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RICCI SOLITON ON THE TANGENT BUNDLE WITH
SEMI-SYMMETRIC METRIC CONNECTION

H. Mohammed DIDA∗,1 and Fouzi HATHOUT2

Abstract

In this paper, we studied the tangent bundle endowed with semi-symmetric
metric connection obtained by vertical and complete lifts of a semi-symmetric
metric P-connection on the base manifold. Firstly, we give a relationships
between (TM, gc) and (M, g) to be an Einstein manifolds. Secondly, we in-
vestigate necessary and sufficient conditions for (TM, gc) with complete and
vertical lift of torqued potential fields to be Ricci soliton.

2000 Mathematics Subject Classification: 53C07, 53C05, 53C25.
Key words: Ricci soliton, semi-symmetric connection, tangent bundle,

potential field, Einstein manifold.

1 Introduction

An Einstein manifold is a Riemannian or pseudo-Riemannian n-manifold
(M, g)n≥2 in which the Ricci tensor is a scalar multiple of the Riemannian metric,
i.e., Ric(X,Y ) = λg(X,Y ), where Ric denotes the Ricci tensor of (M, g) and λ is
a non-zero scalar. In 2000, M. C. Chaki and R.K. Maity in [1], introduced a new
type of a non-flat Riemannian manifold called a quasi-Einstein manifold if

Ric = ag + bα⊗ α (1)

In [3], BY Chen introduced a new definition called an almost quasi-Einstein man-
ifold if

Ric = ag + b(α⊗ β + β ⊗ α), (2)

where a, b are functions such that b 6= 0 and non-vanishing 1-forms α, β.
Any non-zero vector field v on a Riemannian manifold (or a pseudo-Riemannian

manifold) satisfying this important property ∇̃Xv = X is called a concurrent vec-
tor field [15], where ∇̃ is the Levi-Civita connection and for all vector field X on
M .
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A natural extension of a concurrent vector field is a concircular vector field.
A concircular vector field is defined to be a vector field v satisfying the property

∇̃Xv = ϕX, (3)

for some function ϕ in M and any vector field X on M .
In [16], Yano extended concurrent and concircular vector fields to torse-forming

vector fields τ satisfying
∇Xτ = ϕX + γ(X)τ, (4)

for any vectors X ∈ X(M), where ϕ is a function called the conformal scalar, γ
is a 1-form called the generating form, ∇ is Levi-Civita connection on M . The
vector field τ is called recurrent (resp. parallel vector) if ϕ = 0 (resp. ϕ = γ = 0).

As a consequence of tors forming vector field, recently Chen [3] introduced a
new vector field, called torqued vector field if γ(τ) = 0, here ϕ and γ are known
as the torqued function and the torqued form respectively.

In 1982, Hamilton [8] introduced the notion of Ricci flow to find a canonical
metric on a smooth manifold. The Ricci flow is an evolution equation for metrics
on a Riemannian manifold defined as follows

∂

∂t
g = −2Ric(g(t)).

A Ricci soliton (M, g, τ, λ) on a Riemannian manifold (M, g) is a generalization
of an Einstein metric such that

Ric+
1

2
Lτg = λg, (5)

where Lτ is the Lie derivative in the direction of X ∈ X(M) and λ is a constant.
The Ricci soliton is said to be shrinking, steady and expanding accordingly as λ
is negative, zero and positive respectively. A trivial Ricci soliton is one for which
the potential field τ is zero or Killing, in which case the metric is Einsteinian.

In [3], Bang-Yen Chen prove that if a Ricci soliton (M, g, τ, λ) has torqued
potential field τ , then (M, g) is an almost quasi-Einstein manifold, and (M, g) is
an Einstein manifold if and only if the torqued potential field τ is a concircular
vector field.

A linear connection ∇ in M is said to be Semi-Symmetric connection if its
torsion T is of the form

T (X,Y ) = π(Y )X − π(X)Y (6)

