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Abstract

Let U(α, λ), 0 < α < 1, 0 < λ < 1, be the class of functions f(z) =
z + a2z

2 + a3z
3 + · · · satisfying∣∣∣∣∣

(
z

f(z)

)1+α

f ′(z) − 1

∣∣∣∣∣ < λ

in the unit disc D. For f ∈ U(α, λ) we give sharp bounds of its initial
logarithmic coefficients γ1, γ2, γ3.
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1 Introduction and definitions

Let A be the class of functions f which are analytic in the open unit disc
D = {z : |z| < 1} of the form

f(z) = z + a2z
2 + a3z

3 + · · · , (1)

and let S be the subclass of A consisting of functions that are univalent in D.
For a function f ∈ S we define its logarithmic coefficients, γn, n = 1, 2, . . ., by

log
f(z)

z
= 2

∞∑
n=1

γnz
n. (2)

Relatively little exact information is known about those coefficients. The
natural conjecture |γn| ≤ 1/n, inspired by the Koebe function (whose logarithmic
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coefficients are 1/n) is false even in order of magnitude (see Duren [3]). For the
class S the sharp estimates of single logarithmic coefficients are known only for γ1
and γ2, namely,

|γ1| ≤ 1 and |γ2| ≤
1

2
+

1

e
= 0.635 . . . ,

and are unknown for n ≥ 3. For the subclasses of univalent functions the situation
is not a great deal better. Only the estimates of the initial logarithmic coefficients
are available. For details see [1, 2, 4, 7].

In the 1998 the class U(α, λ) (0 < α < 1, 0 < λ < 1) of functions f ∈ A was
introduced by the first author with the condition∣∣∣∣∣

(
z

f(z)

)1+α

f ′(z) − 1

∣∣∣∣∣ < λ, z ∈ D. (3)

There is shown that functions from U(α, λ) are starlike, i.e., belong to the
class S⋆ of functions that map the unit disk onto a starlike domain, if

0 < λ ≤ 1 − α√
(1 − α)2 + α2

≡ λ⋆. (4)

In the limiting cases when λ = 1, and either α = 0 or α = 1, functions in the
classes U(0, 1) and U(1, 1) satisfy∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < 1, and

∣∣∣∣∣
(

z

f(z)

)2

f ′(z) − 1

∣∣∣∣∣ < 1,

respectively. The former is a subclass of S⋆ since the analytical characterisation

of starlike functions is Re zf ′(z)
f(z) > 0 (z ∈ D), while functions in the latter class are

univalent.
In this paper we consider estimates of three initial logarithmic coefficients for

the class U(α, λ), where 0 < α < 1, 0 < λ ≤ λ⋆ and λ⋆ is defined by (4).
For our consideration we need the next lemma.

Lemma 1. [5] Let f ∈ U(α, λ), 0 < α < 1, 0 < λ < 1. Then there exists a
function ω, analytic in D, such that ω(0) = 0, |ω(z)| < 1 for all z ∈ D, and[

z

f(z)

]α
= 1 − αλzα

∫ z

0

ω(t)

tα+1
dt. (5)

By Ω we denote the class of analytic functions in D:

ω(z) = c1z + c2z
2 + c3z

3 + · · · , (6)

with ω(0) = 0, and |ω(z)| < 1 for all z ∈ D.
In their paper [6] Prokhorov and Szynal obtained sharp estimates on the func-

tional
Ψ(ω) = |c3 + µc1c2 + νc31|

within the class of all ω ∈ Ω. For our application we need only a part of those
results.
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Lemma 2. [6] Let ω(z) = c1z + c2z
2 + c3z

3 + · · · ∈ Ω. For µ and ν real numbers,
let

Ψ(ω) =
∣∣c3 + µc1c2 + νc31

∣∣ ,
and

D1 =

{
(µ, ν) : |µ| ≤ 1

2
, |ν| ≤ 1

}
,

D2 =

{
(µ, ν) :

1

2
≤ |µ| ≤ 2,

4

27
(|µ| + 1)3 − (|µ| + 1) ≤ ν ≤ 1

}
,

D3 = {(µ, ν) : |µ| ≤ 2, |ν| ≥ 1} .

Then, the sharp estimate Ψ(ω) ≤ Φ(µ, ν) holds, where

Φ(µ, ν) =

{
1, (µ, ν) ∈ D1 ∪D2 ∪ {(2, 1)};
|ν|, (µ, ν) ∈ D3.

2 Main results

Theorem 1. Let f(z) = z + a2z
2 + a3z

3 + · · · belongs to the class U(α, λ) and λ⋆

is defined by (4). Then the following results are best possible.

(i) |γ1| ≤ λ
2(1−α) when 0 < λ ≤ λ⋆ and 0 < α < 1.

(ii) Let λ1 = 2(1−α)2

α(2−α) and let α1 = 0.4825 . . . be the unique real root of the
equation

7α4 − 20α3 + 24α2 − 16α + 4 = 0

on the interval (0, 1). Then

|γ2| ≤
λ

2(2 − α)
if 0 < λ ≤

{
λ1, α ∈ [α1, 1),

λ⋆, α ∈ (0, α1],

and

|γ2| ≤
αλ2

4(1 − α)2
if λ1 ≤ λ ≤ λ⋆, α ∈ [α1, 1).

