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Abstract

In this work, we analyze a mathematical problem for dynamic contact
between two electro-viscoelastic bodies with adhesion, normal compliance,
and damage. An inclusion of the parabolic type describes the evolution of
damage. A first order differential equation explains the development of the
bonding field. We create a variational formulation for the model and demon-
strate the existence and uniqueness of the weak solution. Parabolic inequal-
ities, variational inequalities, and the Banach fixed point theorem form the
foundation for the proof.
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1 Introduction

The study of different techniques to analyse contact problems is developing
rapidly in recent years, Therefore, the engineering literature on this subject is
rather abundant (see, e.g., [7, 13] and the references therein).

Piezoelectricity is the capacity of certain crystals, ceramics, DNA, and vari-
ous proteins to produce a voltage when they are subjected to mechanical stress.
General models for piezoelectric effects can be found in [2, 9].

The constitutive laws which utilize internal variables to characterize the chang-
ing state of a material during a deformation process have been proposed by sev-
eral investigators. The damage is one of these internal state variables, it is an
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extremely important topic in design engineering. There exists a very large engi-
neering literature on it. General models of mechanical damage, were introduced
in [6], and considered by many authors, we can see [5, 13]. The normal com-
pliance contact condition allows the interpenetration of the body’s surface into
the obstacle and it was used in various references, see e.g. [10, 12]. Adhesion
processes are important in many industrial settings, we can found The results
of the mathematical analysis of various adhesive contact problems in [4, 13] and
references therein.

The aim of this paper is to study the coupling of an electro-viscoelastic problem
with normal compliance, and a dynamic contact problem with adhesion and dam-
age. The contact is modelled with adhesion and normal compliance. We model
the material’s behavior with an electro-viscoelastic constitutive law with damage.
We derive a variational formulation of the problem and prove the existence of a
unique weak solution.

The document is structured as shown below. The physical environment and
the mechanical issue are both described in Section 2. We introduce a few nota-
tions, describe the presumptions based on the problem data, and construct the
variational formulation of the model in Section 3. Our primary existence and
uniqueness result, Theorem 1, is stated in Section 4. Nonlinear evolution equa-
tions using monotone operators, a conventional existence and uniqueness conclu-
sion based on parabolic inequalities, and fixed-point arguments are used in the
theorem’s proof.

2 Problem statement

This section studies the physical setting as it is depicted below. Two electro-
viscoelastic bodies, occupy two bounded domains Ω1, Ω2 of the space Rd(d = 2, 3).
The boundary Γω is assumed to be Lipschitz continuous, and is decomposed into
two measurable parts Γω

a and Γω
b , on one hand, and on three separate measurable

parts Γω
1 , Γ

ω
2 and Γω

3 , on the other hand, such that meas(Γω
1 ) > 0, meas(Γω

a ) > 0.
Let’s indicate by [0, T ], the time period of importance, where T > 0. The Ωω

bodies are exposed to volume electric charges of density qω0 and fω
0 forces. The

displacement field disappears at Γω
1×(0, T ), due to fixation of the two bodies there.

Furthermore, we suppose that the electrical potential disappears on Γω
a × (0, T ).

A surface electric charge of density qω2 is required on Γω
b × (0, T ) and the surface

tractions fω
2 act on Γω

2 × (0, T ). The two bodies are in adhesive contact along the
common part Γ1

3 = Γ2
3 = Γ3.

With these assumptions, the following is the classical formulation of the dy-
namic problem for adhesive contact between two electro-viscoelastic substances
with damage and normal compliance.

Problem P. For ω = 1, 2, find a displacement field uω : Ωω× (0, T ) −→ Rd, a
stress field σω : Ωω×(0, T ) −→ Sd, an electric potential field ζω : Ωω×(0, T ) −→ R,
a damage field ξω : Ωω × (0, T ) −→ R, a bonding field ς : Γ3 × (0, T ) −→ R and
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an electric displacement field Dω : Ωω × (0, T ) −→ Rd such that

σω(t) = Aω(ε(u̇ω(t))) +Bω(ε(uω(t)), ξω)− (Eω)∗Eω(ζω) in Ωω × (0, T ), (1)

Dω = Eωε(uω)−Bω∇ζω in Ωω × (0, T ), (2)

ξ̇ω − κω∆ξω + ∂φKω(ξω) ∋ Ψω(ε(uω), ξω) in Ωω × (0, T ), (3)

ρωüω = Divσω + fω
0 in Ωω × (0, T ), (4)

divDω − qω0 = 0 in Ωω × (0, T ), (5)

uω = 0 on Γω
1 × (0, T ), (6)

σωνω = fω
2 on Γω

2 × (0, T ), (7)

−σν = pν(u
1
ν + u2ν)− γνς

2Rν(u
1
ν + u2ν) on Γ3 × (0, T ), (8)

−στ = pτ (ς)Rτ (|u1
τ − u2

τ |) on Γ3 × (0, T ), (9)

ς̇ = Had(ς, ς̂ , Rν(u
1
ν + u2ν), Rτ (|u1

τ − u2
τ |)) on Γ3 × (0, T ), (10)

∂ξω

∂νω
= 0 on Γω × (0, T ), (11)

ζω = 0 on Γω
a × (0, T ), (12)

