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RICCI SOLITONS ON SASAKIAN MANIFOLDS UNDER A
NEW DEFORMATION
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Abstract

The object of the present paper is to introduce a new transformation of
almost contact metric manifolds. Firstly, starting from a Sasakian manifold
we construct another Sasakian manifold and we prove some geometric prop-
erties. Secondly, we study Ricci solitons in Sasakian manifolds under this
deformation. Concrete examples are given.
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1 Introduction

There exist several types of deformations of almost contact metric structures.
For example D-homothetic deformations [16], conformal deformations [17, 8], de-
formation of Marrero [13], D-homothetic warping [7], D-homothetic bi-warping
[1], D-isometric warping [3] etc. Recently, in [2], we have investigated a new defor-
mation of almost contact metric manifolds where we have deformed the structural
tensor ϕ and metric tensor g at the same time unlike the previous deformations.

The study of deformations of a Sasakian structure (M,ϕ, ξ, η, g) is feasible
when one keeps some of the tensors or structures fixed and varies others.

Thus far we have considered a fixed Sasakian manifold (M,ϕ, ξ, η, g). It will
be important later to understand how one can deform such a structure to another
Sasakian structure on the same manifold M .

It is known that the deformation of Tanno [16] preserves the Sasakian struc-
ture. For a Sasakian structure (ϕ, ξ, η, g) and positive constant a, the structure

ϕ = ϕ, η = aη, ξ =
1

a
ξ, g = ag + a(a− 1)η ⊗ η,
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is again a Sasakian structure.
Recently, in [4] we introduced a new deformation of almost contact metric struc-
tures where we deform the metric g and the structural tensor ϕ simultaneously.
In this work, we use our deformation particularly on Sasakian manifolds and we
show some interesting results. This paper is organized in the following way:
Section 2, contains basic results about Sasakian manifolds and generalized Sasakian
space forms. In Section 3, we give the new deformation which preserves the
Sasakian structures with concrete examples. Section 3 is devoted to studying
some geometric properties on the deformed Sasakian manifold. In the last section,
we study deformed Sasakian metrics as Ricci solitons and we give an example.

2 Review of needed notions

An odd-dimensional Riemannian manifold (M2n+1, g) is said to be an almost
contact metric manifold if there exist on M a (1, 1) tensor field ϕ, a vector field
ξ (called the structure vector field) and a 1-form η such that

η(ξ) = 1, ϕ2(X) = −X + η(X)ξ and g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), (1)

for any vector fields X,Y on M . In particular, in an almost contact metric mani-
fold we also have ϕξ = 0 and η ◦ ϕ = 0.

Such a manifold is said to be a contact metric manifold if dη = φ, where
φ(X,Y ) = g(X,ϕY ) is called the fundamental 2-form of M . If, in addition, ξ is a
Killing vector field, then M is said to be a K-contact manifold. It is well-known
that a contact metric manifold is a K-contact manifold if and only if ∇Xξ = −ϕX,
for any vector field X on M .

On the other hand, the almost contact metric structure of M is said to be
normal if [ϕ,ϕ](X,Y ) = −2dη(X,Y )ξ, for any X, Y , where [ϕ,ϕ] denotes the
Nijenhuis torsion of ϕ, given by

[ϕ,ϕ](X,Y ) = ϕ2[X,Y ] + [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ]

A normal contact metric manifold is called a Sasakian manifold. It can be proved
that a Sasakian manifold is K-contact, and that an almost contact metric manifold
is Sasakian if and only if

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X, (2)

for any X,Y . Moreover, from the formula (2) easily obtains

∇Xξ = −ϕX, (∇Xη)Y = g(X,ϕY ) = φ(X,Y ). (3)

For a Sasakian manifold the following equations hold:

R(X,Y )ξ = η(Y )X − η(X)Y, (4)
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S(X, ξ) = 2nη(X), (5)

where R is the curvature tensor and S denotes the Ricci curvature defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. (6)

S(X,Y ) =

2n+1∑
i=1

g
(
R(X, ei)ei, Y

)
, (7)

where {ei} is a local orthonormal frame fields.

