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Abstract

In this study, we define the (d, k)− Fibonacci polynomial and examine
its properties. We give the generating function, characteristic equation, and
matrix representation of this polynomial. Then we get the infinite sum for
the (d, k)− Fibonacci polynomials. We give the relationship between (d, k)−
Fibonacci polynomial and d− Fibonacci polynomial. Also, with the help of
(d, k)− Fibonacci polynomial matrix representation and the Riordan matrix,
the factorization of the Pascal matrix in two different ways is given. In
addition, we define the infinite (d, k)− Fibonacci polynomial matrix and give
their inverses. The Riordan arrays linked here help us understand patterns
of number concepts and prove many theorems, as well as helping us make
an intuitive connection for solving combinatorial problems. Among our main
goals is to combine Riordan arrays with the Fibonacci number sequence,
which is the most important of the number sequences, and to expand this
study to the k-Fibonacci number sequence, which is the general form of
Fibonacci number sequences. Based on the information given above, Riordan
array and Pascal matrices, which have an important place in matrix theory
and combinatorics studies also it derived an encoding of Pascal’s triangle in
matrix form, were discussed in this study and a very different generalization
of the Fibonacci number sequence was studied.
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1 Introduction

The importance of number sequences, their contribution to science and studies
in this field have been the subject of study for scientists with ongoing interest for
years. Although there are many number sequences that have been the subject of
lately, as it is known, the most famous of them is the Fibonacci number sequence.

These numbers, which were written on the basis of the reproduction of rabbits,
which Fibonacci gave her name, and obtained by adding the two terms before the
next term, have almost revolutionized the history of science.

Because of their importance, many authors have done many studies on both
these numbers and their generalization [13, 14, 15, 12, 19, 21, 5, 8, 9].

We know that the Fibonacci numbers Fn are given as follows

Fn = Fn−1 + Fn−2, n ≥ 2

with F0 = 0 and F1 = 1 [9].
Riordan arrays are formed by lower triangular matrices, each column of which

is generated by formal power series and formed by two functions. It is known that
the first studies on Riordan arrays started with John Riordan. It is known that
John Riordan was the pioneer of combinatorial studies.

Riordan arrays show themselves in many fields of science together with known
matrix studies. Riordan arrays and Riordan matrices, which are the structural
combination of matrices that play a leading role in coding and decoding studies,
have been a pioneering work in many fields from analysis, which is many sub-fields
of computation, to error verification codes and wireless communication, since the
1990s. In addition, Riordan arrays have taken an active role in fields such as
molecular biology, RNA structure and chemistry by pushing the boundaries of
mathematics in many different fields of science beyond these studies.

Among our main goals is to combine Riordan arrays with the Fibonacci num-
ber sequence, which is the most important of the number sequences, and to ex-
pand this study to the k-Fibonacci number sequence, which is the general form
of Fibonacci number sequences.

Studies in this field have been discussed by many authors as it has an important
place in the scientific field.

Tian-Xiao [23] examined the Riordan array characterization of matrices formed
as two matrix characterizations, P-matrix and A-matrix. Wang et al. [24] em-
phasized that generalized Riordan arrays have the same properties as classical
Riordan arrays. Kılıç [8] obtained the products of infinite generalized Pascal ma-
trices with the Riordan group approximation of the arbitrary binary polynomial
sequence taken. Shapiro et al. [21] created q-analogues of Riordan arrays and
named them q-Riordan arrays. Alp and Koçer [1] have developed a different ap-
proach to number sequences by dealing with Leonardo and Hyper-Leonardo num-
bers through Riordan arrays, and studies in many other fields show themselves
together with Riordan matrix and group structures in [19, 20, 3].

Fibonacci numbers have great importance in many areas such as mathematics,
physics, biology, statistics, etc. Falcon et al. [5, 6] presented a general Fibonacci
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sequence.

In [13], Nalli and Haukkanen defined h(x)− Fibonacci and Lucas polynomials.