Dω.νω = qω2 on Γω
b × (0, T ), (13)

uω(0) = uω
0 , u̇ω(0) = vω

0 , ξω(0) = ξω0 in Ωω, (14)

ς(0) = ς0 on Γ3. (15)

First, The electro-viscoelastic constitutive law with damage, is shown in equa-
tions (1) and (2). The relation (3) indicates the damage field’s evolution. The
equilibrium equations for the stress and electric displacement fields are expressed
by formulas (4) and (5), respectively. The displacement and traction boundary
conditions are given by equations (6) and (7) , respectively. Equations (8) and
(9) discribe the normal compliance condition with adhesion, where Rν , Rτ are
the truncation operators, γν is the adhesion coefficient and pν , pτ are given func-
tions. The evolution of the bonding field is described by the ordinary differential
equation (10). The homogeneous Neumann boundary condition is described by
quation (11), where ∂ξω

∂νω is the normal derivative of ξω. The electric boundary
conditions are shown in (12) and (13). Finally, the initial data are given in (14)
and (15).

3 Variational formulation and preliminaries

For a weak formulation of the problem, we introduce some notation and pre-
liminary material to be used in the rest of the paper. Further details can be found
in [13, 1, 5]. In the sequel, Sd represent the space of second-order symmetric ten-
sors on Rd, the indices i and j run between 1 and d and the summation convention
over repeated indices is adopted. Let us introduce the following function spaces:

Hω = {vω = (vωi ); vωi ∈ L2(Ωω)}, Hω
1 = {vω = (vωi ); vωi ∈ H1(Ωω)},

Hω = {τω = (ij); ij =ji∈ L2(Ωω)}, Hω
1 = {τω = (ij) ∈ Hω; divτω ∈ Hω}.
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The spaces Hω, Hω
1 , H

ω and Hω
1 are real Hilbert spaces endowed with the

canonical inner products given by

(uω,vω)Hω =

∫
Ωω

uω.vωdx,

(uω,vω)Hω
1
=

∫
Ωω

uω.vωdx+

∫
Ωω

∇uω.∇vωdx,

(σω, τω)Hω =

∫
Ωω

σω.τωdx,

(σω, τω)Hω
1
=

∫
Ωω

σω.τωdx+

∫
Ωω

divσω.Div τωdx.

and the associated norms ∥.∥Hω , ∥.∥Hω
1
, ∥.∥Hω , and ∥.∥Hω

1
respectively. Here and

below we use the notation

∇uω = (uωi,j), ε(uω) = (εij(u
ω)), εij(u

ω) =
1

2
(uωi,j + uωj,i), ∀uω ∈ Hω

1 ,

Divσω = (σω
ij,j), ∀σω ∈ Hω

1 .

Also, we introduce the sets Z, V ω for the bonding and displacement fields,
respectively.

Z =
{
θ ∈ L∞(

0, T ;L2(Γ3)
)
; 0 ≤ θ(t) ≤ 1 ∀t ∈ [0, T ], a.e. on Γ3

}
,

V ω = {vω ∈ Hω
1 ; vω = 0 on Γω

1 } .

Since meas(Γω
1 ) > 0, V ω is a real Hilbert space (see [11, p.79]), with the inner

product and the associated norm given by

(uω,vω)V ω = (ε(uω), ε(vω))Hω , ∥uω∥V ω = ∥ε(uω)∥Hω . (16)

Moreover, by the Sobolev trace theorem, the Korn’s inequality and (16), there
exists a constant c0 > 0, such that

∥vω∥L2(Γ3)d ≤ c0∥vω∥V ω ∀vω ∈ V ω. (17)

Since meas(Γω
a ) > 0, Wω is a real Hilbert space, with the inner product given

by

(ζω,Ψω)Wω =

∫
Ωω

∇ζω.∇Ψωdx, (18)

and let ||.||Wω be the associated norm. By the Sobolev trace theorem, the
Friedrichs-Poincaré’s inequality and (18), there exists a constant c1 > 0, such
that

∥ζω∥L2(Ω)ω ≤ c1∥ζω∥Wω ∀ζω ∈ Wω. (19)

In addition, we introduce the spaces

Lω
0 = L2(Ωω), Lω

1 = H1(Ωω), Wω = {Ψω ∈ Lω
1 ; Ψω = 0 on Γω

a} ,
Wω =

{
Dω = (Dω

i ); Dω
i ∈ L2(Ωω), divDω ∈ L2(Ωω)

}
.
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On the space Wω, we use the inner product

(Dω,Ψω)Wω =

∫
Ωω

Dω.Ψωdx+

∫
Ωω

divDω.divΨωdx,

and the associated norm ∥|.||Wω . In order to simplify the notations, we define the
spaces

V = V 1 × V 2, H = H1 ×H2, H1 = H1
1 ×H2

1 ,

H = H1 ×H2, H1 = H1
1 ×H2

1, L0 = L1
0 × L2

0,

L1 = L1
1 × L2

1, W = W 1 ×W 2, W = W1 ×W2.

The spaces V , L1, W and W are real Hilbert spaces endowed with the canon-
ical inner products denoted by (., .)V , (., .)L1 , (., .)W , and (., .)W.

The associate norms will be denoted by ∥.∥V , ∥.∥L1 , ∥.∥W and ∥.∥W, respec-
tively.

