrt{2}|\varsigma|}{\sqrt{\varsigma\left(v^{2}-3 v+4\right)+2(1-3 \varsigma)(2-v)^{2}}} \tag{29}\\
& \left|a_{3}\right| \leq \frac{|\varsigma|\left[\varsigma\left(v^{2}+5 v-8\right)+2(1-3 \varsigma)(2-v)^{2}\right]}{2(3-2 v) \mathscr{R}_{2}} \tag{30}
\end{align*}
$$

and for $\nu \in \mathbb{R}$,

$$
\left|a_{3}-\nu a_{2}^{2}\right| \leq \begin{cases}\frac{|\varsigma|}{2(3-2 v)} & ; 0 \leq|\nu-1| \leq \frac{|\varsigma|}{4|\varsigma|(3-2 v)} \tag{31}\\ \frac{2|1-\nu||\varsigma|^{2}}{|\varsigma|} & ;|\nu-1| \geq \frac{|\varsigma|}{4|\varsigma|(3-2 v)}\end{cases}
$$

Corollary 3. [11] Let $\mathfrak{s} \in \mathscr{A}$ of the form (1) be in the class $\mathscr{S} \mathscr{L}(\tilde{\phi})$. Then

$$
\left|a_{2}\right| \leq \frac{|\varsigma|}{\sqrt{1-2 \varsigma}}, \quad\left|a_{3}\right| \leq \frac{|\varsigma|(1-4 \varsigma)}{2-4 \varsigma}
$$

and for $\nu \in \mathbb{R}$,

$$
\left|a_{3}-\nu a_{2}^{2}\right| \leq \begin{cases}\frac{|\varsigma|}{2} & ; 0 \leq|\nu-1| \leq \frac{1-2 \varsigma}{2|\varsigma|} \\ \frac{|\nu-1| \varsigma^{2}}{1-2 \varsigma} & ;|\nu-1| \geq \frac{1-2 \varsigma}{2|\varsigma|}\end{cases}
$$

Corollary 4. [11] Let $\mathfrak{s} \in \mathscr{A}$ of the form (1) be in the class $\mathscr{K} \mathscr{S}_{\Sigma}(\tilde{\phi})$. Then

$$
\left|a_{2}\right| \leq \frac{|\varsigma|}{\sqrt{4-10 \varsigma}}, \quad\left|a_{3}\right| \leq \frac{|\varsigma|(1-4 \varsigma)}{6-15 \varsigma} .
$$

and for $\nu \in \mathbb{R}$,

$$
\left|a_{3}-\nu a_{2}^{2}\right| \leq \begin{cases}\frac{|\varsigma|}{6} & ; 0 \leq|\nu-1| \leq \frac{2-5 \varsigma}{3|\varsigma|} \\ \frac{|\nu-1| \varsigma^{2}}{4-10 \varsigma} & ;|\nu-1| \geq \frac{2-5 \varsigma}{3|\varsigma|}\end{cases}
$$

References

[1] Ahuja, O.P., Çetinkaya, A. and Bohra, N., On a class of q-bi-univalent functions of complex order related to shell-like curves connected with the Fibonacci numbers, Honam Math. J. 42 (2020), no. 2, 319-330.
[2] Ali, R.M., Lee, S.K., Ravichandran, V. and Supramanian, S., Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), no. 3, 344-351.
[3] Altınkaya, Ş., Bounds for a new subclass of bi-univalent functions subordinate to the Fibonacci numbers, Turk. J. Math., 44 (2020), 553-560.
[4] Altınkaya, S.., Yalçın, S. and Çakmak, S., A subclass of bi-univalent functions based on the Faber polynomial expansions and the Fibonacci numbers, Mathematics 160, (2019), no. 7, 1-9.
[5] Arulmani, J., On a subclass of bi-univalent functions related to shell-like curves connected with Fibonacci number, Malaya J. Math. 8 (2020), no. 3, 803-808.
[6] Bulut, S., Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math. 43 (2013), no. 2, 59-65.
[7] Çağlar, M., Orhan, H. and Yağmur, N., Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27 (2013), no. 7, 1165-1171.
[8] Dziok, J., Raina, R.K. and Sokół, J., Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers, Comp. Math. Appl. 61 (2011), 2605-2613.
[9] Dziok, J., Raina, R.K. and Sokół, J., On α-convex functions related to a shell-like curve connected with Fibonacci numbers, Appl. Math. Comp. 218 (2011), 996-1002.
[10] Duren, P.L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften Series, 259, Springer Verlag, New York, 1983.
[11] Ö. Güney, H., Murugusundaramoorthy, G. and Sokól, J., Subclasses of biunivalent functions related to shell-like curves connected with Fibonacci numbers, Acta Univ. Sapientiae, Math., 10 (2018), no. 1, 70-84.