Created with elements taken in complex numbers, Consider the infinite matrix
S and B is generating function for matrix S;

S = (sij)i,j>0

Bi (x) =
∞∑
n≥0

sijx
n

and

Bi (x) = m(x)[n(x)]i

m (x) = 1 +m1x+m2x
2 +m3x

3 + . . .

and

n (x) = x+ n2x
2 + n3x

3 + . . . .

Here, if we write it as S = (m (x) , n(x)), we call (m (x) , n(x)) a Riordan
matrix. See [20] for more details.

Riordan matrices 𭟋(x) = (g (x) , f (x)) which are considered from the set of
matrices and whose elements are complex numbers were first discussed by Shapiro
in 1991 [20].

The Riordan groups are given as the set of Riordan matrices where g(z) =∑∞
n=0 gnz

n, f(z) =
∑∞

n=0 fnz
nwith g0 ̸= 0 and f1 ̸= 1 [20].

Whereas Riordan groups consist of infinite lower triangular matrices defined
by two functions f and g, Double Riordan groups have two generating functions
such as f1 and f2 and they also have generating functions f1 and f2 in columns
starting from the left. The important point to emphasize here is that Double
Riordan groups are not a generalization of Riordan groups, but a generalization
of the checkerboard subgroup. Davenport et al., Cameron et al., Donaghey and
Shapiro have done many effective studies in this area [2, 3, 4].

There are many areas that can be expanded using Riordan groups. determi-
nant sequences, division properties, Z (x) =

∑∞
n=0 znx

n/dn form for various dn
sequences and many more examples can be given to these fields.

If we accept dn = n! as [18], Roman has mentioned many examples that can
be extended to Riordan groups.

In the following years, such studies were discussed in many different series.

If we mention some of them, Özkan et al. [11, 16, 17] examined d-Gauss Pell, d-
Gauss Fibonacci and d-Gauss Lucas polynomials and d-Jacobsthal, d-Jacobsthal
Lucas polynomials dealt with Riordan groups and matrices in polynomials con-
taining complex numbers. In addition, Kuloğlu [10] generalized these studies a
little more and added a different dimension to the studies by dealing with the
Tribonacci sequences, which are the number sequence with three recurrences.
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2 A generalization of Fibonacci polynomials

Definition 1. (d, k)− Fibonacci polynomial is given in [19]

Fk,n (x) = q1 (x)Fk,n−1 (x) + q2 (x)Fk,n−2 (x) + · · ·+ qd+1(x)Fk,n−d−1 (x) (1)

with Fk,1 (x) = k, Fk,n (x) = 0 for n ≤ 0, where qi(x ) is a polynomial with real
coefficient, 1 ≤ i ≤ d+ 1.

A few terms for these polynomials:
n Fk,n (x)

0 Fk,0 (x) = 0

1 Fk,1 (x) = k

2 Fk,2 (x) = q1(x)k

3 Fk,3 (x) = q21(x)k + q2(x)k

4 Fk,4 (x) = q31 (x) k + 2q1 (x) q2 (x) k + q3(x)k

From equation (1), the characteristic equation;

sd+1 − q1 (x) s
d − · · · − qd+1 (x) = 0

where δ1(x), δ2(x), . . . , δd+1(x) are roots of the equation.

Theorem 1. Generating function of Fk,n (x) is

Fk (x, s) =
∞∑
n=0

Fk,n (x) s
n =

ks

(1− q1 (x) s− · · · − qd+1 (x) sd+1)
.

Proof. We have

Fk (x, s) = Fk,0 (x) + Fk,1 (x) s+ Fk,2 (x) s
2 + . . . (2)

Multiply Eq. (2) by q1 (x) s, q2 (x) s
2, . . . , qd+1(x)s

d+1, respectively. We
obtain

q1 (x) sFk (x, s) = q1 (x) sFk,0 (x) + q1 (x) s
2Fk,1 (x) + . . .

q2 (x) s
2Fk (x, s) = q2 (x) s

2Fk,0 (x) + q2 (x) s
3Fk,1 (x) + . . .