A metric g is Einstein if S = λg for some constant λ. It turns out that a
Sasakian manifold can be Einstein only for λ = 2n ( i.e. S = 2ng), so that g has
positive Ricci curvature.
A Sasakian manifold M of dimension 2n+ 1 with a Sasakian structure (ϕ, ξ, η, g)
is said to be η–Einstein if the Ricci curvature tensor of the metric g satisfies
the equation S = ag + bη ⊗ η for some constants a, b ∈ R. These metrics were
introduced and studied by Okumura [14] and then named by Sasaki [6]. Okumura
assumed that both a and b are functions, and then proved, similar to the case
of Einstein metrics, that they must be constant when n > 1. Obviously b = 0
reduces to the more familiar Sasakian-Einstein condition. In general, a+ b = 2n.

The sectional curvature of the plane section spanned by the unit tangent vec-
tor field X orthogonal to ξ and ϕX is called a ϕ-sectional curvature. If any
Sasakian manifold M has a constant ϕ-sectional curvature c, then M is called a
Sasakian space form and denoted by M2n+1(c). The Riemannian curvature tensor
of Sasakian space form is given by the following formula:

R(X,Y ) = X ∧ Y +
c− 1

4

(
ϕ2X ∧ ϕ2Y + ϕX ∧ ϕY + 2g(X,ϕY )ϕ

)
, (8)

where

(X ∧ Y )Z = g(Y, Z)X − g(X,Z)Y. (9)

For more background on these manifolds, we recommend the references [6, 5,
18, 9].

3 Deformation of Sasakian structures

Let (ϕ, ξ, η, g) be an almost contact metric structure on M2n+1.
For all X and Y vector fields on M , we mean a change of structure tensors of the
form 

ϕ̃X = ϕX + θ(ϕX)ξ,

ξ̃ = ξ,
η̃ = η − θ,
g̃(X,Y ) = fg(X,Y )− fη(X)η(Y ) + η̃(X)η̃(Y ),

(10)

where θ is a closed 1-form orthogonal to η on M .
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Proposition 1. (ϕ̃, ξ̃, η̃, g̃) is an almost contact metric structure.

Proof. The proof follows by a routine calculation, just using (1).

Note that the simplest case for this deformation is for θ = df where f ∈
C∞(M) and ξ(f) = 0.

Proposition 2. Let ∇ and ∇̃ denote the Riemannian connections of g and g̃
respectively. If (ϕ, ξ, η, g) is a Sasakian structure then for all X,Y vector fields
on M , we have the relation:

∇̃XY = ∇XY + θ(X)ϕ̃Y + θ(Y )ϕ̃X −
(
∇Xθ

)
(Y )ξ. (11)

Proof. Firstly, the metric g̃ may also written as

g̃(X,Y ) = g(X,Y )− η(X)η(Y ) + η̃(X)η̃(Y ), (12)

for all X and Y vector fields on M . Using Koszul’s formula for the metric g,

2g̃(∇̃XY,Z) = Xg̃(Y,Z) + Y g̃(Z,X)− Zg̃(X,Y )

− g̃(X, [Y, Z]) + g̃(Y, [Z,X]) + g̃(Z, [X,Y ],

one can obtain

g̃(∇̃XY,Z) = g̃(∇XY, Z)

− 1

2

(
(∇Xη)Y + (∇Y η)X

)
η(Z)− dη(X,Z)η(Y )− dη(Y, Z)η(X)

+
1

2

(
(∇X η̃)Y + (∇Y η̃)X

)
η̃(Z) + dη̃(X,Z)η̃(Y ) + dη̃(Y, Z)η̃(X).

Knowing that dθ = 0 and η̃ = η − θ, we get

g̃(∇̃XY,Z) = g̃(∇XY, Z)− (∇Xθ)(Y )η̃(Z)− dη(X,Z)θ(Y )− dη(Y, Z)θ(X).