for X,Y ∈ X(M), where π is a 1-form associated with the vector field P and
satisfies π(X) = g(X,P ). A linear connection ∇ is said to be metric on M if
∇g = 0, otherwise it is non-metric. A systematic study of a semi-symmetric metric
connection (SSMC) ∇ on a Riemannian manifold was initiated by Yano [17] in
1970. He showed that the Riemannian curvature tensor with respect to a semi-
symmetric metric connection vanishes if and only if the manifold is conformably
flat.
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The paper is organized as follows. Section 2 is concerned with some preliminar-
ies, we recall the notion of semi-symmetric metric P -connection on a Riemannian
manifold, Tangent bundle and connection. In Section 3, we deal with the ver-
tical and complete lifts from the base manifold M to its tangent bundle TM .
We consider the tangent bundle endowed with semi-symmetric metric connection
obtained by vertical and complete lifts of a semi-symmetric metric P -connection
on the base manifold, we show that the complete lift of semi-symmetric met-
ric P -connection on a Riemannian manifold is semi-symmetric metric connection
in tangent bundle. We provide here the expression of the Ricci tensor field on
(TM, gc) endowed with semi-symmetric metric connection. Then we prove that
(TM, gc) is an Einstein manifold if and only if (M, g) is an Einstein manifold with
some conditions. In Section 4, we investigate Ricci soliton structures with lift
torqued potential fields on tangent bundles of Riemannian manifolds. We prove
that every Ricci soliton structure on the tangent bundle gives rise to a Einstein
structure (resp. almost-quasi Einstein structure) on the base manifold with some
conditions.

2 Preliminaries

2.1 Semi-symmetric metric P-connections

Let M be an n-dimensional Riemannian manifold with a Riemannian metric
g. If ∇ denotes the Levi-Civita connection corresponding to the metric g on Mn,
then a linear connection ∇ on Mn is defined as

∇XY = ∇XY + π(Y )X − g(X,Y )P (7)

for X,Y ∈ X(M), where P is a vector field and π is the 1-form satisfies π(X) =
g(X,P ), the connection ∇ satisfies Eq.(6) and ∇g = 0 on (M, g) and hence, it is
a semi-symmetric metric connection on (M, g) [17]. Mishra et al. [12] considered
P = ξ and ∇ξ = 0 on an almost contact metric manifold and proved many inter-
esting geometrical results. The notion of a semi-symmetric metric ξ-connection
on a Riemannian manifold is generalized in [2].

Definition 1. A linear connection ∇ defined on a Riemannian manifold (Mn, g) is
called a semi-symmetric metric P-connection if it satisfies Eqs.(6 and 7), ∇g =
0 and ∇P = 0.

A direct result from Eq.(7) and Definition 1, we get ∇XP = 0 if and only if
∇XP = π(X)P − π(P )X. The Riemannian curvature tensor R with respect to
the Levi-Civita connection ∇ is connected by R as

R(X,Y )Z = R(X,Y )Z + π(P ){g(Y,Z)X − g(X,Z)Y }. (8)

Contracting Eq.(8) along the vector field X, we conclude that

Ric(Y, Z) = Ric(Y, Z) + (n− 1)π(P )g(Y,Z) (9)
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and
r = r + n(n− 1)π(P ), (10)

where r, r and Ric, Ric are the scalar curvatures and Ricci tensors corresponding
to ∇ and ∇, respectively.

2.2 Tangent bundle

Let (M, g) be a Riemannian manifold and TM be its tangent bundle, (xi)i=1,n

its local coordinates, and (xi, yi)i=1,n its induced local coordinates on TM and
the projection map π : TM −→M such that π(p̃) = p.

2.3 Vertical lifts

If f is a function in M , we denote by fv the function in T (M) obtained by
forming the composition of π : TM −→ M , so that fv = f ◦ π. Thus, if a point
p̃ ∈ π−1(U) has induced coordinates (xh, yh), then fv(p̃) = fv(x, y) = f ◦ π(p̃) =
f(p) = f(x).

Thus the value of fv(p̃) is constant along each fibre TpM and equal to the
value f(p). We call fv the vertical lift of the function f.

2.4 Complete lifts

If f is a function in M , we write f c for the function in T (M) defined by
f c = ι(df) and call f c the complete lift of the function f . The complete lift f c

of a function f has the local expression f c = yi( ∂f∂xi ) with respect to the induced
coordinates in T (M).

We define a vector field Xc in TM by Xc(f c) = (Xf)c, f being an arbitrary
function in M and call Xc the complete lift of X in TM . The local expression of
the complete lift and vertical lift of a vector field X = Xi∂i on M are defined as
Xc = Xi∂i + ya(∂aX

i)∂i, X
v = Xi∂i, where ∂i = ∂

∂xi
and ∂i = ∂

∂yi . Moreover,
the vertical and complete lifts of tensor fields obey the general properties [18]

(fg)c = f cgv + fvgc, (11a)

Xcf c = (Xf)c, Xcfv = (Xf)v.

Let ω be a 1-form on M . Then the complete lift ωc of ω is defined by ωc(Xc) =
(ω(X))c , X being an arbitrary vector field in M. Moreover, these lifts have the
following properties

ωc(Xv) = (ω(X))v , ωv(Xc) = (ω(X))v , (12)

[Xc, Y c] = [X,Y ]c, [Xv, Y c] = [X,Y ]v.