...

qd+1 (x) s
d+1Fk (x, s) = qd+1 (x) s

d+1Fk,0 (x) + qd+1 (x) s
d+2Fk,1 (x) + . . .

If the necessary calculations are made, then

Fk (x, s)
[
1− q1 (x) s− · · · − qd+1 (x) s

d+1
]

= Fk,0 (x) + s (Fk,1 (x)− q1 (x)Fk,0 (x))

+ s2 (Fk,2 (x)− q1 (x)Fk,1 (x)− q2 (x)Fk,0 (x)) + 0 + . . .
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Fk (x, s) =
ks

(1− q1 (x) s− · · · − qd+1 (x) sd+1)
.

We know that Binet formula similarly in [19] for Fk,n(x) has the form

Fk,n(x) =
d+1∑
i=1

Ki(x)(δi(x))
n.

We get the following equation for each value of n.

Fk,0(x) =

d+1∑
i=1

Ki(x)

Fk,1(x) =
d+1∑
i=1

Ki(x)(δi(x))
1

...

Fk,n(x) =
d+1∑
i=1

Ki(x)(δi(x))
n

So, we can write the following equations

Fk,0(x) =

d+1∑
i=1

Ki(x)

sFk,1(x) =
d+1∑
i=1

Ki(x)(δi(x))
1s

...

snFk,n(x) =

d+1∑
i=1

Ki(x)(δi(x))
nsn

The sum of the left-hand sides of above equations

ks

(1− q1 (x) s− · · · − qd+1 (x) sd+1)
.

The sum of the right-hand sides of above equations

d+1∑
i=1

Ki (x)
[
1 + (δi(x))

1s+ · · ·+ (δi(x))
nsn

]
=

d+1∑
i=1

Ki(x)

(
1

1− δi(x)s

)
.

Thus we have

ks

(1− q1 (x) s− · · · − qd+1 (x) sd+1)
=

d+1∑
i=1

(
Ki(x)

1− δi(x)s

)
.
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Theorem 2. For n ≥ 0, we have

Fk,n(x) = k
∑

n1+2n2+···+(d+1)nd+1=n

(
n1 + n2 + · · ·+ nd+1

n1, n2, . . . , nd+1

)
q1

n1(x) q2
n2(x) . . . qd+1

nd+1(x).

Proof. Generating function for (d, k)− Fibonacci polynomials are found with the
help of multinomial coefficient for the number. For any positive integer m and
any non-negative integer n, the multinomial formula describes how a sum with m
terms expands when raised to an arbitrary power n:

∞∑
n=0

Fk,n+1(x)s
n =

k

(1− q1 (x) s− · · · − qd+1 (x) sd+1)

= k
∞∑
n=0

(
q1 (x) s+ · · ·+ qd+1 (x) s

d+1
)n+2

= k

∞∑
n=0

 ∞∑
n1+n2+···+ nd+1=n

[(
n

n1, n2, . . . , nd+1

)
q1

n1 (x) . . . qd+1
nd+1(x)

]
sn1+2n2+···+(d+1)nd+1



= k
∞∑
n=0

 ∑
n1+2n2+···+(d+1)nd+1=n

(
n1 + n2 + · · ·+ nd+1

n1, n2, . . . , nd+1

)
q1

n1 (x) . . . qd+1
nd+1(x)

 sn

as desired.

Theorem 3. The sum SFk,n(x) of the (d, k)− Fibonacci polynomials is as follows

SFk,n(x) =
∞∑
n=0

Fk,n(x) =
k

1− q1 (x)− · · · − qd+1 (x)
.

Proof. We have

SFk,n(x) =
∞∑
n=0

Fk,n (x).