In the study of the Problem P, we consider the following assumptions:
The viscosity operator Aω : Ωω × Sd → Sd satisfies:

(a) There exists C1
Aω , C2

Aω > 0 such that,

|Aω(x, ϵ)| ≤ C1
Aω |ϵ|+ C2

Aω ∀ ϵ ∈ Sd, a.e. x ∈ Ωω.
(b) There exists mAω > 0 such that

(Aω(x, ϵ1)−Aω(x, ϵ2)) · (ϵ1 − ϵ2) ≥ mAω |ϵ1 − ϵ2|2
∀ ϵ1, ϵ2 ∈ Sd, a.e. x ∈ Ωω.

(c) The mapping x 7→ Aω(x, ϵ) is Lebesgue measurable on Ωω,
for any ϵ ∈ Sd.

(d) The mapping ϵ 7→ Aω(x, ϵ) is continuous on Sd, a.e. x ∈ Ωω.

(20)

The elasticity operator Bω : Ωω × Sd × R× R → Sd satisfies

(a) There exists a constant MBω > 0 such that
|Bω (x, ϵ1, r1, d1)−Bω (x, ϵ2, r2, d2)|
≤ MBω (|ϵ1 − ϵ2|+ |r1 − r2|+ |d1 − d2|)
∀ϵ1, ϵ2 ∈ Sd, ∀r1, r2, d1, d2 ∈ R, a.e. x ∈ Ωω.

(b) The mapping x → Bω (x, ϵ, r, d) is Lebesgue
measurable on Ωω, for any ϵ ∈ Sd and r, d ∈ R.

(c) The mapping x 7→ Bω(x,0, 0, 0) belongs to Hω.

(21)

The electric permittivity operator Bω =
(
Bω

ij

)
: Ωω × Rd → Rd satisfies

(a) Bω
ij = Bω

ji ∈ L∞(
Ωω

)
, 1 ≤ i, j ≤ d.

(b) There exists a constant MBω > 0 such that

Bωπ.π ≥ MBω |π|2 ∀π = (πi) ∈ Rd a.e. x ∈ Ωω.

(22)

The piezoelectric operator Eω = (eωijk) : Ω
ω × Sd → Rd satisfies

eωijk = eωikj ∈ L∞(Ωω), 1 ≤ i, j, k ≤ d. (23)
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The damage source function Ψω : Ωω × Sd × R× R → R satisfies

(a) There exists a constant MΨω > 0 such that
|Ψω(x, ϵ1, r1, d1)−Ψω(x, ϵ2, r2, d2)|
≤ MΨω(|ϵ1 − ϵ2|+ |r1 − r2|+ |d1 − d2|)
∀ϵ1, ϵ2 ∈ Sd, ∀r1, r2, d1, d2 ∈ R, a.e.x ∈ Ωω.

(b) ∀ϵ ∈ Sd et r, d ∈ R, Ψω(., ϵ, r, d) is Lebesgue measurable
(c) The mapping x 7→ Ψω(x,0, 0, 0) belongs to L2(Ωω).

(24)

The normal compliance function pν : Γ3 × R → R+ satisfies
(a) There exists a constant Lν > 0 such that
|pν (x, r1)− pν (x, r2)| ≤ Lν |r1 − r2| ∀r1, r2 ∈ R, a.e. x ∈ Γ3.

(b) pν (., r) is Lebesgue measurable on Γ3, for any r ∈ R.
(c) pν (x, r) = 0 ∀r ≤ 0, a.e. x ∈ Γ3.

(25)

The tangential contact function pτ : Γ3 × R → R+ satisfies

(a) There exists a constant Lτ > 0 such that
|pτ (x, r1)− pτ (x, r2)| ≤ Lτ |r1 − r2| ∀r1, r2 ∈ R , a.e. x ∈ Γ3.

(b) There exists a constant Mτ > 0 such that
|pτ (x, r)| ≤ Mτ ∀r ∈ R, a.e. x ∈ Γ3.

(c) pτ (., r) is Lebesgue measurable on Γ3, ∀r ∈ R.
(d) The mapping x 7→ pτ (x, 0) belongs to L2(Γ3).

(26)

The adhesion rate function Had : Γ3 × R× R× R× Rd−1 → R satisfies:

(a) There exists Lad > 0 such that :
|Had(x, r1, d1, s1, λ1)−Had(x, r2, d2, s2, λ2)|
≤ Lν |r1 − r2|+ |d1 − d2|+ |s1 − s2|+ |λ1 − λ2|,
∀ r1, r2, d1, d2, s1, s2 ∈ R, λ1, λ2 ∈ Rd−1, a.e. x ∈ Γ3.

(b) The mapx 7→ Had(x, r, d, s, λ) is measurable onΓ3,
for any r, d, s ∈ R, λ ∈ Rd−1.

(c) The map (r, d, s, λ) 7→ Had(x, r, d, s, λ)
is continuous onR× R× R× Rd−1 , a.e. x ∈ Γ3.

(d) Had(x, 0, d, s, λ) = 0, ∀ d, s ∈ R, λ ∈ Rd−1 , a.e. x ∈ Γ3,
(e) Had(x, r, d, s, λ) ≥ 0, ∀ r ≤ 0, d, s ∈ R, λ ∈ Rd−1,
a.e. x ∈ Γ3, and Had(x, r, d, s, λ) ≤ 0,
∀ r ≥ 1, d, s ∈ R, λ ∈ Rd−1, a.e. x ∈ Γ3.