(iii) Let λ1/2 = (1−α)(2−α)
2α(3−α) , λν =

√
3(1−α)3

α2(3−α)
and α1/2 = 0.2512 . . . and αν =

0.5337 . . . are the unique roots of equations

4 − 12α− 19α2 + 14α3 − 2α4 = 0

and
3 − 9α + 9α2 − 5α3 = 0,

on the interval (0, 1), respectively. Then

|γ3| ≤
λ

2(3 − α)
if 0 < λ ≤


λ⋆, α ∈ (0, αν ],
λ1/2, α ∈ [αν , α2],

λν , α ∈ [α2, 1),
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where α2 = 0.9555 . . . is the unique real root of equation 11α2−44α+32 = 0
on (0, 1). Also,

|γ3| ≤
α2λ3

6(1 − α)3
if λν ≤ λ ≤ λ⋆, α ∈ [αν , 1).

Proof. Let f ∈ U(α, λ) and ω ∈ Ω are given by (1) and (6), respectively. Then,
from (5), upon integration, we have[

z

f(z)

]α
= 1 − αλ

∞∑
n=1

cn
n− α

zn,

that is,

f(z)

z
=

(
1 − αλ

∞∑
n=1

cn
n− α

zn

)− 1
α

(7)

(the principal value is used here). Further, from (7), having in mind that

(1 − αz)−1/α = 1 + z +
1 + α

2
z2 +

(1 + α)(1 + 2α)

6
z3 + · · · ,

after some calculations, we obtained

∞∑
n=1

an+1z
n =

∞∑
n=1

λcn
n− α

zn +
1 + α

2

( ∞∑
n=1

λcn
n− α

zn

)2

+
(1 + α)(1 + 2α)

6

( ∞∑
n=1

λcn
n− α

zn

)3

+ · · · .

By comparing the coefficients we receive

a2 =
λ

1 − α
c1,

a3 =
λ

2 − α
c2 +

(1 + α)λ2

2(1 − α)2
c21,

a4 =
λ

3 − α
c3 +

(1 + α)λ2

(1 − α)(2 − α)
c1c2 +

(1 + α)(1 + 2α)λ3

6(1 − α)3
c31.

(8)

On the other hand, by comparing the coefficients in the relation (2), for the
logarithmic coefficients we obtain

γ1 =
1

2
a2, γ2 =

1

4
(2a3 − a22), γ3 =

1

2
(a4 − a2a3 +

1

3
a32). (9)

Using the relations (8) and (9), after some calculations, we have

γ1 =
λ

2(1 − α)
c1,

γ2 =
1

4

[
2λ

2 − α
c2 +

αλ2

(1 − α)2
c21

]
,

γ3 =
λ

2(3 − α)

(
c3 + µc1c2 + νc31

)
,

(10)
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where

µ =
α(3 − α)λ

(1 − α)(2 − α)
and ν =

α2(3 − α)λ2

3(1 − α)3
. (11)

Since logarithmic coefficients are defined for univalent functions, in order to
guarantee univalence of f in all cases we need 0 < λ ≤ λ⋆, where λ⋆ is defined in
(4).

(i) From (10) we have |γ1| ≤ λ
2(1−α) , where 0 < λ ≤ λ⋆ and 0 < α < 1. The

result is the best possible as the function f1 defined by

f1(z) = z

(
1 − αλ

1 − α
z

)−1/α

= z +
λ

1 − α
z2 + . . .

shows.

(ii) Using the inequalities |c1| ≤ 1, |c2| ≤ 1 − |c1|2 for ω ∈ Ω and (10), we
have

|γ2| ≤
1

4

[
2λ

2 − α
|c2| +

αλ2

(1 − α)2
|c1|2

]

≤ 1

4

[
2λ

2 − α
(1 − |c1|2) +

αλ2

(1 − α)2
|c1|2

]

≤ 1

4

[
2λ

2 − α
+

(
αλ2

(1 − α)2
− 2λ

2 − α

)
|c1|2

]
≡ H1(|c1|).

If αλ2

(1−α)2
− 2λ

2−α ≤ 0, or equivalently,

λ ≤ 2(1 − α)2

α(2 − α)
≡ λ1,

then |γ2| ≤ H1(0) = λ
2(2−α) . It is also necessary that

λ ≤ λ⋆ =
1 − α√

(1 − α)2 + α2
.

The last inequality will hold if λ1 ≤ λ⋆, or equivalently, if

7α4 − 20α3 + 24α2 − 16α + 4 ≤ 0,

i.e., if α ∈ [α1, 1), where α1 = 0.4825 . . . is the unique real root of equation

7α4 − 20α3 + 24α2 − 16α + 4 = 0

on the interval (0, 1). If α ∈ (0, α1], then λ1 ≥ λ⋆ and we have that 0 < λ ≤
λ⋆ will imply the same result.
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Finally, if α ∈ [α1, 1), i.e., λ1 ≤ λ⋆, and λ1 ≤ λ ≤ λ⋆, then, from the
previous consideration we obtain

|γ2| ≤ H1(1) =
αλ2

4(1 − α)2
.