Any Riemannian metric g on a manifold M defines the complete lift gc on TM at
any point (x, u) ∈ TM by

gc(Xv, Y c) = gc(Xc, Y v) = (g(X,Y ))v , (13)

gc(Xc, Y c) = (g(X,Y ))c , gc(Xv, Y v) = 0.
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Now, we assume that M is a manifold with an affine connection ∇. Then there
exists a unique affine connection ∇c in TM which satisfies [18]

∇cXcY c = (∇XY )c , ∇cXvY v = 0, (14)

∇cXvY c = ∇cXcY v = (∇XY )v ,

Proposition 1. If T and R are respectively the torsion and the curvature tensors
of ∇ in (M, g), then T c and Rc are respectively the torsion and the curvature
tensors of ∇c in (TM, gc), and we have [18]

T c(Xc, Y c) = (T (X,Y ))c ; Rc(Xc, Y c)Zc = (R(X,Y )Z)c , (15)

Rc(Xc, Y c)Zv = Rc(Xc, Y v)Zc = (R(X,Y )Z)v .

3 Tangent bundle endowed with semi-symmetric met-
ric connection

Theorem 1. Let ∇ be a semi-symmetric metric connection with respect to Rie-
mann connection ∇ in (M, g). Then, ∇c is semi-symmetric complete metric con-
nection with respect to the Riemann connection ∇c in (TM, gc) defined as

∇cXcY c =
(
∇XY

)c
(16)

Proof. Taking the complete lift of both sides of the Eq.(7) and using the Eq.(11a)
we get(
∇XY

)c
= (∇XY )c + (π(Y )X)c − (g(X,Y )P )c

∇cXcY c = ∇cXcY c+(π(Y ))cXv+(π(Y ))vXc−(g(X,Y ))c P v−(g(X,Y ))v P c.

We have

∇cXcY c −∇cY cXc − [Xc, Y c] = πc(Y c)Xv + πv(Y c)Xc

−πc(Y c)Xv − πv(Y c)Xc.

from Eq.(6) and Proposition 1, we obtain

T
c
(Xc, Y c) = πc(Y c)Xv + πv(Y c)Xc (17)

−πc(Y c)Xv − πv(Y c)Xc.

By computing

∇cXcgc(Y c, Zc) = gc(∇cXcY c, Zc) + gc(Y c,∇cXcZc)

= gc(∇cXcY c + πc(Y c)Xv + πv(Y c)Xc − gc(Xc, Y c)P v

− gc(Xv, Y c)P c, Zc) + gc(Y c,∇cXcZc + πc(Zc)Xv + πv(Zc)Xc

− gc(Xc, Zc)P v − gc(Xv, Zc)P c)

= (∇cXcgc)(Y c, Zc)

we get
(∇cXcgc)(Y c, Zc) = 0 (18)

The Eqs.(17 and 18) imply the desired result.
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3.1 Curvature tensor of semy-symmetric metric connection

The Riemannian curvature tensor R with respect to the Levi-Civita connection
∇ is connected by R

c
as

Proposition 2. Let (M, g) be a Riemannian manifold and (TM, gc) its tangent
bundle equipped with the complete lift metric.Then the relation between the cur-
vature tensor field R of the metric g on M and the curvature tensor field R

c
of

the metric gc is given at any point (x, u) ∈ TM by

R
c
(Xc, Y c)Zc = (R(X,Y )Z)c (19)

R
c
(Xc, Y c)Zv = R

c
(Xc, Y v)Zc = (R(X,Y )Z)v,

R
c
(Xc, Y v)Zv = R

c
(Xv, Y v)Zc = R

c
(Xv, Y v)Zv = 0.

for all X,Y, Z ∈ X(M).

Proof. From Eqs.(11a and 16), we have

∇cXc∇Y cZc = ∇cXc(∇Y Z)c = ∇cXc [∇Y Z + π(Z)Y − g(Z, Y )P ]c

= ∇cXc(∇Y Z + π(Z)Y )c −∇cXc(g(Z, Y )P )c

= (∇X(∇Y Z))c + π(Z)c∇cXcY v +Xc(π(Z)c)Y v + π(Z)v∇cXcY c

+Xc(π(Z)v)Y c −Xc(g(Z, Y )v)P c −Xc(g(Z, Y )c)P v

− g(Z, Y )c(∇XP )v − g(Z, Y )v(∇XP )c

= (∇X(∇Y Z))c + [π(Z)∇XY ]c + [X(π(Z))Y ]c − [X(g(Z, Y )P ]c

− g(Z, Y )c(∇XP )v − g(Z, Y )v(∇XP )c,

= (∇X [∇Y Z + π(Z)Y − g(Z, Y )P ])c

= (∇X∇Y Z)c,

similarly we have ∇cY c∇XcZc = (∇Y∇XZ)c.