Since (ϕ, ξ, η, g) is a Sasakian structure then we have

dη(X,Z) = φ(X,Z)

= −g(ϕX,Z)

= −g̃(ϕ̃X,Z),

and therefore

∇̃XY = ∇XY + θ(X)ϕ̃Y + θ(Y )ϕ̃X −
(
∇Xθ

)
(Y )ξ.

Theorem 1. If (ϕ, ξ, η, g) is a Sasakian structure then (ϕ̃, ξ̃, η̃, g̃) is a Sasakian
too.
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Proof. Suppose that (ϕ, ξ, η, g) is a Sasakian structure. Knowing that(
∇̃X ϕ̃

)
Y = ∇̃X ϕ̃Y − ϕ̃∇̃XY,

and using ϕ̃X = ϕX + θ(ϕX)ξ, we get(
∇̃X ϕ̃

)
Y = ∇̃XϕY +X

(
θ(ϕY )

)
ξ + θ(ϕY )∇̃Xξ − ϕ∇̃XY − θ

(
ϕ∇̃XY

)
ξ,

using propostion 2, we obtain(
∇̃X ϕ̃

)
Y = (∇Xϕ)Y + θ

(
(∇Xϕ)Y

)
ξ + θ(ϕY )∇Xξ

+ θ(ϕY )ϕX + θ(Y )X − η(X)θ(Y )ξ + θ(X)θ(Y )ξ.

Since (ϕ, ξ, η, g) is a Sasakian structure, we can use formulas (2) and (3) and we
get (

∇̃X ϕ̃
)
Y = g̃(X,Y )ξ̃ − η̃(Y )X,

which shows that (ϕ̃, ξ̃, η̃, g̃) is a Sasakian structure.

Example 1. For this example, we rely on the example of Blair [6]. We know that
R2n+1 with coordinates (xi, yi, z), i = 1..n, admits the Sasakian structure

g =
1

4

 δij + yiyj 0 −yi
0 δij 0
−yj 0 1

 , ϕ =

 0 δij 0
−δij 0 0

0 yj 0

 ,

ξ = 2

(
∂

∂z

)
, η =

1

2
(dz − yidxi).

There is an infinite number of possibilities to choose θ under the two conditions
dθ = 0 and θ(ξ) = 0. Let us take θ = 1

2dy
i and using the formulas (10) we obtain

g̃ =
1

4

 δij + yiyj yi −yi
yj 1 + δij −1
−yj −1 1

 , ϕ̃ =

 0 δij 0
−δij 0 0
−δij yj 0

 ,

ξ̃ = 2

(
∂

∂z

)
, η̃ =

1

2
(dz − yidxi − dyi).

So, one can check that (ϕ̃, ξ̃, η̃, g̃) is a Sasakian structure.

4 Curvature formulas and main results

Let (M,ϕ, ξ, η, g) be a Sasakian manifold. By a direct computation using the
proposition (11), we get the following:
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Proposition 3. For all X,Y vector field on M , we have:

Let R̃ (resp. R) denote the curvature tensors for g̃ (resp. g). Then, we have

R̃(X,Y )Z = R(X,Y )Z + θ
(
R(X,Y )Z

)
ξ + θ(Y )g(X,Z)ξ − θ(X)g(Y,Z)ξ

+ η(Z)
(
θ(X)Y − θ(Y )X

)
+ θ(Z)

(
η̃(X)Y − η̃(Y )X

)
. (13)

Proof. Suppose that, at x0 ∈M , ∇UiUj = 0, ∀i, j ∈ {1..., 2n+ 1}. We compute:

∇̃X∇̃Y Z = ∇̃X
(
∇XY + θ(X)ϕ̃Y + θ(Y )ϕ̃X −

(
∇Xθ

)
(Y )ξ

)
= ∇X∇Y Z+X

(
θ(Y )