Those results are the best possible as the functions

f1(z) = z

(
1 − αλ

1 − α
z

)−1/α

and f2(z) = z

(
1 − αλ

2 − α
z2
)−1/α

,

given by (7) for c2 = 1 (c1 = c3 = · · · = 0) or for c1 = 1 (c2 = c3 = · · · = 0),
show.

(iii) From (10) we have

|γ3| ≤
λ

2(3 − α)

∣∣c3 + µc1c2 + νc31
∣∣ =

λ

2(3 − α)
Ψ(ω), (12)

where µ and ν are given by (11).

Next, we want to apply the results of Lemma 2, and for that we need to
distinguish the cases in the definitions of the sets D1, D2, and D3.

First, we note that µ and ν are both positive.

Further, µ = α(3−α)λ
(1−α)(2−α) ≤

1
2 is equivalent to

0 < λ ≤ (1 − α)(2 − α)

2α(3 − α)
≡ λ1/2.

It is necessary that λ ≤ λ⋆, where λ⋆ is defined by (4). After some
calculations, λ1/2 ≤ λ⋆ is equivalent to

4 − 12α− 19α2 + 14α3 − 2α4 ≤ 0,

i.e., to α ∈ [α1/2, 1), where α1/2 = 0.2512 . . . is the unique real root of the
equation

4 − 12α− 19α2 + 14α3 − 2α4 = 0

on the interval (0, 1). In that sense we have

0 < µ ≤ 1

2
⇔ λ ≤

{
λ1/2, α ∈ [α1/2, 1),

λ⋆, α ∈ (0, α1/2].
(13)

On the other hand, by (11), ν = α2(3−α)λ2

3(1−α)3
≤ 1 is equivalent to

0 < λ ≤

√
3(1 − α)3

α2(3 − α)
≡ λν .
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It is again necessary that λ ≤ λ⋆.

Next, λν ≤ λ⋆ after some calculations is equivalent to

3 − 9α + 9α2 − 5α3 ≤ 0,

which is true when α ∈ [αν , 1), where αν = 0.5337 . . . is the unique real root
of equation

3 − 9α + 9α2 − 5α3 = 0.

It means that

0 < ν ≤ 1 ⇔ λ ≤
{

λν , α ∈ [αν , 1),
λ⋆, α ∈ (0, αν ].

(14)

Also, λ1/2 ≤ λν is equivalent to 11α2 − 44α + 32 ≥ 0, i.e., to α ∈ (0, α2],
where α2 = 0.9555 . . . is the unique real root of equation

11α2 − 44α + 32 = 0

on the interval (0, 1).

Using all those previous facts, we can conclude that if

0 < λ ≤


λ⋆, α ∈ (0, αν ],
λ1/2, α ∈ [αν , α2],

λν , α ∈ [α2, 1),

then 0 < µ ≤ 1
2 and 0 < ν ≤ 1. By Lemma 2 (case D1) it means that

Ψ(ω) ≤ 1 and so, by (12):

|γ3| ≤
λ

2(3 − α)
.

The result is best possible as the function f3(z) = z
(

1 − αλ
3−αz

3
)−1/α

obtained for c3 = 1 (c1 = c2 = c4 = · · · = 0) in (7) shows.

If λ1/2 ≤ λ ≤ λν αν ≤ α ≤ α2, then 0 < ν ≤ 1 and

1

2
≤ µ =

α(3 − α)λ

(1 − α)(2 − α)
≤ α(3 − α)λν

(1 − α)(2 − α)

=

√
3(1 − α)(3 − α)

2 − α
≤ 1.2667 . . . .

The last is obtained for α = αν = 0.5337 . . . since

√
3(1−α)(3−α)

2−α is a
decreasing function on (αν , α2).

For the study of the set D2, we note that the function

ϕ(µ) ≡ 4

27
(1 + µ)3 − (1 + µ)
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is an increasing function for 1
2 ≤ µ ≤ 2, and

ϕ(µ) ≤ ϕ(1.2667 . . .) = −0, 541 . . . < 0 < ν ≤ 1.

That implies Ψ(ω) ≤ 1 (by Lemma 2, case D2), and follows the same
sharp estimate |γ3| ≤ λ

2(3−α) as in previous case.

Finally, since for all 0 < λ ≤ λ⋆ we have 0 < µ ≤ 2 (easy to check)
and if λν ≤ λ ≤ λ⋆, α ∈ [αν , 1), then ν ≥ 1, and by Lemma 2 (case D3):
Ψ(ω) ≤ ν, which by (12) implies

|γ3| ≤
λ

2(3 − α)

α2(3 − α)λ2

3(1 − α)3
=

α2λ3

6(1 − α)3
.

The result is the best possible as the function f1(z) = z
(

1 − αλ
1−αz

)−1/α

given by (7) and c1 = 1 (c2 = c3 = · · · = 0) shows.
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