From Eqs.(12 and 16), we get : ∇c[Xc,Y c]Z
c = ∇c[X,Y ]cZ

c = (∇[X,Y ]Z)c. Which
implies

R
c
(Xc, Y c)Zc = (R(X,Y )Z)c.

3.2 Ricci curvature on TM with semi-symmetric metric connec-
tion

Let Ric(X,Y ) =
m∑
i=1

g(R(X, ei)ei, Y ) be the Ricci tensor field of (M, g) and

similarly, let Ricc be the Ricci tensor field of (TM, gc), where {ei}i=1,...,m is an

orthonormal frame around an arbitrary point x ∈ M . Since {E1 =
√
2
2 (ec1 +

ev1), ..., Em =
√
2
2 (ecm + evm), Em+1 =

√
2
2 (ec1 − ev1), ..., E2m =

√
2
2 (ecm − evm)} is an



Ricci soliton on the tangent bundle with semi-symmetric metric connection 43

orthonormal frame around (x, u) ∈ TM , one has

Ricc(U, V ) =

m∑
i=1

g(R(U,

√
2

2
(eci + evi ))

√
2

2
(eci + evi ), V ) (20)

+

m∑
i=1

g(R(U,

√
2

2
(eci − evi ))

√
2

2
(eci − evi ), V )

for all U, V ∈ X(TM). Hence, from Eqs.(15 and 20), it follows that at any point
(x, u) ∈ TM , the Ricci curvature Ricc of gc is related by the Ricci curvature Ric
of g on M by

Ricc(Xc, Y c) =

m∑
i=1

gc(Rc(Xc,

√
2

2
(eci + evi ))

√
2

2
(eci + evi ), Y

c)

+

m∑
i=1

gc(Rc(Xc,

√
2

2
(eci − evi ))

√
2

2
(eci − evi ), Y c)

=
1

2

m∑
i=1

gc(Rc(Xc, (eci + evi ))e
c
i , Y

c)

+
1

2

m∑
i=1

gc(Rc(Xc, (eci + evi ))e
v
i , Y

c)

+
1

2

m∑
i=1

gc(Rc(Xc, (eci − evi ))eci , Y c)

−1

2

m∑
i=1

gc(Rc(Xc, (eci − evi ))evi , Y c)

=
1

2

m∑
i=1

gc(Rc(Xc, eci )e
c
i , Y

c) +
1

2

m∑
i=1

gc(Rc(Xc, evi )e
c
i , Y

c)

+
1

2

m∑
i=1

gc(Rc(Xc, eci )e
v
i , Y

c) +
1

2

m∑
i=1

gc(Rc(Xc, evi )e
v
i , Y

c)

+
1

2

m∑
i=1

gc(Rc(Xc, eci )e
c
i , Y

c)− 1

2

m∑
i=1

gc(Rc(Xc, evi )e
c
i , Y

c)

−1

2

m∑
i=1

gc(Rc(Xc, eci )e
v
i , Y

c) +
1

2

m∑
i=1

gc(Rc(Xc, evi )e
v
i , Y

c)

=
m∑
i=1

gc(Rc(Xc, eci )e
c
i , X

c) = (Ric(X,Y ))c,

Hence, we get

Ricc(Xc, Y c) = (Ric(X,Y ))c, Ricc(Xc, Y v) = (Ric(X,Y ))v. (21)
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Proposition 3. Let (M, g,∇) be an m-dimensional manifold (m > 2) endowed
with semi-symmetric metric connection and let (TM, gc,∇c) be the complete lift
metric endowed with semi-symmetric metric connection ∇c. Then the Ricci tensor
field Ric

c
on (TM, gc,∇c) satisfies:

Ric
c
(Xc, Y c) = (Ric(X,Y ))c = (Ric(X,Y ))c+(m−1)(π(P )g(X,Y ))c, (22)

Ric
c
(Xc, Y v) = (Ric(X,Y ))v = (Ric(X,Y ))v + (m− 1)(π(P )g(X,Y ))v

Proof. According to Eq.(20), we have

Ric
c
(Xc, Y c) =

m∑
i=1

gc(R
c
(Xc,

√
2

2
(eci + evi ))

√
2

2
(eci + evi ), Y

c)