)
ϕ̃Z+θ(Y )∇̃X ϕ̃Z+X

(
θ(Z)

)
ϕ̃Y +θ(Z)∇̃X ϕ̃Y

− g
(
∇X∇Y ψ,Z

)
ξ − g

(
∇Y ψ,Z

)
∇̃Xξ,

where θ is the g-dual of ψ i.e. θ(X) = g(ψ,X). By using formulas (10), (11), (2)
and (3), we get

∇̃X∇̃Y Z = ∇X∇Y Z + (∇Xθ)(Y )ϕ̃Z + (∇Xθ)(Z)ϕ̃Y

+ θ(Y )
(
g(X,Z)ξ − η(Z)X + θ(X)ϕ2Z − θ(X)θ(Z)ξ − θ(X)η(Z)ξ

)
+ θ(Z)

(
g(X,Y )ξ − η(Y )X + θ(X)ϕ2Y − θ(X)θ(Y )ξ − θ(X)η(Y )ξ

)
− g(∇X∇Y ψ,Z)ξ + (∇Y θ)(Z)ϕ̃X.

From the definition of curvature tensor R̃ of M (see (6) ),

R̃(X,Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z,

with at x0, [X,Y ] = 0 and dθ = 0, we get

R̃(X,Y )Z = R(X,Y )Z + θ
(
R(X,Y )Z

)
ξ + θ(Y )g(X,Z)ξ − θ(X)g(Y,Z)ξ

+ η(Z)
(
θ(X)Y − θ(Y )X

)
+ θ(Z)

(
η̃(X)Y − η̃(Y )X

)
.

Now, suppose that the sectional curvature of the Sasakian manifold (M,ϕ, ξ, η, g)
is a constant c, that is

R(X,Y )Z = c(X ∧ Y )Z.

Then we have

R̃(X,Y )Z = c(X∧̃Y )Z + (c− 1)θ
(
(X ∧ Y )Z

)
ξ

+ (1− c)
(
η(Z)

(
θ(X)Y − θ(Y )X

)
+ θ(Z)

(
η̃(X)Y − η̃(Y )X

))
,

which give the following:

Proposition 4. If (M,ϕ, ξ, η, g) is a Sasakian manifold of sectional curvature
c = 1 then, (ϕ̃, ξ̃, η̃, g̃) is a Sasakian manifold of sectional curvature c = 1 too.
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Example 2. Let S2n+1 be a (2n + 1)-dimensional unit sphere equipped with the
canonical Sasakian structure (ϕ, ξ, η, g) of constant sectional curvature 1. One
can check that S2n+1 equipped with the structure (ϕ̃, ξ̃, η̃, g̃) is also a Sasakian
manifold of constant sectional curvature equal 1.

Proposition 5. Let (M,ϕ, ξ, η, g) be a Sasakian space form with constant ϕ-
sectional curvature c and apply our deformation. Then, (M, ϕ̃, ξ̃, η̃, g̃) is a Sasakian
space form with constant ϕ-sectional curvature c too.

Proof. Let (M, ϕ̃, ξ̃, η̃, g̃) be obtained by the above deformation of a Sasakian
manifold (M,ϕ, ξ, η, g). Using formulas (9) and (12), one can easily prove that:

(1): (X∧̃Y )Z = (X ∧ Y )Z + η(Z)
(
η(X)Y − η(Y )X

)
− η̃(Z)

(
η̃(X)Y − η̃(Y )X

)
,

(2): (ϕ̃X∧̃ϕ̃Y )Z = (ϕX ∧ ϕY )Z + θ
(
(ϕX ∧ ϕY )Z

)
ξ,

(3): (ϕ̃2X∧̃ϕ̃2Y )Z = (ϕ2X ∧ ϕ2Y )Z + θ
(
(ϕ2X ∧ ϕ2Y )Z

)
ξ,

(4): g̃(X, ϕ̃Y )ϕ̃Z = g(X,ϕY )ϕZ + θ(ϕZ)g(X,ϕY )ξ.