(27)

The mass density satisfies

ρω ∈ L∞(Ωω), there exists ρ∗ > 0 such that ρω ≥ ρ∗ a.e. x ∈ Ωω. (28)

We also suppose that The forces, tractions, volume and surface free charge
densities have the regularity

fω
0 ∈ L2(0, T ;L2(Γω

2 )
d), fω

2 ∈ L2(0, T ;L2(Γω
2 )

d), (29)
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qω0 ∈ C(0, T ;L2(Ωω)), qω2 ∈ C(0, T ;L2(Γω
b )), (30)

qω2 (t) = 0 on Γ3 ∀t ∈ [0, T ]. (31)

The adhesion coefficient γν satisfies: γν ∈ L∞ (Γ3) , γν ≥ 0 a.e. on Γ3.
The microcrak difussion kω coefficient verify: kω > 0.
The initial data satisfy

uω
0 ∈ V ω, vω

0 ∈ Hω, ξω0 ∈ Kω a.e.x ∈ Ωω, (32)

ς0 ∈ L2 (Γ3) , 0 ≤ ς0 ≤ 1, a.e.x ∈ Γ3. (33)

We will use a modified inner product on the Hilbert space, given by

((u,v))H =
2∑

ω=1

(ρωuω,vω)Hω ∀ u,v ∈ H. (34)

and we let |||.|||H be the associated norm given by

|||v|||H = ((v,v))
1
2
H ∀v ∈ H. (35)

We can prove that |||.|||H and ||.||H are equivalent norms on H, and also the
inclusion mapping of (V , ||.||V ) into (H, ||.||H) is continuous and dense. We denote
by V ′ the dual space of V . The Gelfand triple V ⊂ H ⊂ V ′ can be written by
matching H with its own dual. To indicate the duality pairing between V ′ and
V , we use the notation (., .)V ′×V , defined as follows

(u,v)V ′×V = ((u,v))H ∀u ∈ H,∀v ∈ V . (36)

Next, we define the following mappings a : L1 × L1 → R, f : [0, T ] → V ′,
q : [0, T ] → W, jad : L∞(Γ3)× V × V → R and jvc : L∞(Γ3)× V × V → R
as follows:

a (ξ, ζ) =

2∑
ω=1

kω
∫
Ωω

∇ξω.∇ζω dx, (37)

(f(t),v)V ′×V =

2∑
ω=1

∫
Ωω

fω
0 (t).v

ωdx+
2∑

ω=1

∫
Γω
2

fω
2 (t).v

ωda ∀ v ∈ V , (38)

(q(t),Ψ)W =
2∑

ω=1

∫
Ωω

qω0 (t)Ψ
ωdx−

2∑
ω=1

∫
Γω
b

qω2 (t)Ψ
ωda ∀Ψ ∈ W, (39)

jad(ς, u, v) =

∫
Γ3

(−γνς
2Rν(u

1
ν + u2ν)vν + pτ (ς)Rτ (|u1

τ − u2
τ |)).vτ )da, (40)

jvc(u, v) =

∫
Γ3

pν(u
1
ν + u2ν)vνda. (41)

By a standard procedure based on Green’s formula, we derive the following
variational formulation of the electro-mechanical problem (1)-(15).
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Problem PV. Find a displacement field u = (u1,u2) : [0, T ] → V, a stress
field σ = (σ1,σ2) : [0, T ] → H, an electric potential field ζ = (ζ1, ζ2) : [0, T ] → W,
a damage field ξ = (ξ1, ξ2) : [0, T ] → L1, and an adhesion field ς : [0, T ] → L∞(Γ3)
such that

σω(t) = Aω(ε(u̇ω) +Bω(ε(uω(t)), ξω) + (Eω)∗∇ζω in Ωω × (0, T ), (42)

(ü(t),v)V ′×V +
2∑

ω=1

(Aωε(u̇ω(t)), ε(vω))Hω

+

2∑
ω=1

(Bω(ε(uω(t)ξω), ε(vω))Hω +

2∑
ω=1

(
(Eω)∗∇ζω(t), ε(vω)

)
Hω (43)

+jad(ς(t),u(t),v) + jvc(u,v) = (f(t),v)V ′×V ∀v ∈ V, t ∈ (0, T ),

ξ(t) ∈ K ∀t ∈ [0, T ],

2∑
ω=1

( ˙ξω(t), δω − ξω(t))Lω
0
+ a(ξ(t), δ − ξ(t))

≥
2∑

ω=1

(Ψω(ε(uω(t)), (t), ξω(t)), δω − ξω(t))Lω
0

∀δ ∈ K,

(44)

2∑
ω=1

(Bω∇φω(t),∇Ψω)Hω −
2∑

ω=1

(Eωε(uω(t)),∇Ψω)Hω =

(q(t),Ψ)W ∀Ψ ∈ W, t ∈ (0, T ),

(45)

ς̇ = Had(ς, ς̂ , Rν(u
1
ν + u2ν), Rτ (|u1

τ − u2
τ |)) on Γ3 × (0, T ) (46)

u(0) = u0, u̇(0) = v0, ξ(0) = ξ0, ς(0) = ς0. (47)

4 Existence and uniqueness result

Now, we propose our existence and uniqueness result.