Then we obtain

q1 (x) SFk,n(x) = q1 (x)Fk,0(x) + . . .+q1 (x)Fk,n(x) + . . .

q2 (x)SFk,n(x) = q2 (x)Fk,0(x) + . . .+q2 (x)Fk,n(x) + . . .

...

qd+1 (x)SFk,n(x) = qd+1 (x)Fk,0(x) + . . .+qd+1 (x)Fk,n(x) + . . . .

From the last equations, we get

SFk,n(x) (1−q1 (x)− · · · − qd+1 (x)) = k
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Thus, we have

SFk,n(x) =

∞∑
n=0

Fk,n(x) =
k

1− q1 (x)− · · · − qd+1 (x)
.

From [19], matrix Qd for the d− Fibonacci polynomial is defined by

Qd =


q1 (x) q2 (x) · · · qd+1 (x)
1 0 · · · 0

0
. . .

...
...

. . .
...

0 0 1 0

 (3)

Then we have

kQd = Fd =


q1 (x) k q2 (x) k · · · qd+1 (x) k

k 0 · · · 0

0
. . .

...
...

. . .
...

0 0 k 0


where detQd = (−1)dqd+1 (x).

Theorem 4. Matrix representation of Fk,n(x) is as follows

Fd
n =


Fk,n+1(x) q2 (x)Fk,n(x) + · · ·+ qd+1 (x)Fk,n−d+1(x) . . . qd+1 (x)Fk,n(x)
Fk,n(x) q2 (x)Fk,n−1 (x) + · · ·+ qd+1Fk,n−d(x) . . . qd+1 (x)Fk,n−1(x)

...
...

. . .
...

Fk,n−d+1(x) q2 (x)Fk,n−d(x) + · · ·+ qd+1 (x)Fk,n−2d+1(x) . . . qd+1 (x)Fk,n−d(x)


(4)

where Fd
n = Fd

n−1Qd.

Proof. Let’s apply the induction on n.
For n = 1,

Fd
1 =


Fk,2(x) q2 (x)Fk,1(x) . . . qd+1 (x)Fk,1(x)
Fk,1(x) q2 (x)Fk,0 (x) . . . qd+1 (x)Fk,0(x)

...
...

. . .
...

Fk,2−d(x) q2 (x)Fk,1−d(x) . . . qd+1 (x)Fk,1−d(x)



=


q1(x)k q2(x)k . . . qd+1(x)k

k 0 . . . 0
...

...
. . .

...
0 . . . k 0

 (5)

From the definition of Fk,n(x), we obtain that the matrices in (3) and (5) are
the same.
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Suppose that the result satisfies for n. So, we get

Fd
n =


Fk,n+1(x) q2 (x)Fk,n(x) + · · ·+ qd+1 (x)Fk,n−d+1(x) . . . qd+1 (x)Fk,n(x)
Fk,n(x) q2 (x)Fk,n−1 (x) + · · ·+ qd+1Fk,n−d(x) . . . qd+1 (x)Fk,n−1(x)

...
...

. . .
...

Fk,n−d+1(x) q2 (x)Fk,n−d(x) + · · ·+ qd+1 (x)Fk,n−2d+1(x) . . . qd+1 (x)Fk,n−d(x)


To prove the theorem, it remains to show that the result is true for n+ 1.

Fd
n+1 = Fd

nFd
1

=


Fk,n+1(x) q2 (x)Fk,n(x) + · · ·+ qd+1 (x)Fk,n−d+1(x) . . . qd+1 (x)Fk,n(x)
Fk,n(x) q2 (x)Fk,n−1 (x) + · · ·+ qd+1Fk,n−d(x) . . . qd+1 (x)Fk,n−1(x)

...
...

. . .
...

Fk,n−d+1(x) q2 (x)Fk,n−d(x) + · · ·+ qd+1 (x)Fk,n−2d+1(x) . . . qd+1 (x)Fk,n−d(x)



·



q1 (x) k q2 (x) k · · · qd+1 (x) k
k 0 · · · 0

0
. . .