Now, suppose that (M,ϕ, ξ, η, g) is a Sasakian space form with constant ϕ-sectional
curvature c that is:

R(X,Y )Z = (X ∧ Y )Z +
c− 1

4

(
(ϕ2X ∧ ϕ2Y )Z + (ϕX ∧ ϕY )Z + 2g(X,ϕY )ϕZ

)
,

(14)
note that

θ
(
ϕ̃X∧̃ϕ̃Y )Z

)
= θ
(
(ϕX ∧ ϕY )Z

)
and θ

(
ϕ̃2X∧̃ϕ̃2Y )Z

)
= θ
(
(ϕ2X ∧ ϕ2Y )Z

)
.

So, using the four equations above in (14), we obtain:

R(X,Y ) = (X∧̃Y )Z +
c− 1

4

(
(ϕ̃2X∧̃ϕ̃2Y )Z + (ϕ̃X∧̃ϕ̃Y )Z + 2g̃(X, ϕ̃Y )ϕ̃Z

)
− c− 1

4
θ
(
(ϕ̃2X∧̃ϕ̃2Y )Z + (ϕ̃X∧̃ϕ̃Y )Z + 2g̃(X, ϕ̃Y )ϕ̃Z

)
ξ

− η(Z)
(
η(X)Y − η(Y )X

)
+ η̃(Z)

(
η̃(X)Y − η̃(Y )X

)
, (15)

substituting the equation (15) in formulas (13), we get

R̃(X,Y )Z = (X∧̃Y )Z +
c− 1

4

(
(ϕ̃2X∧̃ϕ̃2Y )Z + (ϕ̃X∧̃ϕ̃Y )Z + 2g̃(X, ϕ̃Y )ϕ̃Z

)
,

which completes the proof.

Lemma 1. We choose a g-orthonormal basis {ei}0≤i≤2n of the tangent space TxM
at each point x ∈M where e0 = ξ, then

{ẽi = ei + θ(ei)ξ}0≤i≤2n (16)

is a g̃-orthonormal basis of TxM .
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Proof. Firstly, we have
g̃(ẽ0, ẽ0) = g̃(ξ, ξ) = 1,

and for any i, j ∈ {1, ..., 2n}, g̃(ei, ξ) = −θ(ei), then

g̃(ẽi, ẽj) = g̃
(
ei + θ(ei)ξ, ej + θ(ej)ξ

)
= g̃(ei, ej) + θ(ej)g̃(ei, ξ) + θ(ei)g̃(ξ, ej) + θ(ei)θ(ej)g̃(ξ, ξ)

= δij .

We compute

g̃(ẽi, ξ) = g̃(ei + θ(ei)ξ, ξ)

= g̃(ei, ξ) + θ(ei)g̃(ξ, ξ)

= −θ(ei) + θ(ei) = 0.

Proposition 6. Let S̃ (resp. S) denote the Ricci curvatures for g̃ (resp. g).
Then, we have

S̃(X,Y ) = S(X,Y )− 2nη(X)η(Y ) + 2nη̃(X)η̃(Y ). (17)

Proof. Let (M,ϕ, ξ, η, g) be a Sasakian manifold and (M, ϕ̃, ξ̃, η̃, g̃) the Sasakian
manifold obtained by the deformation (10). Using (16) then (13), we get

S̃(X,Y ) =
2n∑
i=0

g̃
(
R̃(X, ẽi)ẽi, Y

)
=

2n∑
i=0

g̃
(
R̃(X, ei)ei + R̃(X,ψ)ξ + R̃(X, ξ)ψ + θ(ψ)R̃(X, ξ)ξ, Y

)
=

2n∑
i=0

g̃
(
R(X, ei)ei, Y

)
+ S(X,ψ)η̃(Y ) + (1− 2n)θ(X)η̃(Y )

+ g̃
(
R(X, ξ)ψ, Y

)
. (18)

