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APPROXIMATION BY SZÁSZ-MIRAKJAN-BASKAKOV
OPERATORS BASED ON SHAPE PARAMETER λ

Reşat ASLAN1

Abstract

In this paper, we aim to obtain several approximation properties of Szász-
Mirakjan-Baskakov operators with shape parameter λ ∈ [−1, 1]. We reach
some preliminary results such as moments and central moments. Next, we es-
timate the order of convergence with respect to the usual modulus of continu-
ity, for the functions belong to Lipschitz-type class and Peetre’s K-functional,
respectively. Also, we prove a result concerning the weighted approximation
for these operators. Finally, we give the comparison of the convergence of
these newly defined operators to certain functions with some graphics.
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1 Introduction

Szász [31] and Mirakjan [19] proposed the following linear positive operators,
which are related to the Poisson distribution, as

Sm(µ; y) =
∞∑
j=0

sm,j(y)µ

(
j

m

)
, (1)

where y ≥ 0, m ∈ N, µ ∈ C[0,∞) and Szász-Mirakjan basis functions sm,j(y) are
defined as below:

sm,j(y) = e−my
(my)j

j!
. (2)

In 1983, Prasad et al. [26] considered Baskakov type integral modifications of
(1) operators as follows:

Km(µ; y) = (m− 1)

∞∑
j=0

sm,j(y)

∞∫
0

qm,j(t)µ (t) dt, y ∈ [0,∞), (3)
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where sm,j(y) given in (2) and qm,j(t) =
(
m+j−1

j

)
tj

(1+t)m+j .

Later, some various approximation properties of (1) and (3) operators have
been presented by several authors. We refer the readers to some recent papers on
these directions [2, 16, 15, 1, 14, 13, 5, 32, 12, 33].

A short while ago, using the shape parameter λ ∈ [−1, 1], which plays an
important role in computer graphics and computer-aided geometric design, be-
come a new research field in the theory of approximation. In 2019, Qi et al. [27]
introduced a new generalization of λ−Szász-Mirakjan polynomials with shape pa-
rameter λ ∈ [−1, 1] as below:

Sm,λ(µ; y) =

∞∑
j=0

s̃m,j(λ; y)µ

(
j

m

)
, (4)

where Szász-Mirakjan bases functions s̃m,j(λ; y) with shape parameter λ ∈ [−1, 1] :

s̃m,0(λ; y) = sm,0(y)− λ

m+ 1
sm+1,1(y);

s̃m,i(λ; y) = sm,i(y) + λ

(
m− 2i+ 1

m2 − 1
sm+1,i(y)− m− 2i− 1

m2 − 1
sm+1,i+1(y)

)
(i = 1, 2, ...,∞, y ∈ [0,∞)). (5)

They obtained several theorems such as Korovkin type approximation, local
approximation, Lipschitz type convergence, Voronovskaja and Grüss-Voronovskaja
type for the operators (4). We can mention some recent works based on shape
parameter λ ∈ [−1, 1], see: [8, 9, 6, 7, 29, 30, 20, 21, 3, 28, 18, 22, 23, 24, 25].

Motivated by all of the above mentioned papers, we define λ−Szász-Mirakjan-
Baskakov polynomials as follows:

Rm,λ(µ; y) = (m− 1)
∞∑
j=0

s̃m,j(λ; y)

∞∫
0

qm,j(t)µ (t) dt, y ∈ [0,∞), (6)

where qm,j(t) given in (3), s̃m,j(λ; y) (j = 0, 1, ..∞) in (5) and λ ∈ [−1, 1].