...
...

. . .
...

0 0 k 0



=


Fk,n+2(x) q2 (x)Fk,n+1(x) + · · ·+ qd+1 (x)Fk,n−d+2(x) . . . qd+1 (x)Fk,n+1(x)
Fk,n+1(x) q2 (x)Fk,n (x) + · · ·+ qd+1Fk,n−d+1(x) . . . qd+1 (x)Fk,n(x)

...
...

. . .
...

Fk,n−d+2(x) q2 (x)Fk,n−d+1(x) + · · ·+ qd+1 (x)Fk,n−2d+2(x) . . . qd+1 (x)Fk,n−d+1(x)



Corollary 1. For n,m ≥ 0, we have

Fk,n+m (x) = Fk,n (x)Fk,m (x) + (q2 (x)Fk,n−1 (x)Fk,m−1 (x) + · · ·+
qd+1 (x)Fk,n−d(x)Fk,m−1(x)) + · · ·+ qd+1 (x)Fk,n−1(x)Fk,m−d(x)

Proof. Since Fn
d F

m
d = Fn+m

d , the desired is the first row and the first column of
matrix Fn+m

d .

Lemma 1. For n ≥ 1, we have

Fk,n(x) = kFn(x).

Proof. For n = 1 equality is true so thatFk,1(x) = kF 1 (x) = k

Let the result be true for n = k. For n = k + 1, we show that the equation is
true.

Fk,n+1 (x) = q1 (x)Fk,n (x) + · · ·+ qd+1(x)Fk,n−d (x)

= q1 (x) kFn (x) + · · ·+ qd+1 (x) kFn−d (x) = kFn+1 (x) .

Theorem 5. For d ≥ 2, n ≥ 0,
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∑
n1, n2, . . . , nd+1

(d+ 1)n1 + dn2 + · · ·+ nd+1 = n

(
n1 + n2 + · · ·+ nd+1

n1, n2, . . . , nd+1

)
q1

n1 (x) · . . . ·

. . . · qd+1
nd+1 (x)Fk,n−(n1+n2+···+nd+1) (x)

= Fk,n(d+1)(x) (6)

Proof. For n = 1, we have

Fk,d+1 (x) = q1 (x)Fk,d (x) + · · ·+ qd+1(x)Fk,0 (x)

Let’s show the right-hand side of Eq. (6) with RH.

For n ≥ 0, we get

RH =
∑

n1, n2, . . . , nd+1

(d+ 1)n1 + dn2 + · · ·+ nd+1 = n

(
n1 + n2 + · · ·+ nd+1

n1, n2, . . . , nd+1

)
.

q1
n1 (x) . . . qd+1

nd+1 (x)

[
d+1∑
i=1

Ki(x)δi(x)
n−(n1+n2+···+nd+1)

]

=
∑

n1, n2, . . . , nd+1

(d+ 1)n1 + dn2 + · · ·+ nd+1 = n

(
n1 + n2 + · · ·+ nd+1

n1, n2, . . . , nd+1

)
.

q1
n1 (x) . . . qd+1

nd+1 (x)

[
d+1∑
i=1

Ki(x)δi(x)
(dn1+(d−1)n2+···+nd+1)

]

K1(x)
∑

n1, n2, . . . , nd+1

(d+ 1)n1 + dn2 + · · ·+ nd+1 = n

(
n1 + n2 + · · ·+ nd+1

n1, n2, . . . , nd+1

)

(
δd1(x)q1(x)

)n1
(
δd−1
1 (x)q2(x)

)n2

. . . (qd+1 (x))
nd+1 + · · ·+

+Kd+1(x)
∑

n1, n2, . . . , nd+1

(d+ 1)n1 + dn2 + · · ·+ nd+1 = n

(
n1 + n2 + · · ·+ nd+1

n1, n2, . . . , nd+1

)

(
δd1(x)q1(x)

)n1
(
δd−1
1 (x)q2(x)

)n2

. . . (qd+1 (x))
nd+1
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= K1 (x)
[
δd1 (x) q1 (x) + · · ·+ qd+1 (x)

]n
+ . . .