Theorem 1. Assume that (20)-(33) hold. Then there exists a unique solution
{u,σ, ζ, ξ, ς,D} to problem PV. Moreover, the solution satisfies

u ∈ W 1,2(0, T ;V ) ∩ C1(0, T ;H), ü ∈ L2(0, T ;V ′), (48)

ζ ∈ C(0, T ;W ), (49)

σ ∈ L2(0, T ;H), (Divσ1,Divσ2) ∈ L2(0, T ;V ′), (50)

ξ ∈ H1(0, T ;L0) ∩ L2(0, T ;L1), (51)

ς ∈ W 1,∞(0, T ;L2(Γ3)) ∩ Z. (52)

D ∈ C(0, T ;W). (53)

The functions u,σ, ζ,D, ξ, ς which satisfy (42)-(47) and (48)-(53) are called a
weak solution of the contact problem P. We conclude that, under the assumptions
(20)-(39), the mechanical problem (1)-(15) has a unique weak solution satisfying
(48)-(53). Let us now move on to the proof of theorem 1 which is carried out in
several steps.
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Let η ∈ L2(0, T ;V ′) be given, in the first step we consider the following vari-
ational problem.

Problem PVu
η . Find uη = (u1

η,u
2
η) : [0, T ] → V such that

(üη(t),v)V ′×V +
2∑

ω=1

(Aωε(u̇ω(t)), ε(vω))Hω + (η(t), v)V ′×V

= (f(t),v)V ′×V ∀v ∈ V , a.e. t ∈ (0, T ),

(54)

uω(0) = uω
0 , u̇ω(0) = vω

0 in Ωω. (55)

To solve Problem PVu
η , we apply the following abstract existence and unique-

ness result, which can be found in[13, p.48].

Theorem 2. Let V , H be as above, and let A : V → V ′ be a hemicontinuous
and monotone operator which satisfies

(Av,v)V ′×V ≥ w∥v∥2V + λ ∀v ∈ V , (56)

∥Av∥V ′ ≤ C(∥v∥V + 1) ∀v ∈ V , (57)

for some constants w > 0, C > 0 and λ ∈ R. Then, given υ0 ∈ H and f ∈
L2(0, T ;V ′), there exists a unique function υ which satisfies

υ ∈ L2(0, T ;V ) ∩ C(0, T ;H), u̇ ∈ L2(0, T ;V ′),

υ̇(t) +Aυ(t) = f(t) a.e. t ∈ (0, T ),

υ(0) = υ0.

We have the following result for the problem.

Lemma 1. There exists a unique solution to Problem PVu
η and it has its regularity

expressed in (48).

Proof. We define the operator A : V → V ′ by

(Au,v)V ′×V =
2∑

ω=1

(Aωε(uω), ε(vω))Hω ∀u,v ∈ V . (58)

Using (16), (20) and (58) it follows that

∥Au−Av∥2V ′ ≤
2∑

ω=1

∥Aωε(uω)−Aωε(vω)∥2Hω ∀u,v ∈ V ,

and keeping in mind the Krasnoselski Theorem (see [8, p.60]), we deduce that
A : V → V ′ is a continuous operator and so is hemicontinuous. Now, by (16),
(20) and (58), we find

(Au−Av,u− v)V ′×V ≥ min{mA1 ,mA2}∥u− v∥2V ∀u,v ∈ V , (59)
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i.e., that A is a monotone operator. Choosing v = 0 in (59) we obtain

(Au,u)V ′×V ≥ m∥u∥2V − ∥Ao∥2V ′∥u∥V

≥ 1

2
m∥u∥2V − 1

2m
∥Ao∥2V ′ ∀u ∈ V . (60)

Moreover, by (20) and (58) we find

∥Au∥V ′ ≤ C1∥u∥V + C2 ∀u ∈ V . (61)

where C1 = max{C1
A1 , C

1
A2} and C2 = max{C2

A1 , C
2
A2}.

It follows now from Theorem 2 that there exists a unique function vη which
satisfies

vη ∈ L2(0, T ;V ) ∩ C(0, T ;H), v̇η ∈ L2(0, T ;V ′), (62)

v̇η(t) +Avη(t) + η(t) = f(t), a.e. t ∈ [0, T ] (63)

vη(0) = v0. (64)

Let uη : [0, T ] → V be the function defined by

uη(t) =

∫ t

0
vη(s)ds+ u0 ∀t ∈ [0, T ]. (65)

It follows from (58) and (62)–(65) that uη is a unique solution of the variational
problem PVu

η and it satisfies the regularity expressed in (48).

In the second step, let η ∈ L2(0, T ;V ′), we use the displacement field uη

obtained in Lemma 1 and we consider the following variational problem.

Problem PVζ
η. Find ζη = (ζ1η , ζ

2
η ) : [0, T ] → W such that

2∑
ω=1

(Bω∇ζωη (t),∇ϕω)Hω −
2∑

ω=1

(Eωε(uω
η (t)),∇ϕω)Hω

= (q(t), ϕ)W ∀ϕ ∈ W, t ∈ (0, T ).