+

m∑
i=1

gc(R
c
(Xc,

√
2

2
(eci − evi ))

√
2

2
(eci − evi ), Y c)

=

m∑
i=1

gc(R
c
(Xc, eci )e

c
i , Y

c)

In view of Proposition 2 and Eq.(8), we have

Ric
c
(Xc, Y c) =

m∑
i=1

gc(Rc(Xc, eci )e
c
i , Y

c) + gc(Xv, Y c)

m∑
i=1

(π(P )g(ei, ei))
c

+ gc(Xc, Y c)

m∑
i=1

(π(P )g(ei, ei))
v−

m∑
i=1

(π(P )g(X, ei))
cgc(evi , Y

c)

−
m∑
i=1

(π(P )g(X, ei))
vgc(eci , Y

c)

From Eqs.(11a and 13) we get

Ric
c
(Xc, Y c) = Ricc(Xc, Y c) + gc(Xv, Y c)(π(P ))c

m∑
i=1

(g(ei, ei))
v

+gc(Xv, Y c)(π(P ))v
m∑
i=1

(g(ei, ei))
c

+gc(Xc, Y c)(π(P ))v
m∑
i=1

(g(ei, ei))
v

−(π(P ))c
m∑
i=1

(g(X, ei))
vgc(evi , Y

c)

−(π(P ))v
m∑
i=1

(g(X, ei))
vgc(eci , Y

c)

−(π(P ))v
m∑
i=1

(g(X, ei))
cgc(evi , Y

c)
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= Ricc(Xc, Y c) +mgc(Xv, Y c)(π(P ))c +mgc(Xc, Y c)(π(P ))v

−(π(P ))c(g(X,Y ))v − (π(P ))vgc(Xc, Y c)

Hence
Ric

c
(Xc, Y c) = Ricc(Xc, Y c) + (m− 1)(g(X,Y )π(P ))c

Applying the same argument, we get the second equation.

Therefore we proved the following result.

Theorem 2. Let (M, g,∇) be a Riemannian manifold (n ≥ 3) and gc be the
complete lift metric on TM endowed with semi-symmetric metric connection ∇c.
Then (TM, gc,∇c) is Einstein manifold if and only if (M, g,∇) is an Einstein
manifold and π(P ) is a non-zero constant.

Proof. If we assume that (gc,∇c) is Einstein on TM then

Ric
c
(X∗, Y ∗) = λgc(X∗, Y ∗), ∀X,Y ∈ X(M).

Using Proposition 3, Eqs.(9 and 13) we get

{.Ricc(Xc, Y c) = (Ric(X,Y ))cλgc(Xc, Y c) = λ(g(X,Y ))c

and
Ric(X,Y ) + (m− 1)π(P )g(X,Y ) = λg(X,Y )

which give
Ric(X,Y ) = [λ− (m− 1)π(P )]g(X,Y ), (23)

then (M, g,∇) is an Einstein manifold on M. Since m ≥ 3 and M is Einsteinian,
M has constant scalar curvature. So λ − (m − 1)π(P ) is constant. Thus the
function with π(P ) is also non-zero constant.
Conversely, if (M, g,∇) is Einstein manifold i.e. Ric(X,Y ) = λg(X,Y ). If we
suppose that π(P ) is a non-zero constant. Taking the complete and vertical lift
of both sides of the Equation, we found

(Ric(X,Y ))c = λ(g(X,Y ))c

(Ric(X,Y ))c = λgc(Xc, Y c) + (m− 1)(π(P )g(X,Y ))c

= [λ+ (m− 1)π(P )]gc(Xc, Y c)

Ric
c
(Xc, Y c) = [λ+ (m− 1)π(P )]gc(Xc, Y c).

Similarly,

(Ric(X,Y ))v = λ(g(X,Y ))v

(Ric(X,Y ))v = λgc(Xc, Y v) + (m− 1)(π(P )g(X,Y ))v,

= [λ+ (m− 1)π(P )]gc(Xc, Y v)

Ric
c
(Xc, Y v) = [λ+ (m− 1)π(P )]gc(Xc, Y v).

We deduce that
Ric

c
= [λ+ (m− 1)π(P )]gc, (24)

Therefore (gc,∇c) is an Einstein structure on TM .
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4 Ricci solitons on tangent bundle

In this section we have studied Ricci solitons, whose potential vector field is
torqued, on Riemannian manifolds with respect to Riemannian connection and
semi-symmetric metric P-connection.

4.1 Case when the potential is a vertical lift vector field

We start with the description of the Lie derivative of gc with respect to the
vertical lift of torqued vector field.