The first term of (18), is given by

2n∑
i=0

g̃
(
R(X, ei)ei, Y

)
= S(X,Y )− S(X,ψ)η̃(Y )− 2nη(X)θ(Y ). (19)

For the last term in (18), using (4) with the formula

R(X,Y, Z,W ) = R(Z,W,X, Y ) = −R(Z,W, Y,X),

for all X,Y, Z and W vector fields on M , we obtain

g̃
(
R̃(X, ξ)ψ, Y

)
= R(X, ξ, ψ, Y )− θ(Y )R(X, ξ, ψ, ξ)

= −g
(
R(ψ, Y )ξ,X

)
+ θ(Y )g

(
R(X, ξ)ξ, ψ

)
= −θ(X)η̃(Y ). (20)
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Substituting the formulas (19) and (20) in (18), we obtain:

S̃(X,Y ) = S(X,Y )− 2nη(X)η(Y ) + 2nη̃(X)η̃(Y ).

Corollary 1. Let r̃ (resp. r) denote the scalar curvatures for g̃ (resp. g). Then,
we have

r̃ = r. (21)

Proof. Contracting (17) with respect to X and Y , we get

r̃ =

2n∑
i=0

S̃(ẽi, ẽi)

= r + 2nθ(ψ) + 2S̃(ψ, ξ) + θ(ψ)S̃(ξ, ξ),

using the formula S̃(X, ξ) = 2nη̃(X), we obtain

r̃ = r.

Corollary 2. (M2n+1, ϕ̃, ξ̃, η̃, g̃) is a Sasaki-Einstein manifold if and only if
(M,ϕ, ξ, η, g) is a Sasaki-Einstein manifold too.

Proof. Just use the formula

S̃(X,Y )− 2ng̃(X,Y ) = S(X,Y )− 2ng(X,Y ),

obtained by formulas (12) and (17).

Corollary 3. (M2n+1, ϕ̃, ξ̃, η̃, g̃) is an η-Einstein manifold if and only if
(M,ϕ, ξ, η, g) is an η-Einstein manifold too.

Proof. Suppose that (M2n+1, ϕ, ξ, η, g) is an η-Einstein manifold, i.e. for all X
and Y vector fields on M , we have

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ).

So, using formula (17) with a+ b = 2n, we get

S̃(X,Y ) = ag(X,Y ) + (b− 2n)η(X)η(Y ) + 2nη̃(X)η̃(Y )

= ag(X,Y ) + aη(X)η(Y ) + 2nη̃(X)η̃(Y )

= ag̃(X,Y ) + (2n− a)η̃(X)η̃(Y )

= ag̃(X,Y ) + bη̃(X)η̃(Y ).

With the same reasoning we show the opposite.
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5 Ricci solitons in deformed Sasakian manifold

One of the important topics in the study of almost contact metric manifolds is
the study of Ricci flow and Ricci solitons. Ricci solitons introduced by Hamilton
[10] are natural generalizations of an Einstein metric. A complete Riemannian
metric g on a smooth manifold M is a Ricci soliton if there is a vector field V and
a constant λ such that

(LV g)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0, (22)

where LV g denotes the Lie derivative of g along a vector field V , λ a constant, and
arbitrary vector fields X,Y on M . Sharma [15] initiated the study of Ricci solitons
in K- contact geometry. Also in [11] He and Zhu established these results for the
Sasakian case. Recently, A. Ghosha, R. Sharma [12] generalized these results and
also proved the existence of shrinking Ricci soliton on a Sasakian manifold, which
is not Einstein. Among the equations that they proved, we mention the equation
that we need here (see Theorem 1, [12])

LV ξ = 4(n+ 1)ξ and λ = 2n+ 4. (23)

Theorem 2. Let (g, V, λ) be a Ricci soliton on the Sasakian manifold (M,ϕ, ξ, η, g).
If

X
(
θ(V )

)
= −4(n+ 1)θ(X), (24)

for all vector field X on M then (g̃, V, λ) is a Ricci soliton on the deformed
Sasakian manifold (M2n+1, ϕ̃, ξ̃, η̃, g̃).