(66)

Lemma 2. Problem PVζ
η has a unique solution ζη which satisfies the regularity

(51). Moreover, if ζi represents the solution of Problem PVζ
η corresponding to ui,

i = 1, 2, then there exists C > 0 such that

∥ζ1(t)− ζ2(t)∥W ≤ C∥u1(t)− u2(t)∥V ∀t ∈ [0, T ]. (67)

Proof. We define a bilinear form b : W ×W → R such that

b(ζ, ϕ) =
2∑

ω=1

(Bω∇ζω,∇ϕω)Hω ∀ζ, ϕ ∈ W. (68)
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We use (19) and (22) to show that the bilinear form b is continuous, symmetric
and coercive on W . Moreover using Riesz Representation Theorem we may define
an element Lη : [0, T ] → W such that

(Lη(t), ϕ)W = (q(t), ϕ)W +
2∑

ω=1

(Eωε(uω
η (t)),∇ϕω)Hω ∀ϕ ∈ W, t ∈ (0, T ).

We apply the Lax-Milgram Theorem to deduce that there exists a unique
element ζη(t) ∈ W such that

b(ζη(t), ϕ) = (Lη(t), ϕ)W ∀ϕ ∈ W. (69)

We conclude that ζη(t) is a solution of PVζ
η. Let t1, t2 ∈ [0, T ], it follows from

(19),(22), (23) and (66) that

∥ζη(t1)− ζη(t2)∥W ≤ C(∥uη(t1)− uη(t2)∥V + ∥q(t1)− q(t2)∥W ). (70)

Since u∈C(0, T ;V ), and q∈C(0, T ;W ) we deduce from (70), ζη∈C(0, T ;W ).
Finally, inequality (67) is obtained by arguments similar to those used in the proof
of the previous inequality, which concludes the proof.

In the third step, we let µ ∈ L2(0, T ;L0), be given and consider the following
variational problem for the damage field.

Problem PVξ
µ. Find ξµ = (ξ1µ, ξ

2
µ) : [0, T ] → L0 such that

ξµ(t) ∈ K,
2∑

ω=1

(ξ̇ωµ (t), δ
ω − ξωµ )Lω

0
+ a(ξµ(t), δ − ξµ(t))

≥
2∑

ω=1

(µω(t), δω − ξωµ (t))Lω
0

∀δ ∈ K, a.e.t ∈ (0, T ),

(71)

ξµ(0) = ξ0. (72)

Where K = K1 ×K2. The following abstract result for parabolic variational
inequalities.

Lemma 3. For all µ ∈ L2(0, T ;L0), there exists a unique solution ξµ to the

auxiliary problem PVξ
µ satisfying (51).

Proof. Using classical arguments of functional analysis concerning parabolic in-
equalities [3] with some algebraic computations, we find that that (71) has a
unique solution ξ̃µ having the regularity (51)

In the fifth step, we use the displacement field uη obtained in Lemma 1 and
we consider the following initial-value problem.

Problem PVς
η . Find ςη : [0, T ] → L2(Γ3) such that

ς̇η = Had(ςη, ς̂η, Rν(u
1
ην + u2ην), Rτ (|u1

ητ − u2
ητ |)) on Γ3 × (0, T ), (73)

ςη(0) = ς0 in Ωω. (74)
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Lemma 4. There exists a unique solution ςη ∈ W 1,∞(0, T ;L2(Γ3))
⋂
Z to problem

PVς
η. Moreover, if ui represents the solution of Problem PVu

η for ηi ∈ L2(0, T ;V ′),
i = 1, 2, then there exists C > 0 such that

||ς1(t)− ς2(t)||L2(Γ3) ≤ C

∫ t

0
||u1(s)− u2(s)||V ds ∀t ∈ [0, T ]. (75)

Proof. For the sake of simplicity we suppress the dependence of various functions
on Γ3, and note that the equalities and inequalities below are valid a.e. on Γ3.
Consider the mapping Gη : [0, T ]× L2(Γ3) → L2(Γ3) defined by

Gη(t, ς) = Had(ςη, ς̂η, Rν(u
1
ην + u2ην), Rτ (|u1

ητ − u2
ητ |)). (76)

It follows from the properties of the truncation operator Rν and Rτ , that Gη is
Lipschitz continuous with respect to the second variable, uniformly in time. More-
over, for all ς ∈ L2(Γ3), the mapping t → Gη(t, ς) belongs to L∞(0, T ;L2(Γ3)).
We deduce that there exists a unique function ςη ∈ W 1,∞(0, T ;L2(Γ3)) solution
to problem PVς

η, such that 0 ≤ ςη(t) ≤ 1 for all t ∈ [0, T ], a.e. on Γ3. Therefore,
from the definition of the set Z, we find that ςη ∈ Z. From the Cauchy problem
(73)-(74) we can write

ςi(t) = ς0 −
∫ t

0
Had(ςi(s), ς̂i(s), Rν(u

1
iν + u2iν)(s), Rτ (|u1

iτ − u2
iτ |)(s))ds

and then

||ς1(t)− ς2(t)||L2(Γ3) ≤ C

∫ t

0
||ς1(s)− ς2(s)||L2(Γ3)ds

+ C

∫ t

0
||Rν(u

1
1ν(s) + u21ν(s))−Rν(u

1
2ν(s) + u22ν(s))||L2(Γ3)ds

+ C

∫ t

0
||Rτ (|u1

1τ (s)− u2
1τ (s)|)−Rτ (|u1

2τ (s)− u2
2τ (s)|)||L2(Γ3)ds.

