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Abstract

This article is about the spatial behaviour in one-dimensional type III
thermoelasticity with two voids structures, with porous dissipation in one
of the voids components. After deriving a preliminary integral identity of
Lagrange-Brun type, we prove the main results with the help of a time-
weighted function.
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1 Introduction

This article is based on the new mathematical model from [3] for the one-
dimensional type III thermoelasticity with two voids structures, with porous dis-
sipation in one of the voids components. Other similar mathematical models can
be found in [1], [4], [5].

The system of equations for this mathematical model are given in [3]

pii = tg, (1)
Jiby = iz + g1, (2)
Jady = haa + g2, (3)
Pl = o (4)
The constitutive equations are given in [3]
t = pug + 1101 + 202 — B0, (5)
hi = b11¢1z + b12g2,x + mithy, (6)
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ha = b12¢1 & + baod2 o + M2y,
g1 = —Y1Us + d10 — E11¢1 — E12¢2 — £,
g2 = —V2ugz + dof — E12¢1 — 222,
pn = Bug + ad + did1 + daga,

q = kg +mid1p +madaz + k0.

)
)
9)
(10)

)

(11

As usual, p is the mass density, J; (i = 1,2) are the products of the mass
density by the equilibrated inertias, ¢ is the stress, h; are the equilibrated stresses,
g; are the equilibrated body forces, g is the heat flux, n is the entropy, u is the
displacement, ¢; are the volume fractions, v is the thermal displacement, 6 is the

temperature.

The field equation for the one-dimensional problem are given in [3] and are
obtained by replacing the constitutive equations (5)-(11) into the system of equa-

tions (1)-(4)

pil = [itgy + V1012 + Yob2r — Biha

J161 = b1101 2z 4 D1202.20 + M1es — E1101 — E1262 + d19) — Y1y
Jota = b1a@1 zx + D202 20 + Mathes — E121 — Eaada + doth — You,
ah = M1P1 zx + M2 20 + ktber — diy — dape — By + K Oy

As in [3], we assume that
Ji>0(i=1,2),a>0,p>0, >0,k" >0,

and that the two matrices below are positive definite

bi1 b ma oYt 72
My = b2 b mo| and Ma= |71 &1 &2
mi me k 72 €12 €22

The boundary conditions are

u(0,t) = u(m,t) =0,
<Z>1x(0 t) = ¢1,2(m, ) $2,:(0,1) = pax(m,t) =0,
V(0,1) =tz (m,t) =

and the initial conditions are

— €01

u(x,O) = 'LL()(JJ),ﬁ(:C,O) - Uo(x),¢1(3§',0) - ¢10<m)7q§1(x70> - 9010(33>7
¢2(x70> = ¢20(1‘), ¢2<$70) = @20<1‘)7w($70) = wo(.r),lb(l‘,()) = 90(1’)

for x € [0, 7.

(14)

(15)

—~

16)



Spatial behaviour in thermoelasticity 101

2 Preliminary results

In proving the main results, we follow [2].
First, we define the following quadratic form

1 1
W = §,uuzuz + V191U + YoP2us + §bll¢iz+

1
+ b12¢2, 21,2 + M1V d1 . + 5511@% + &120192+

1 1 1
+ 50203, + matndan + S€ndd + Skul. (17)

The quadratic form W is positive definite, so there exist constants p,, > 0
and pyr > 0 such that

fim (ugtia + 63 + 03 + 67, + @3, +97) <2W <
< s (atiz + 6% + 03 + 67, + 63, +47) . (18)
We define the state of strain by
E = {u$7¢17¢27¢1,$7¢2,$7¢$}' (19)

Let € be the vector space of all E of the form (19). The magnitude of E € €
is

N

E| = (B-E)7 = (u2+ 6} + 63 + 6}, + 63, + v2) (20)
Let

s(E) = pug + 7161 + 1202, (21)
hi(E) = b11¢1,5 + biadoz + M1y, (22)
ha(E) = bi12¢1,x + bazda x + mathy, (23)
G1(E) = —mug — {1101 — 1262, (24)
G2(E) = —y2us — 1201 — Ea2¢b2, (25)
Q(E) = ktpy +m1d1,0 + mada . (26)

Then
t=s— [0, (27)
g1 =Gy +d10 — € ¢, (28)
go = Ga + da, (29)
q=Q+k"0,. (30)

We define S(FE), which will be useful in proving the main result about the
spatial behaviour of the solutions.