The structure of this work is organized as follows: In Sect. 2, we calculate some
moments and central moments. In Sect. 3, we establish the order of convergence
with respect to the usual modulus of continuity, for the functions belonging to
Lipschitz class and Peetre’s K-functional, respectively. In Sect. 4, we give a
result concerning the weighted approximation. In the final Section, we show the
comparison of the convergence of operators (6) to the certain functions for the
different values of m and λ. We also compare the convergence of operators (3)
and (6) to the certain function to see the role of λ parameter.
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2 Preliminaries

Lemma 1. [27]. For the λ−Szász-Mirakjan operators Sm,λ(µ; y), the following
results are satisfied:

Sm,λ(1; y) = 1,

Sm,λ(t; y) = y +

[
1− e−(m+1)y − 2y

m(m− 1)

]
λ,

Sm,λ(t2; y) = y2 +
y

m
+

[
2y + e−(m+1)y − 1− 4(m+ 1)y2

m2(m− 1)

]
λ,

Sm,λ(t3; y) = y3 +
3y2

m
+

y

m2

+

[
1− e−(m+1)y − 2y + 3(m− 3)(m+ 1)y2 − 6(m+ 1)y3

m3(m− 1)

]
λ,

Sm,λ(t4; y) = y4+
6y3

m
+

7y2

m2
+

y

m3
+

[
e−(m+1)y− 1+2my+2(3m−11)(m+1)y2

m4(m− 1)

+
4(m− 8)(m+ 1)2y3 − 8(m+ 1)3y4

m4(m− 1)

]
λ.

Lemma 2. Let the operators Rm,λ be defined by (6). Then, we obtain

Rm,λ(1; y) = 1, (7)

Rm,λ(t; y) =
my + 1

m− 2
+

[
1− e−(m+1)y − 2y

(m− 1)(m− 2)

]
λ, (8)

Rm,λ(t2; y) =
m2y2 + 4my + 2

(m− 2)(m− 3)
+

[
1− e−(m+1)y − 2y − 2(m+ 1)y2

(m− 1)(m− 2)(m− 3)

]
2λ, (9)

Rm,λ(t3; y) =
m3y3 + 9m2y2 + 18my + 6

(m− 2)(m− 3)(m− 4)

+

[
2− 2e−(m+1)y − 4y + (m− 11)(m+ 1)y2 − 2(m+ 1)y3

(m− 1)(m− 2)(m− 3)(m− 4)

]
3λ,

(10)

Rm,λ(t4; y) =
m4y4 + 16m3y3 + 72m2y2 + 96my + 24

(m− 2)(m− 3)(m− 4)(m− 5)

+

[
12− 12e−(m+1)y + 2y(m− 25) + 18(m− 7)(m+ 1)y2

(m− 1)(m− 2)(m− 3)(m− 4)(m− 5)

−2(m2 − 7m− 23)(m+ 1)y3 + 4(m+ 1)3y4

(m− 1)(m− 2)(m− 3)(m− 4)(m− 5)

]
2λ. (11)

Proof. By the definition of (6) and s̃m,i(λ; y) (5), it is easy to see
∞∑
j=0

s̃m,j(λ; y) = 1,
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hence we get (7).

Now, with the help of Lemma 1 and definition of beta function, we will com-
pute expressions (8) and (9).

Rm,λ(t; y) = (m− 1)

∞∑
j=0

s̃m,j(λ; y)

∞∫
0

(
m+ j − 1

j

)
tj+1

(1 + t)m+j
dt

= (m− 1)
∞∑
j=0

s̃m,j(λ; y)

(
m+ j − 1

j

)
Γ(j + 2)Γ(m− 2)

Γ(m+ j)

= (m− 1)
∞∑
j=0

s̃m,j(λ; y)
(m+ j − 1)!

j!(m− 1)!

(j + 1)!(m− 3)!

(m+ j − 1)!

=

∞∑
j=0

s̃m,j(λ; y)

(
j + 1

m− 2

)
=

m

m− 2
Sm,λ(t; y) +

1

m− 2
Sm,λ(1; y)

=
my + 1

m− 2
+

[
1− e−(m+1)y − 2y

(m− 1)(m− 2)

]
λ.