Proof. Using (22) and (17), we can write

(L̃V g̃)(X,Y ) + 2S̃(X,Y ) + 2λg̃(X,Y ) = g̃
(
∇̃XV, Y

)
+ g̃
(
∇̃Y V,X

)
+ 2S(X,Y )

+ 2λg(X,Y )− 2(2n+ λ)
(
η(X)η(Y )

− ˜η(X)η̃(Y )
)
. (25)

Making use of (10)-(12) in (25), we obtain

(L̃V g̃)(X,Y ) + 2S̃(X,Y ) + 2λg̃(X,Y ) = (LV g)(X,Y ) + 2S(X,Y ) + 2λg(X,Y )

+ θ(X)
(
g(ϕV, Y )− η

(
∇Y V

))
+ θ(Y )

(
g(ϕV,X)− η

(
∇XV

))
− X

(
θ(V )

)
η̃(Y )− Y

(
θ(V )

)
η̃(X)

− 2(2n+ λ)
(
η(X)η(Y )−η̃(X)η̃(Y )

)
.(26)

Since g is a Ricci soliton, i.e.

(LV g)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0, (27)

then we have
(LV g)(X, ξ) + 2(2n+ λ)η(X) = 0,
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which implies
η
(
∇XV

)
+ g(∇ξV,X) + 2(2n+ λ)η(X).

From equation (23), we get

∇ξV = −ϕV − 4(n+ 1)ξ,

which gives
η
(
∇XV

)
= g(ϕV,X)− 4(n+ 1)η(X). (28)

Substituting (27) and (28) in (26) , we obtain

(L̃V g̃)(X,Y ) + 2S̃(X,Y ) + 2λg̃(X,Y ) = −η̃(X)
(
Y
(
θ(V )

)
+ 4(n+ 1)θ(Y )

)
− η̃(Y )

(
X
(
θ(V )

)
+4(n+1)θ(X)

)
.(29)

Which completes the proof.

Example 3. We’ll employ the example above for dimension three (n = 1). The
Sasakian manifold

g =
1

4

 1 + y2 0 −y
0 1 0
−y 0 1

 , ϕ =

 0 1 0
−1 0 0
0 y 0

 ,

ξ = 2

(
∂

∂z

)
, η =

1

2
(dz − ydx)

admits a Ricci soliton (g, V, λ) such that V = −4
(
x ∂
∂x + y ∂

∂y + 2z ∂
∂z

)
and λ = 6

( see [12]).
For the 1-form θ we have

θ = ρdx+ τdy + γdz
dθ = 0
θ(ξ) = 0

⇒


θ = ρdx+ τdy
ρ1 = τ2
ρ3 = τ3 = 0

where ρ, τ and γ are three functions on M and ρi = ∂ρ
∂xi

and τi = ∂τ
∂xi
.

Using condition (24), we get the following system of ODEs
xρ1 + yτ1 = ρ
xρ2 + yτ2 = τ
ρ1 = τ2

which gives
θ = (ax+ by)dx+ (ay + bx)dy,

where a and b are real numbers. Now, using the formulas (10) we obtain the
Sasakian manifold

g̃ =
1

4

 1 + y2 y −y
y 2 −1
−y −1 1

 , ϕ̃ =

 0 1 0
−1 0 0
−1 y 0

 ,



26 Bayour Benaoumeur and Beldjilali Gherici

ξ̃ = 2

(
∂

∂z

)
, η̃ = −1

2

((
2ax+ (2b+ 1)y

)
dx+ 2(ay + bx)dy − dz

)
,

which admits the Ricci soliton (g̃, V, 6).

Open question:
The above theorem keeps the same potential vector field V in both initial and
deformed structures. The question that arises is the following one: Can we have
another potential vector field in the deformed structure?
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