S<E>={5<E>,G1<E>,G2<E>, L hi(B), 10h2(E),Q(E)}€€- (31)

K1 K9
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The magnitude of S(F) is given by

N[

1S(E)| = {s<E>2 LGB + Go(EY + S ha(B) + L ho()? +Q(E)2}

"?(1) Ko
(32)
We define the bilinear form

?(E(l), E<2>) — %[ uDy® 4 <¢<1>u<2> +¢<2>u<1>) n
+72< (D@ 4 g 551) (1)¢1x+b2< (1)¢1x+¢2x (1g)c>+
+mi () ¢>1,x+w£¢1i) ena" ol + & (10087 + o0l +

02205005 + ma (w6 + 6P 60)) + a0l 6l + ke, (33)

for all E(@) = {uw N S I T }ee,azm.
We deduce that

F (E(l), E<2>) _g (E<2>, E<1>) VEW E® ce. (34)
Furthermore, we obtain
F(E,E) = W(E),VE € ¢&. (35)
By the Cauchy-Schwarz inequality, we obtain
F <E(1),E(2)> < [W (E(l))]; [W (E@)H T Y0 O c g (36)
We deduce
IS(E)* = (nug + 7161 + 7262) s + (—71% — &1 — &1262) G+
+ (=2us — 1201 — E2202) G2 t9 (bll¢1 e+ b12da e + M) hy+
0 (5126251 v 022020 + mathy)he + (kb + mid1z + mage)Q =

— 25 <E S(E)) . (37)

where
$(B) = {s<E>, —G1(E), ~Gy(E), j@h@) 18 h2<E>,Q<E>} NES)
Then
SE)P <2WE): (WEE)” <<2 @)z (BLisEPR)’. (39)
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It follows that
1S(B)” < 2un W (E). (40)

This leads to

s(E)2+G1(E)2+G2(E)2+%h1(E)2+i0hg(E)2+Q(E)2 < 2up W (E),VE € €.

1 k3
(41)
Let € > 0. For every second-order tensor we have the inequality
1
(Lij + Mij) (Lij + Mij) < (14 €) L Lij + (1 + 5) M5 Mi;. (42)

Below we derive an integral identity of Lagrange-Brun type. This is useful
in showing the main results about the spatial behaviour of the solutions of the
initial boundary value problem. The lemma below shows a conservation law of
total energy which has a weight depending on time.

Lemma 1. We consider that P C B is a reqular region which has regular boundary
OP. If the relations (1)-(4) and (5)-(11) hold, then

e |3 + 5680 + 3RO+ WED) + 5080 | avs

Er L TA A A
s [ [ [qu<s>u<s>+2Jl¢%<s>++2J2¢%<s>+AW<E<s>>+

+ %a@Q(s) R O()0.(5) + €1 (5)6h (5)] duds

1

= /P [2pu(0)u(0) + %quﬁ(o) + +%J2¢'>§(0) + W (E(0)) + ;aQQ(O)} dv+

+ /t/ e . {tnd + hlnél + hgnq'ﬁg + qnﬂ} dads, (43)
0 Jop
fort € [0,00) and A > 0 a given parameter.
Proof. First, we multiply the equation (1) by @ and we obtain
pitts = (t)g — tig. (44)
Then, we replace the constitutive equation (5) and we get

1d

5%(91'“1) = (t0)y — puzliy — Y1010z — Yod2uy + B0, (45)

We multiply the equation (2) by #1 and we deduce that

Jio1¢1 = (h1d1)z — hidr e + g1 (46)
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In the equation above, we replace the constitutive equations (6) and (8). So,
we obtain

1d

278 (J1¢1> = (h161)s — b1101.2b1 2 — bi2docd1 e — M1thydy o—

— Y1ty 4+ 101 — E11p1n — Eraady — E¥ 1y, (47)

Similarly, we multiply the equation (3) by $9, then use the constitutve equa-
tions (7) and (9) in order to obtain

%% (J2¢%> = <h2¢32>x — brad1 o2 — b2ad2 w2 4 —
- mzwx%@ — Yoty o + dabpg — E1a1 2 — Exapacba.  (48)

Finally, we multiply the equation (4) by 6 and obtain

0779 = (qe)a: - qez- (49)

Then, we use the constitutive equations (10), (11) and deduce that
1d, o . . .
= —Pig0 — d1$16 — daga0 + (q0)s—