Let (M, g,∇, τ) be a Riemannian manifold and let (TM, gc,∇c, τv) be a pseudo-
Riemannian metric on TM. If τ is torqued vector field on M , using equation Eq.(4
and 14), we get

Lτvg
c(Xc, Y c) = gc(∇cXcτv, Y c) + gc(∇cY cτv, Xc) (25)

= gc((∇Xτ)v, Y c) + gc((∇Y τ)v, Xc)

= [g((∇Xτ), Y ) + g((∇Y τ), X)]v

= [2ϕg(X,Y ) + γ(X)g(τ, Y ) + γ(Y )g(τ,X)]v,

Lτvg
c(Xc, Y v) = gc(∇cXcτv, Y v) + gc(∇cY vτv, Xc) = 0.

First, we recall the following result proved in [3].

Corollary 1. A torqued vector field τ on a Riemannian manifold M is a Killing
vector field if and only if τ is a recurrent vector field satisfies

∇Xτ = α(X)τ and α(τ) = 0,

where α is a 1-form.

In views of Corollary 1, we have

Theorem 3. Let (M, g,∇, τ) be Riemannian manifold with torqued vector field
τ. Then (TM, gc,∇c, τv, λ) is Ricci soliton on TM if and only if (M, g) is Einstein
manifold with τ is a Killing vector field.

Proof. Assume that (TM, gc,∇c, τv, λ) is a Ricci soliton whose potential field is
a recurrent potential field τv, i.e.

Ricc(Xc, Y c) +
1

2
(Lτvg

c)(Xc, Y c) = λgc(Xc, Y c) (26)

combining Eq.(25 and 26), we find

(Ric(X,Y ))c = (λg(X,Y ))c − 1

2
[2ϕg(X,Y ) + γ(X)g(τ, Y ) + γ(Y )g(τ,X)]v

with γ(τ) = 0, then Eq.(27) yields

Ric(X,Y ) = λg(X,Y )ϕg(X,Y ) +
1

2
[γ(X)g(τ, Y ) + γ(Y )g(τ,X)] = 0, (27)
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for any vector field X,Y. Taking contraction of the second equation over X and
Y in Eq.(27), we get

Ric(X,Y ) = λg(X,Y )mϕ+ γ(τ) = 0,

Combining this with γ(τ) = 0 gives ϕ = 0. Hence the potential field τ is a
recurrent vector field. Therefore, from Corollary 1, τ is a Killing vector field and
(M, g) is an Einstein manifold.
Conversaly, if (M, g) is Einstein manifold with τ is torqued vector field. If we
suppose that τ is a Killing vector field, from Corollary 1, τ is recurrent vector
field that satisfies γ(τ) = 0. Then we have

Ric(X,Y ) = λg(X,Y )γ(X)g(τ, Y ) + γ(Y )g(τ,X) = 0

Hence, from Eq.(25) we get

Ricc(Xc, Y c) +
1

2
(Lτvg

c)(Xc, Y c) = λgc(Xc, Y c)

Ricc(Xc, Y v) +
1

2
(Lτvg

c)(Xc, Y c) = λgc(Xc, Y v).

Consequently, (TM, gc,∇c, τv, λ) is a Ricci soliton and it is a trivial one.

In the same way, let (M, g,∇, τ) be a Riemannian manifold and let
(TM, gc,∇c, τv) be a pseudo-Riemannian metric on TM . If τ is a torqued vector
field on M , using Eqs. (4, 7, 16 and 25), we get

Lτvg
c(Xc, Y c) = gc(∇cXcτv, Y c) + gc(∇cY cτv, Xc) (28)

= gc((∇Xτ)v, Y c) + gc((∇Y τ)v, Xc)

= g(∇Xτ, Y ) + g(∇Y τ,X)

= g(∇Xτ + π(τ)X−g(X, τ)P, Y )+g(∇Y τ+π(τ)Y −π(Y )P,X)

= (Lτg)(X,Y ) + 2π(τ)g(X,Y )− [g(X, τ)π(Y ) + g(Y, τ)π(X)]

= 2(ϕ+ π(τ))g(X,Y ) + (γ(X)− π(X))g(τ, Y )

+(γ(Y )− π(Y ))g(τ,X),

Lτvg
c(Xc, Y v) = gc(∇cXcτv, Y v) + gc(∇cY vτv, Xc) = 0.