Rm,λ(t2; y) = (m− 1)

∞∑
j=0

s̃m,j(λ; y)

∞∫
0

(
m+ j − 1

j

)
tj+2

(1 + t)m+j
dt

= (m− 1)
∞∑
j=0

s̃m,j(λ; y)

(
m+ j − 1

j

)
Γ(j + 3)Γ(m− 3)

Γ(m+ j)

= (m− 1)
∞∑
j=0

s̃m,j(λ; y)
(m+ j − 1)!

j!(m− 1)!

(j + 2)!(m− 4)!

(m+ j − 1)!

=

∞∑
j=0

s̃m,j(λ; y)
j2 + 3j + 2

(m− 2)(m− 3)

=
m2

(m− 2)(m− 3)
Sm,λ(t2; y) +

3m

(m− 2)(m− 3)
Sm,λ(t; y)

+
2

(m− 2)(m− 3)
Sm,λ(1; y)

=
m2y2 + 4my + 2

(m− 2)(m− 3)
+

[
1− e−(m+1)y − 2y − 2(m+ 1)y2

(m− 1)(m− 2)(m− 3)

]
2λ.

Similarly, from Lemma 1, we can get expressions (10) and (11) by simple compu-
tation, thus we have omitted details.
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Corollary 1. Let y ∈ [0,∞), m > 5 and λ ∈ [−1, 1]. As a consequence of Lemma
2, we obtain the following relations:

(i) Rm,λ(t− y; y) =
2y + 1

m− 2
+

[
1− e−(m+1)y − 2y

(m− 1)(m− 2)

]
λ := αm,λ(y)

(ii) Rm,λ((t− y)2; y) =
(m+ 6)y2 + 2(m+ 3)y + 2

(m− 2)(m− 3)

+

[
1 + [(m− 3)y − 1] e−(m+1)y + y − 8y2

(m− 1)(m− 2)(m− 3)

]
2λ

≤ (m+ 6)y2 + 2(m+ 3)y + 2

(m− 2)(m− 3)

+
2
(
1 + [(m− 3)y − 1] e−(m+1)y + y + 8y2

)
(m− 1)(m− 2)(m− 3)

:= βm(y)

(iii) Rm,λ((t− y)4; y) =

(
3m2 + 286m+ 120

)
y4 + 4

(
3m2 + 73m+ 60

)
y3

(m− 2)(m− 3)(m− 4)(m− 5)

+
12
(
m2 + 21m+ 20

)
y2 + 24(3m+ 5)y + 24

(m− 2)(m− 3)(m− 4)(m− 5)

+

(
12− 12e−(m+1)y + 2y(m− 25) + 18(m− 7)(m+ 1)y2

(m− 1)(m− 2)(m− 3)(m− 4)(m− 5)

−2(m2 − 7m− 23)(m+ 1)y3 − 4(m+ 1)3y4

(m− 1)(m− 2)(m− 3)(m− 4)(m− 5)

+
6y
(
2e−(m+1)y−2+4y−(m−11)(m+1)y2 + 2(m+1)y3

)
(m−1)(m−2)(m−3)(m−4)

+
12y2

(
1− e−(m+1)y − 2y3 + 2(m+ 1)y2

)
(m− 1)(m− 2)(m− 3)

−4y3(1− e−(m+1)y − 2y)

(m− 1)(m− 2)

)
2λ.

3 Direct theorems of Rm,λ operators

In this section, we establish the order of convergence in connection with the
usual modulus of continuity, for the function belonging to Lipschitz type continu-
ous and Peetre’s K-functional. Let the space CB[0,∞) denotes all continuous and
bounded functions on [0,∞) and be equipped with the sup-norm for a function µ
as follows:

‖µ‖[0,∞) = sup
y∈[0,∞)

|µ(y)| .
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Further, the Peetre’s K-functional is defined by

K2(µ, η) = inf
ν∈C2[0,∞)

{
‖µ− ν‖+ η

∥∥ν ′′∥∥} ,
where η > 0 and C2

B[0,∞) = {ν ∈ CB[0,∞) : ν ′, ν ′′ ∈ CB[0,∞)} .
Taking into account [10], there exists an absolute constant C > 0 such that

K2(µ; η) ≤ Cω2(µ;
√
η), η > 0, (12)

where
ω2(µ; η) = sup

0<z≤η
sup

y∈[0,∞)
|µ(y + 2z)− 2µ(y + z) + µ(y)| ,

is the second order modulus of smoothness of the function µ ∈ CB[0,∞). Also, by

ω(µ; η) := sup
0<α≤η

sup
y∈[0,∞)

|µ(y + z)− µ(y)| ,

we denote the usual modulus of continuity of µ ∈ CB[0,∞). Since η > 0, ω(µ; η)
has some useful properties see details: [4].