70 Nanjundan Magesh, Samy Murthy, Halit Orhan and Jayaraman Sivapalan
[12] Jahangiri, J.M., Hamidi, S.G., and Halim, S. Abd., Coefficients of biunivalent functions with positive real part derivatives, Bull. Malays. Math. Sci. Soc. (2) 37 (2014), no. 3, 633-640.
[13] Magesh, N., Abirami, C. and Balaji, V.K., Certain classes of bi-univalent functions related to Shell-like curves connected with Fibonacci numbers, Afrika Matematika, (2020), 1-13.
[14] Orhan, H., Magesh N. and Abirami, C., Fekete-Szegö problem for bi-Bazilevič functions related to shell-like curves, AIMS Math. 5 (2020), no. 5, 4412-4423.
[15] Peng, Z. and Han, Q., On the coefficients of several classes of bi-univalent functions, Acta Math. Sci. Ser. B (Engl. Ed.) 34 (2014), no. 1, 228-240.
[16] Pommerenke, C., Univalent Functions, Vandenhoeck \& Ruprecht, Göttingen, 1975.
[17] Raina, R.K. and Sokół, J., Fekete-Szegö problem for some starlike functions related to shell-like curves, Math. Slovaca 66 (2016), 135-140.
[18] Singh, G., Singh G. and Singh, G., A subclass of bi-univalent functions defined by generalized Sälãgean operator related to shell-like curves connected with Fibonacci numbers, Int. J. Math. Math. Sci. 2019, Art. ID 7628083, 7 pp.
[19] Singh, G., Singh G. and Singh, G., Certain subclasses of univalent and biunivalent functions related to shell-like curves connected with Fibonacci numbers, General Math., 28, (2020), no. 1, 125-140.
[20] Sokót, J., On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis 175 (1999), 111-116.
[21] Srivastava, H.M., Bulut, S., Çağlar, M. and Yağmur, N., Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (2013), no. 5, 831-842.
[22] Srivastava, H.M., Magesh, N. and Yamini, J., Initial coefficient estimates for bi- λ - convex and bi- μ - starlike functions connected with arithmetic and geometric means, Electronic J. Math. Anal. Appl. 2 (2014), no. 2, 152 - 162.
[23] Srivastava, H.M., Mishra, A.K. and Gochhayat, P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), no. 10, 1188-1192.
[24] Srivastava, H.M., Murugusundaramoorthy, G. and Magesh, N., Certain subclasses of bi-univalent functions associated with the Hohlov operator, Global J. Math. Anal. 1 (2013), no. 2, 67-73.
[25] Tang, H., Deng, G-T and Li, S-H, Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions, J. Ineq. Appl. 317 (2013), 1-10.

[^0]: ${ }^{1}$ Post-Graduate and Research Department of Mathematics, Govt Arts College (Men), Tamilnadu, India, e-mail: nmagi_2000@yahoo.co.in
 ${ }^{2}$ Post-Graduate and Research Department of Mathematics, Govt Arts College (Men), Tamilnadu, India, e-mail: smurthy07@yahoo.co.in
 ${ }^{3 *}$ Corresponding author, Department of Mathematics, Faculty of Science, Ataturk University, Erzurum, Turkey, e-mail: orhanhalit607@gmail.com
 ${ }^{4}$ Department of Mathematics, Govt Arts and Science College, Tamilnadu, India, e-mail: jsskavya2007@gmail.com