Theorem 4. Let (M, g,∇, τ) be Riemannian manifolds with torqued vector field
τ. Then the triple (TM, gc,∇c, τv, λ) is Ricci soliton on TM if and only if (M, g, τ)
is an Einstein manifold and the following three conditions hold:

1. 1
mπ(τ)g − 1

2 [(π − γ)⊗ η + η ⊗ (π − γ)] = 0,

2. The function ϕ in 4 is (1−mm )π(τ),

3. The function π(P ) is a non zero constant.
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Proof. Assume that (TM, gc,∇c, τv, λ) is a Ricci soliton whose potential field is
a recurrent potential field τv. By combining Eqs.(22, 25 and 28), we find

Ric
c
(Xc, Y c) = λgc(Xc, Y c)− 1

2
(Lτvg

c)(Xc, Y c) (29)

= [(λ− (m− 1)π(P ))g(X,Y )]c

−1

2
[2(ϕ+ π(τ))g(X,Y ) + (γ − π)(X)g(τ, Y )

+(γ − π)(Y )g(τ,X)]

In view of Eq.(29) yields

Ric(X,Y ) = [λ− (m− 1)π(P )]g(X,Y ),

(ϕ+ π(τ))g(X,Y ) =
1

2
[(π − γ)(Y )g(X, τ) + (π − γ)(X)g(Y, τ)]

for any vertical vector field X,Y. Taking contraction of the second equation over
X and Y , we get

Ric(X,Y ) = [λ− (m− 1)π(P )]g(X,Y )m(ϕ+ π(τ)) = π(τ)− γ(τ),

Since γ(τ) = 0, then ϕ = (1−mm )π(τ). If we denote the dual 1-form of τ by η, then
yields

Ric = [λ− (m− 1)π(P )]g,
1

m
π(τ)g − 1

2
[(π − γ)⊗ η + η ⊗ (π − γ)] = 0. (30)

Therefore (M, g) is Einstein manifold with recurrent vector field such that the
following relation

1

m
π(τ)g − 1

2
[(π − γ)⊗ η + η ⊗ (π − γ)] = 0. (31)

holds for any arbitrary vector fields.
Conversely, assume that (M, g) is Einstein manifold and Eq.(31) holds, then from
Eqs. (9, 21, 22 and 28), we get

Ric
c
(Xc, Y c) +

1

2
(Lτvg

c)(Xc, Y c) = (Ric(X,Y ))c + (ϕg(X,Y ))v + (π(τ)g(X,Y ))v

+
1

2
[(γ − π)(X)g(τ, Y ) + (γ − π)(Y )g(τ,X)]v

= [(λ+ (m− 1)π(P ))g(X,Y )]c (32)

+ [ϕ+
m− 1

m
π(τ)]v(g(X,Y ))v

= (λ+ (m− 1)π(P ))v(g(X,Y ))c

+ (λ+ (m− 1)π(P ))c(g(X,Y ))v

+ [ϕ+
m− 1

m
π(τ)]v(g(X,Y ))v
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Ric
c
(Xc, Y v)+

1

2
(Lτvg

c)(Xc, Y v) = (Ric(X,Y ))c+(ϕg(X,Y ))v+(π(τ)g(X,Y ))v

+
1

2
[(γ − π)(X)g(τ, Y ) + (γ − π)(Y )g(τ,X)]v

= [(λ+ (m− 1)π(P ))g(X,Y )]c

+ [ϕ+
m− 1

m
π(τ)]v(g(X,Y ))v

= (λ+ (m− 1)π(P ))v(g(X,Y ))c

+ (λ+ (m− 1)π(P ))c(g(X,Y ))v

+ [ϕ+
m− 1

m
π(τ)]v(g(X,Y ))v

Hence, (TM, gc,∇c, τv, λ) is a Ricci soliton with λ = λ + (m − 1)π(P ) if ϕ +
m−1
m π(τ) = 0 and π(P ) is a non zero constant, which complete the proof.

4.2 Case when the potential is a complete lift vector field

Now we consider complete vector fields. We start with the following result,
obtained starting from

Lτcg
c(Xc, Y c) = gc(∇cXcτ c, Y c) + gc(∇cY cτ c, Xc) (33)

= gc((∇Xτ)c, Y c) + gc((∇Y τ)c, Xc)

= (g(∇Xτ, Y ))c + (g(∇Y τ,X))c

= [2(ϕ+ π(τ))g(X,Y )]c

+[(γ − π)(X)g(τ, Y ) + (γ − π)(Y )g(X, τ)]c

Lτcg
c(Xc, Y v) = gc(∇cXcτ c, Y v) + gc(∇cY vτ c, Xc)

= gc((∇Xτ)c, Y v) + gc((∇Y τ)v, Xc)

= (g(∇Xτ, Y ))v + (g(∇Y τ,X))v

= [2(ϕ+ π(τ))g(X,Y )]v

+[(γ − π)(X))g(τ, Y ) + (γ − π)(Y )g(X, τ)]v

Theorem 5. Let (M, g,∇, τ) be a Riemmannian manifold with torqued vector
field τ . Then, if (TM, gc,∇c, τ c, λ) is Ricci soliton then (M, g,∇, τ) is an almost
quasi-Einstein manifold.