Moreover, we give an element of Lipschitz continuous function with LipL(ζ),
where L > 0 and 0 < ζ ≤ 1. If the expression below:

|µ(t)− µ(y)| ≤ L |t− y|ζ , (t, y ∈ R), (13)

holds, then one can say that the function µ belongs to LipL(ζ).

Theorem 1. Let µ ∈ CB[0,∞), y ∈ [0,∞) and λ ∈ [−1, 1]. Then, the following
inequality verifies

|Rm,λ(µ; y)− µ(y)| ≤ 2ω(µ;
√
βm(y)),

where βm(y) given in Corollary 1.

Proof. Taking into account the well-known property of modulus of continuity

|µ(t)− µ(y)| ≤
(

1 + |t−y|
δ

)
ω(µ; δ) and operating Rm,λ(.; y), it gives

|Rm,λ(µ; y)− µ(y)| ≤
(

1 +
1

δ
Rm,λ(|t− y| ; y)

)
ω(µ; δ).

Utilizing the Cauchy-Bunyakovsky-Schwarz inequality and by Corollary 1, we
obtain

|Rm,λ(µ; y)− µ(y)| ≤
(

1 +
1

δ

√
Rm,λ((t− y)2; y)

)
ω(µ; δ)

≤
(

1 +
1

δ

√
βm(y)

)
ω(µ; δ).

Taking δ =
√
βm(y), hence we get the proof of this theorem.
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Theorem 2. Let µ ∈ LipL(ζ), y ∈ [0,∞) and λ ∈ [−1, 1]. Then, we obtain

|Rm,λ(µ; y)− µ(y)| ≤ L(βm(y))
ζ
2 .

Proof. From (13) and using the Hölder’s inequality, it follows

|Rm,λ(µ; y)− µ(y)| ≤ Rm,λ(|µ(t)− µ(y)| ; y) ≤ LRm,λ(|t− y|ζ ; y).

Therefore,

|Rm,λ(µ; y)− µ(y)| ≤ L(m− 1)
∞∑
j=0

s̃m,j(λ; y)

∞∫
0

(
m+ j − 1

j

)
tj

(1 + t)m+j
|t− y|ζ dt

≤ L(m− 1)

∞∑
j=0

(s̃m,j(λ; y))
2−ζ
2

× (s̃m,j(λ; y))
ζ
2

∞∫
0

(
m+ j − 1

j

)
tj

(1 + t)m+j
|t− y|ζ dt

≤ L

(m− 1)
∞∑
j=0

s̃m,j(λ; y)

∞∫
0

(
m+ j − 1

j

)
tj

(1 + t)m+j
dt


2−ζ
2

×

(m−1)

∞∑
j=0

s̃m,j(λ; y)

∞∫
0

(
m+j−1

j

)
tj

(1+t)m+j
|t−y|2 dt


ζ
2

= L
{
Rm,λ((t− y)2; y)

} ζ
2

≤ L(βm(y))
ζ
2 .

Thus, we get the proof of this theorem.

Theorem 3. For all µ ∈ CB[0,∞), y ∈ [0,∞) and λ ∈ [−1, 1], the following
inequality holds:

|Rm,λ(µ; y)− µ(y)| ≤ Cω2(µ;
1

2

√
βm(y) + (αm,λ(y))2 + ω(µ; |αm,λ(y)|),

where C > 0 is a constant, αm,λ(y) and βm(y) are same as in Corollary 1.