· · ·+Kd+1(x)
[
δd1 (x) q1 (x) + · · ·+ qd+1 (x)

]n
.

From the characteristic equation, we get

=
d+1∑
i=1

Ki (x) (δi (x)
d+1)

n
= Fk,n(d+1)(x)

as desired.

Lemma 2. For n ≥ 1,

Fk,n(x) = k(Ln (x)− Fn+1 (x) + q1 (x)Fn (x)).

Proof. From [19], Eq. 4, we get

Fk,n(x) = kFn (x) = k(Ln (x)− q2 (x)Fn−1 (x)− · · · − qd+1(x)Fn−d(x))

= k(Ln (x)− (q2 (x)Fn−1 (x) + · · ·+ qd+1(x)Fn−d(x)))

= k(Ln (x)− Fn+1 (x) + q1 (x)Fn (x)).

3 The infinite matrix of Fibonacci polynomials

The matrix of (d, k)− Fibonacci polynomials is defined by

𭟋 (x) = [𭟋k,(q1,q2,...,qd+1,i,j)(x)]

and we have

𭟋 (x) =


k 0 . . .

q1 (x) k k . . .
q1

2 (x) k + q2 (x) k q1 (x) k . . .

s1 (x) s2 (x)
...

...
... . . .

 =
(
g𭟋(x) (s) , f𭟋(x) (s)

)
,

where s1 (x) = q1
3 (x) k+2q1 (x) q2 (x) k+q3 (x) k, s2 (x) = q1

2 (x) k+q2 (x) k and
s3 (x) = q1 (x) k.

In other words, Fibonacci polynomial matrices can be written as follows:

𭟋 (x) =


Fk,1(x) Fk,0(x) 0 . . .
Fk,2(x) Fk,1(x) Fk,0(x) . . .
. . . . . . . . . . . .
...

...
...

...

 .
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Theorem 6. The first column of 𭟋 (x) matrix is as follows(
k, q1 (x) k, q1

2 (x) k + q2 (x) k, . . .
)T

.

According to the theory on which Riordan groups are based, the generator
function for the first column is

g𭟋(x) (s) =

∞∑
n=0

𭟋q1,q2,...,qd+1,i,j(x)s
n =

k

(1− q1 (x) s− · · · − qd+1 (x) sd+1)
.

Proof. For the first column, the generating function is

k + q1 (x) ks+
(
q1

2 (x) + q2 (x)
)
ks2 + . . . .

Let’s make necessary operations to find the generating function for Fk,n(x).
So, we have

g𭟋(x) (s) =
k

(1− q1 (x) s− · · · − qd+1 (x) sd+1)
.

The desired expression is obtained. From the Riordan matrix, we have
f𭟋(x) (s) = s.

𭟋 (x) =
(
g𭟋(x) (s) , f𭟋(x) (s)

)
=

(
k

(1− q1 (x) s− · · · − qd+1 (x) sd+1)
, s

)
.

If the (d, k)− Fiboonacci polynomials matrix 𭟋 (x) is finite, then the matrix
is

𭟋f (x) =


Fk,1(x) Fk,0(x) 0 . . .
Fk,2(x) Fk,1(x) Fk,0(x) . . .

...
...

... . . .
Fk,n(x) Fk,n−1(x) Fk,n−2(x) . . .


and det𭟋f (x) = |𭟋f (x)| = (k)n.

We introduce two factorizations of Pascal Matrix including the (d, k)− Fi-
bonacci polynomials matrix.