Proof. Assume that (TM, gc,∇c, τ c, λ) is Ricci soliton. By combining Eqs.(5 and
33), we find

Ric
c
(Xc, Y c) = λgc(Xc, Y c)− 1

2
(Lτcg

c)(Xc, Y c) (34)

(Ric(X,Y ))c = (λg(X,Y ))c − 1

2
[2(ϕ+ π(τ))g(X,Y )]c

−1

2
[(γ − π)(X))g(τ, Y ) + (γ − π)g(X, τ)]c

= [(λ− ϕ− π(τ))g(X,Y )]c

+
1

2
[(π − γ)(X)g(τ, Y ) + (π − γ)(Y )g(X, τ)]c
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If we denote the dual 1-form of τ by η, then, from Eqs.(9 and 34) yields

Ric(X,Y ) = [λ− (n− 1)π(P )− ϕ− π(τ)]g(X,Y )

+
1

2
[(π − γ)(Y )η(X) + (π − γ)(X)η(Y )]

for any vertical vector field X,Y ,i.e.

Ric = [λ− (n− 1)π(P )− ϕ− π(τ)]g +
1

2
[(π − γ)⊗ η + η ⊗ (π − γ)]

Therefore (M, g) is an almost quasi-Einstein manifold.

Now, we can state the following result which gives conditions for
(TM, gc,∇c, τv, λ) to be Ricci soliton

Theorem 6. Let (M, g,∇, τ) be a Riemmannian manifold with torqued vector field
τ . Then, if (M, g,∇, τ) is Ricci soliton then (TM, gc,∇c, τ c, λ) is Ricci soliton
and the following two conditions hold

1. π(X)g(τ, Y ) + π(Y )g(τ,X) = 0,

2. The function λ+ (n− 1)π(P ) + π(τ) is a non zero constant.

Proof. We suppose that (M, g, λ, τ) is a Ricci soliton whose potential field is a
torqued vector field. Then Eq.(4) holds, which implies

Lτg(X,Y ) = 2ϕg(X,Y ) + γ(X)g(τ, Y ) + γ(Y )g(τ,X). (35)

for any vector fields X, Y tangent to M . By combining Eqs.(35 and 5), we find

Ric(X,Y ) = (λ− ϕ)g(X,Y )− 1

2
γ(X)g(τ, Y )− 1

2
γ(Y )g(τ,X) (36)

Hence, by Proposition (3.1) in [3], (M, g) is an almost quasi-Einstein manifold.
From Eqs.(7 and 35), the Lie derivative along the torqued vector field τ with
respect to semi-symmetric metric connection ∇ is given by

Lτg(X,Y ) = g(∇Xτ, Y ) + g(∇Y τ,X) (37)

= (Lτg)(X,Y ) + 2π(τ)g(X,Y )− [g(X, τ)π(Y ) + g(Y, τ)π(X)]

= 2(ϕ+ π(τ))g(X,Y ) + (γ − π)(X)g(τ, Y ) + (γ − π)(Y )g(X, τ).

By combining Eqs.(9, 19 and 37), we find

Ric
c
(Xc, Y c) +

1

2
(Lτcg

c)(Xc, Y c) = (Ric(Y,Z))c +
1

2
[(Lτg)(X,Y )]c

= [(λ− ϕ)g(X,Y )]c − 1

2
[γ(X)g(τ, Y ) + γ(Y )g(τ,X)]c

+[(n− 1)π(P )g(X,Y )]c + [(ϕ+ π(τ))g(X,Y )]c

+
1

2
[(γ − π)(X)g(τ, Y ) + (γ − π)(Y )g(X, τ)]c

= [(λ+ (n− 1)π(P ) + π(τ))g(X,Y )]c

−1

2
[π(X)g(τ, Y ) + π(Y )g(τ,X)]c,
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Therefore, Ric
c
(Xc, Y c)+ 1

2(Lτcg
c)(Xc, Y c) = λgc(Xc, Y c) if λ+(n−1)π(P )+π(τ)

is a non zero constant function and the relation

π(X)g(τ, Y ) + π(Y )g(τ,X) = 0

holds for arbitrary vector fields X,Y.
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