Proof. We denote γm,λ(y) := my+1
m−2 +

[
1−2y−e−(m+1)y

(m−1)(m−2)

]
λ, it is obvious that γm,λ(y) ∈

[0,∞) for sufficently large m. We define the following auxiliary operators:

R̂m,λ(µ; y) = Rm,λ(µ; y)− µ(γm,λ(y)) + µ(y). (14)

In view of (7) and (8), we find

R̂m,λ(t− y; y) = 0.
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Using Taylor’s formula, one has

ξ(t) = ξ(y) + (t− y)ξ′(y) +

t∫
y

(t− u)ξ′′(u)du, (ξ ∈ C2
B[0,∞)). (15)

After operating R̂m,λ(.; y) to (15), yields

R̂m,λ(ξ; y)− ξ(y) = R̂m,λ((t− y)ξ′(y); y) + R̂m,λ(

t∫
y

(t− u)ξ′′(u)du; y)

= ξ′(y)R̂m,λ(t− y; y) +Rm,λ(

t∫
y

(t− u)ξ′′(u)du; y)

−

γm,λ(y)∫
y

(γm,λ(y)− u)ξ′′(u)du

= Rm,λ(

t∫
y

(t− u)ξ′′(u)du; y)−

γm,λ(y)∫
y

(γm,λ(y)− u)ξ′′(u)du.

Taking Lemma 2 and (14) into the account, we get

∣∣∣R̂m,λ(ξ; y)− ξ(y)
∣∣∣ ≤

∣∣∣∣∣∣Rm,λ(

t∫
y

(t− u)ξ′′(u)du; y)

∣∣∣∣∣∣+

∣∣∣∣∣∣∣
γm,λ(y)∫

y

(γm,λ(y)− u)ξ′′(u)du

∣∣∣∣∣∣∣
≤ Rm,λ

 t∫
y

(t− u)
∣∣ξ′′(u)

∣∣ du; y


+

γm,λ(y)∫
y

|γm,λ(y)− u|
∣∣ξ′′(u)

∣∣ du


≤
∥∥ξ′′∥∥{Rm,λ((t− y)2; y) + (γm,λ(y)− y)2

}
≤
{
βm(y) + (αm,λ(y))2

}∥∥ξ′′∥∥ .
From (7), (8) and (14), it deduce the following∣∣∣R̂m,λ(µ; y)

∣∣∣ ≤ |Rm,λ(µ; y)|+ 2 ‖µ‖ ≤ ‖µ‖Rm,λ(1; y) + 2 ‖µ‖ ≤ 3 ‖µ‖ . (16)

Also, by (15) and (16) we get

|Rm,λ(µ; y)− µ(y)| ≤
∣∣∣R̂m,λ(µ− ξ; y)− (µ− ξ)(y)

∣∣∣
+
∣∣∣R̂m,λ(ξ; y)− ξ(y)

∣∣∣+ |µ(y)− µ(αm,λ(y))|

≤ 4 ‖µ− ξ‖+
{
βm(y) + (γm,λ(y))2

}∥∥ξ′′∥∥+ ω (µ; |αm,λ(y)|) .
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On account of this, if we take the infimum on the right hand side over all ξ ∈
C2
B[0,∞) and by (12), we arrive

|Rm,λ(µ; y)− µ(y)| ≤ 4K2(µ;

{
βm(y) + (αm,λ(y))2

}
4

) + ω(µ; |αm,λ(y)|)

≤ Cω2(µ;
1

2

√
βm(y) + (αm,λ(y))2) + ω(µ; |αm,λ(y)|).

Hence, we obtain the proof of this theorem.

4 Weighted approximation

In this section, we prove a result concerning the weighted approximation for
the sequence of operators (Rm,λ)n . Let By2 [0,∞) be the set of all functions
h verifying the condition |h(y)| ≤ Mh(1 + y2), y ∈ [0,∞) with constant Mh,
which depend only on h. We denote by Cy2 [0,∞) the set of all continuous func-

tions belonging to By2 [0,∞) endowed with the norm ‖h‖y2 = sup
y∈[0,∞)

|h(y)|
1+y2

and

C∗y2 [0,∞) := {h : h ∈ Cy2 [0,∞), lim
y→∞

|h(y)|
1+y2

<∞}.