- knzz)xex - m1¢1,x9x - m2¢2,x9x - k*ereac (50)
Then, we add the formulas (45), (47), (48) and (50). So, we obtain

d (1 .. 1 .5 1. . 1,
—4= = = W+ —af
ds {2PUU+ 2:]1(;51 + 2J2¢2+ + 2CL +

+ K000 + £ 161 = (tu +hid1 + hado + qﬂ)z - (51)

In the equation above, we used, for example, the fact that

d . .
s (Mmo1ug) = V1d1Uz + Y1 P1Ug. (52)

Then, we multiply the equation (51) by e~ integrate the resulting equation

over P x [0,t] and use the divergence theorem. Therefore, we obtain

//ds{ [2puu+ 12 + J2¢2—|—W+ aﬁz]}dvds—

// —Xe [puu—i— 12 + J2¢2+W+ a@z] dvds+

+ / / e [k*@m&r +5*¢51{b1] dvds =
0 P
t . .
_ / / e [mu + hindy + hons + qne] dads, (53)
oP

for t € [0, 00). O
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3 Spatial behaviour

We consider the following function, which is useful in proving the results about
the spatial behaviour of the solution.

// = [tn(s)i(s) + I () (5)+

+ ha(s)na(s) + q(s)n&(s)] dads, r>0,t€0,T]. (54)

In the theorem below we study the spatial behaviour of the solution.

Theorem 1. Let Dy be the bounded support of the external given data in the
problem P on the time interval [0,T]. Then, for each t € [0,T] we have the
following properties:

i) For 0 <rg <y,

Mot =1ty == [ e ot + gnéta

(55)
/ /B( [ pu(s)i (s)+%J1¢5%(s)+%J2é§(s)+

AW (B(S) + 00(9) + K 0,(5)02(5) + €1 (s)()] duds

i1) I(r,t) is a continuous differentiable function on r, and

oty = - /S o) + b0 + J R0+

2 — US
I (B(0) + Lo ]da // [ (s)+ -
+Z J1<z>1()+ J2¢2()+AW( (s)) + a02()

1 0,(5)02(5) + €1 (5)1(5)] dads;

i11) I(r,t) is a nonincreasing function with respect to r;
iv) I(r,t) satisfies the first-order differential inequality

Mo+ L <o rzo (57)

where ( )
A1+ e)ups
2
c’ = 58
oD = 22(1 + e)un (58)
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and €q s the positive root of the algebraic equation

€% 2\uny + € 2 s (v — poao) +
+ (X — 2 8% + 202B%) = 0,

v = po(2d; — pA) — 2pp°.

Proof. iv)

ummsf/;*ﬁﬁ[ﬂ$+iﬁ@+o@@+

2po
1 . .
+ 50 [i7(5) + R2R(s) + wdB(s)| +

1
2 2 02
+2a0q (s)+ 50y ab (s)} dads

= (5 B0)(s — B6) + ~ghi(s) + o h3(s) <
1 2

1 1
<(1+e)s*+ (1 + 6) 320 + K—?h%(s) + —5h3(s) <

K9

< (1+¢e)2unW(E) + (1 + i) 320?

() = (Q + k*0,)(Q + k*6,) <

1
< (1+e)Q*+ (1 + 6) k*20,0,

gi(s) = (Gl +d16 — §*<Z.>1) (G1 + di0 — 5*9251) <

< (1+¢)(Gy+ di16)* + <1 + i) 211 <

<(1+6)2G2+(1+e) <1 + i) d20° + <1 + i) 210

(s) + g3(s) < (1 +e)*2upW(E) + (1 +¢) (1 + i) d26%+

+ (1 + 1) k*20,0, + (1 + i) 2411

3

(61)

(62)

(63)

(65)
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o< [ e {5 2 [a6) + s + o] +

€1

+5— [/\(1 +€)2upW(E) + A (1 + i) [3202] -

[m + )22y W(E) + X1 +¢) (1 + i) d%@ﬂ + (66)

1 1 ..

2 (14 2 ) R20,0, + 2 (14 = ) €21+

2(10 9 2(10 9
1A

— Zab? dad

+)\€22a ()} ads

c_ 1 (1+€)2ups + 2 (1 + €)%2ups =

X e 2p0)\ SIEHM T g N T =

_52 1 . 1 €1 2
—2a0<”a>—x+zm< )ﬂ (67)
2
2
2a )\(H_ )< )dao

4 Conclusions

We studied the spatial behaviour in type III thermoelasticity with two voids
structures in the one-dimensional case. The model was introduced in [3]. After
deriving a result of Lagrange-Brun type, we studied the spatial behaviour of the
solution with the help of a time-weighted function, as in [2].
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