Using the definition of Rν and Rτ and writing ς1 = ς1 − ς2 + ς2, we get

||ς1(t)−ς2(t)||L2(Γ3) ≤ C

(∫ t

0
||ς1(s)−ς2(s)||L2(Γ3)ds+

∫ t

0
||u1(s)−u2(s)||L2(Γ3)dds

)
.

Next, we apply Gronwall’s inequality to deduce

||ς1(t)− ς2(t)||L2(Γ3) ≤ C

∫ t

0
||u1(s)− u2(s)||L2(Γ3)dds,

and from the relation (17) we obtain

∥ς1(t)− ς2(t)∥L2(Γ3) ≤ C

∫ t

0
∥u1(s)− u2(s)∥V ds,

which concludes the proof of lemma 4.
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Finally as a consequence of these results and using the properties of the oper-
ator Bω, the operator Eω, the functional j and the functions Ψω for t ∈ [0, T ], we
consider the operator

Π(η, µ)(t) =
(
Π1(η, µ)(t),Π2(η, µ)(t)

)
∈ V ′ × L0 (77)

defined by the equations

(
Π1(η, µ)(t),v

)
V ′×V

=
2∑

ω=1

(
Bω(ε(uω

η (t), ξ
ω
µ (t)), ε(v

ω)
)
Hω

(78)

+
2∑

ω=1

(
(Eω)∗∇φω

η (t), ε(v
ω)
)
Hω

+ jad(ςη(t),uη(t),v) + jvc(uη,v) ∀v ∈ V ,

Π2(η, µ)(t) =
(
Ψ1(ε(u1

η), ξ
1
µ),Ψ

2(ε(u2
η), ξ

2
µ)
)
. (79)

Here we use uη, ζη, ξµ and ςη obtained in lemmas 1, 2, 3 and 4.

Lemma 5. The operator Π has a fixed point

(η∗, µ∗) ∈ L2(0, T ;V ′ × L0).

Proof. Let t ∈ (0, T ) and (η1, µ1), (η2, µ2), (η3, µ3) ∈ L2(0, T ;V ′×L0). We use the
notation uηi = ui, u̇ηi = u̇i, üηi = üi, ςηi = ςi, ζηi = ζi and ξµi = ξi, for
i = 1, 2. Let us start by using the hypotheses (21), (23), (25) and (26) and the
definition of Rν , Rτ , we can rewrite

||Π1(η1(t), µ1(t))−Π1(η2(t), µ2(t))||V ′×L0×L0

≤
2∑

ω=1

||Bω(ε(uω
1 (t)), τ

ω
1 (t), ξ

ω
1 (t))−Bω(ε(uω

2 (t)), τ
ω
2 (t), ξ

ω
2 (t))||Hω

+
2∑

ω=1

||(Eω)∗∇ζω1 (t)− (Eω)∗∇ζω2 (t)||Hω

+ C1

(
||ζ1(t)− ζ2(t)||W

)
+ C2

(
||pν(u11ην + u21ην)− pν(u

1
2ην + u22ην)||L2(Γ3)

+ ||ς21 (t)Rν(u
1
1ην + u21ην)− ς22 (t)Rν(u

1
2ην + u22ην)||L2(Γ3)

+ ||pτ (ς1(t))Rτ (|u1
1ητ − u2

1ητ |)− pτ (ς2(t))Rτ (|u1
2ητ − u2

2ητ |)||L2(Γ3)

)
.

Therefore
||Π1(η1(t), µ1(t))−Π1(η2(t), µ2(t))||V ′×L0×L0

≤ C
(
||u1(t)− u2(t)||V + ||τ1(t)− τ2(t)||L0

+ ||ξ1(s)− ξ2(s)||L0 + ||ζ1(t)− ζ2(t)||W

+ ||ς1(t)− ς2(t)||L2(Γ3)

)
a.e. t ∈ (0, T ).

(80)
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On the other hand, since ui(t) = u0 +
∫ t
0 u̇i(s)ds, we know that for a.e.

t ∈ (0, T ),

∥u1(t)− u2(t)∥V ≤
∫ t

0
∥u̇1(s)− u̇2(s)∥V ds. (81)

We use (22), (23) and (66) to obtain

||ζ1(t)− ζ2(t)||2W ≤ C||u1(t)− u2(t)||2V . (82)

Applying Young’s inequalitie, (80) becomes, via (75) , (81) and (82)

||Π1(η1(t), µ1(t))−Π1(η2(t), µ2(t))||2V ′

≤ C
(
||ξ1(t)− ξ2(t)||2L0

+ ||τ1(t)− τ2(t)||2L0
+ ||ς1(t)− ς2(t)||L2(Γ3)

+

∫ t

0
||u̇1(s)− u̇2(s)||2V + ||u1(s)− u2(s)||2V ds

)
a.e.t ∈ (0, T ).

(83)

Furthermore, we find by taking the substitution η = η1, η = η2 in (58) and
choosing v = u̇1 − u̇2 as test function

(ü1 − ü2, u̇1 − u̇2)V ′×V +

2∑
ω=1

(Aωε(u̇ω
1 )−Aωε(u̇ω

2 ), ε(u̇
ω
1 − u̇ω

2 ))Hω

+ (η1 − η2, u̇1 − u̇2)V ′×V = 0 a.e. t ∈ (0, T ).