Theorem 4. For all µ ∈ C∗y2 [0,∞), we obtain

lim
m→∞

sup
y∈[0,∞)

|Rm,λ(µ; y)− µ(y)|
1 + y2

= 0.

Proof. Taking into account the Korovkin type theorem given by Gadzhiev [11],
we have to show that (3) operators satisfy the following condition:

lim
m→∞

sup
y∈[0,∞)

|Rm,λ(ts; y)− ys|
1 + y2

= 0, s = 0, 1, 2. (17)

Using (7), the first condition in (17) is clear for s = 0.

For s = 1, by (8), we find

sup
y∈[0,∞)

|Rm,λ(t; y)− y|
1 + y2

≤
∣∣∣∣ m− 1 + λ

(m− 1)(m− 2)

∣∣∣∣ sup
y∈[0,∞)

1

1 + y2

+

∣∣∣∣ 2(m− 1)− 3λ

(m− 1)(m− 2)

∣∣∣∣ sup
y∈[0,∞)

y

1 + y2
,

which implies that

lim
m→∞

sup
y∈[0,∞)

|Rm,λ(t; y)− y|
1 + y2

= 0.
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Likewise for s = 2, from (9), it becomes

sup
y∈[0,∞)

∣∣Rm,λ(t2; y)− y2
∣∣

1 + y2
≤
∣∣∣∣ 2(m− 1 + λ)

(m− 1)(m− 2)(m− 3)

∣∣∣∣ sup
y∈[0,∞)

1

1 + y2

+

∣∣∣∣ 2(2m(m− 1)− 3λ)

(m− 1)(m− 2)(m− 3)

∣∣∣∣ sup
y∈[0,∞)

y

1 + y2

+

∣∣∣∣(5m− 6)(m− 1)− 4(m+ 1)λ

(m− 1)(m− 2)(m− 3)

∣∣∣∣ sup
y∈[0,∞)

y2

1 + y2
.

Hence, we get

lim
m→∞

sup
y∈[0,∞)

∣∣Rm,λ(t2; y)− y2
∣∣

1 + y2
= 0.

This completes the proof.

5 Graphical analysis

In this section, we show several graphics to see the convergence of operators
(6) to certain functions with different values of m and λ. Also, we compare
the convergence operators (6) and (3) for a certain function to see the role of λ
parameter.

In Figure 1, we choose the function µ(y) = (y−2/3)(y−3/4) (black), λ = 0.9,
m = 10 (red), m = 20 (green) and m = 50 (blue). In Figure 2, we choose the
function µ(y) = y2 (black), λ = 0.4, m = 10 (red), m = 20 (green) and m = 50
(blue). It is clear from Figure 1 and Figure 2 that, for the different values of λ, as
the values of m increases than the convergence of operators (6) to the functions
µ(y) becomes better. In Figure 3, we choose the function µ(y) = y2 (black), λ = 1
and m = 15. We compare the convergence of operators (3) (green) and (6) (red)
to the function µ(y). As a result of this comparison, if we increase the value of
m, we get better approximation for the operators (6) than operators (3).

Figure 1: The convergence of operators Rm,λ(µ; y) to µ(y) = (y − 2/3)(y − 3/4)
for λ = 0.9 and m = 10, 20, 50
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Figure 2: The convergence of operators Rm,λ(µ; y) to µ(y) = y2 for λ = 0.4 and
m = 10, 20, 50

Figure 3: The convergence of operators Rm,λ(µ; y) and Km(µ; y) to µ(y) = y2 for
λ = 1 and m = 15
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[24] Özger, F., On new Bézier bases with Schurer polynomials and corresponding
results in approximation theory, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math.
Stat. 69 (2020), 376-393.
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14 Reşat Aslan