Let’s define a matrix M (x) = k(mi,j(x)) such that

mi,j =

(
i− 1

j − 1

)
− q1 (x)

(
i− 2

j − 1

)
− · · · − qd+1(x)

(
i− d− 2

j − 1

)
So, we get

M (x) =


k 0 . . .

k − q1(x)k k . . .
k − q1 (x) k − q2(x)k 2k − q1(x)k . . .

. . . . . . . . .
...

...
...

 .
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Theorem 7. The factorization is as follows

P (x) = 𭟋 (x)M (x) .

Proof. The generating function for the first column of matrix M (x) is

gM(x) (s) = k + (1− q1 (x)) ks+ (1− q1 (x)− q2 (x))ks
2 + . . .

= k (1 + s+ . . . )− q1 (x) k
(
s+ s2 + . . .

)
− q2 (x) k

(
s2 + s3 + . . .

)
+ · · ·+ qd+1k(s

d+1 + sd+2 + . . . )

=
k

1− s
− q1ks

1− s
− · · · − qd+1ks

d+1

1− s

=
k(1− q1s− q2s

2 − · · · − qd+1s
d+1)

1− s
.

By the definition of the Riordan matrix, we write fM(x) (s).

fM(x) (s) = ks+ (2− q1 (x)) ks
2 + (3− 2q1 (x)− q2 (x)) ks

3 + . . .

= k
(
s+ 2s2 + 3s3 + . . .

)
− q1ks

(
s+ 2s2 + 3s3 + . . .

)
− · · · − qd+1ks

d+1
(
s+ 2s2 + 3s3 + . . .

)
=

s

1− s

(
k(1− q1s− q2s

2 − · · · − qd+1s
d+1)

1− s

)
From definition of the Riordan array, i th column generating function

g(x)(f(x))i is as follows

fM(x) (s) =
s

1− s
.

Then we get

M (x) =
(
gM(x) (s) , fM(x) (s)

)
=

(
k(1− q1s− · · · − qd+1s

d+1)

1− s
,

s

1− s

)
.

From the matrices of Pascal and (d, k)−Fibonacci polynomials, the Riordan
representations are as follows

P =

(
1

1− s
,

s

1− s

)
,

𭟋 (x) =

(
k

(1− q1 (x) s− · · · − qd+1 (x) sd+1)
, s

)
.

The proof is completed if we use the Riordan matrix multiplication.

Now, we give other factorization for these matrices.

Let’s consider an infinite N (x) = k(ni,j(x )) where

ni,j =

(
i− 1

j − 1

)
− q1 (x)

(
i− 1

j

)
− · · · − qd+1(x)

(
i− 1

j + d

)
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We give the infinite N (x) by

N (x) =


k 0 . . .

k − q1(x)k k . . .
k − 2q1 (x) k − q2(x)k 2k − q1(x)k . . .

. . . . . . . . .
...

...
...

 .

Now, we can give another factorization.

Theorem 8. The factorization is

P (x) = 𭟋 (x)N (x) .

Proof. The proof is similar to Theorem 7.

Now, let’s give the inverse of F (x) by using the definition of reverse element
in Riordan group [20] with the following Corollary.

Corollary 2. We can find easily the inverses of the matrices by using the Riordan
representations of the given matrices as follows:

𭟋−1 (x) =

(
1− q1s− · · · − qd+1s

d+1

k
, s

)

4 Conclusions

In this paper, we defined the (d, k)− Fibonacci polynomial and gave its prop-
erties. We found the generating function, characteristic equation, and matrix
representation of this polynomial. Then we got the infinite sum for the (d, k)−
Fibonacci polynomials. We obtained the relationship between (d, k)− Fibonacci
polynomial and d- Fibonacci polynomial. Also, with the help of (d, k)− Fibonacci
polynomial matrix representation and the Riordan matrix, the factorization of the
Pascal matrix in two different ways were given. This and similar studies in this
field can be applied to different number sequences, as well as to number sequences
with characteristic equations with more degrees, and it will help to reveal different
and interesting properties.
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