By virtue of (20) and (28), using (34)−(36) this equation becomes

(ρ∗)2

2

d

dt
∥u̇1(t)− u̇2(t)∥2H +min(mA1 ,mA2)∥u̇1(t)− u̇2(t)||2V

≤ ||η2(t)− η1(t)|V ′ ||u̇1(t)− u̇2(t)||V .

Integrating this inequality over the interval time variable (0, t), Young inequal-
ity leads to

(ρ∗)2∥u̇1(t)− u̇2(t)∥2H +min(mA1 ,mA2)

∫ t

0
||u̇1(s)− u̇2(s)||2V ds

≤ 2

min(mA1 ,mA2)

∫ t

0
||η1(s)− η2(s)||2V ′ds.

Consequently,∫ t

0
||u̇1(s)− u̇2(s)||2V ds ≤ C

∫ t

0
||η1(s)− η2(s)||2V ′ds a.e. t ∈ (0, T ). (84)

which also implies, using a variant of (81), that

||u1(s)− u2(s)||2V ≤ C

∫ t

0
||η1(s)− η2(s)||2V ′ds a.e.t ∈ (0, T ), (85)
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From the relation (71) we deduce that

(ξ̇1 − ξ̇2, ξ1 − ξ2)L0 + a(ξ1 − ξ2, ξ1 − ξ2) ≤ (µ1 − µ2, ξ1 − ξ2)L0 a.e.t ∈ [0, T ].

Integrating the previous inequality with respect to time, using the initial con-
ditions ξ1 (0) = ξ0 and ξ2 (0) = ξ0 and the inequality a (ξ1 − ξ2, ξ1 − ξ2) ≥ 0 to
find

1

2
||ξ1 (t)− ξ2 (t)||2L0

≤
∫ t

0
(µ1 (s)− µ2 (s) , ξ1 (s)− ξ2 (s))L0

ds,

which implies that

||ξ1 (t)− ξ2 (t)||2L0
≤

∫ t

0
∥µ1 (s)− µ2 (s) ∥2L0

ds+

∫ t

0
∥ξ1 (s)− ξ2 (s) ∥2L0

ds.

This inequality, combined with Gronwall’s inequality, leads to

∥ξ1 (t)− ξ2 (t) ∥2L0
≤ C

∫ t

0
∥µ1 (s)− µ2 (s) ∥2L0

ds. (86)

We can infer, using (83)–(86), that

∥Π1(η1(t), µ1(t))−Π1(η2(t), µ2(t))∥2V ′×L0×L0

≤ C
(
∥η1(t)− η2(t)∥2V ′∥2L0

+ ∥µ1(t)− µ2(t)∥2L0

)
.

(87)

Similarly, using (81)–(84), (86) and (87), we obtain the following estimate for
Π2

∥Π2(η1(t), µ1(t))−Π2(η2(t), µ2(t))∥2V ′×L0×L0

= ∥Ψ
(
ε(u1(t)), ξ1(t)

)
−Ψ

(
ε(u2(t)), ξ2(t)

)
∥2V ′×L0×L0

≤ C
(
∥η1(t)− η2(t)∥2V ′ + ∥µ1(t)− µ2(t)∥2L0

)
.

(88)

From (87) and (88), we conclude that there exists a positive constant C > 0
verifying

∥Π(η1(t), µ1(t))−Π(η2(t), µ2(t))∥2V ′×L0×L0

≤ C∥(η1(t)− η2(t), µ1(t)− µ2(t))∥2V ′×L0
.

(89)

We generalize this procedure by recurrence on m. Then we obtain the formula

∥Πm(η1, µ1)−Πm(η2, µ2)∥2L2(0,T ;V ′×L0)

≤ CmTm

m!
∥(η1 − η2, µ1 − µ2)∥2L2(0,T ;V ′×L0)

.
(90)

Thus, for m sufficiently large, Πm is a contraction on L2(0, T ;V ′×L0). Hence,
Banach’s fixed point theorem shows that Π admits a unique fixed point (η∗, µ∗) ∈
L2(0, T ;V ′ × L0).

Now, in the latest step, we have all the ingredients to prove Theorem 1.
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Proof. Existence. Let (η∗, µ∗) ∈ L2(0, T ;V ′×L0) be the fixed point of Π defined
by (77)-(79) and denote by

u∗ = uη∗ , ξ∗ = ξη∗ , ζ∗ = ζη∗ , ς∗ = ςµ∗ . (91)

Let σ∗ = (σ1
∗,σ

2
∗) : [0, T ] → H and D∗ = (D1

∗,D
2
∗) : [0, T ] → H the

functions defined by

σω
∗ = Aω(ε(u̇ω

∗ (t))) +Bω(ε(uω
∗ (t)), ξ∗)− (Eω)∗Eω(ζω∗ ), ω = 1, 2, (92)

Dω
∗ = Eωε(uω

∗ )−Bω∇ζω∗ , ω = 1, 2. (93)

It is easy to verify that the {u∗,σ∗, ζ∗, ξ∗, ς∗} is the unique solution to problem
PV possessing regularities (48)-(53).

Uniqueness. The uniqueness of the solution is a consequence of the uniqueness
of the fixed point of the operator Π defined by (77)-(79) and the unique solvability

of problems PVµ
η , PV

ζ
η, PV

ξ
µ and PVς

η.
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