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Abstract

The main aim of this study is to obtain a partition of the asymptotic type
of energy of a solution for the mixed problem considered in the context of the
Cosserat thermoelastic media. The concept of asymptotic equipartition is a
notion, frequently used, for differential equations theory. In a simple formu-
lation, this concept is formulated as follows: potential and kinetic energy, for
a classical solution with finite energy, tend to become asymptotically equal
on average, when time tends to infinity.
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1. Introduction

There is a large number of different works which approaches the asymp-
totic equipartition in the case of physical systems whose evolution is governed by
nondisipative partial differential equations of hyperbolic type or systems of such
type of equations. In our paper we study the asymptotic equipartition of energy
for a solution of the mixed problem with initial and boundary values within the
context of the theory of Cosserat thermoelastic media. In our mixed problem
the basic equations are of the hyperbolic type, with dissipation, what we did not
find in the works already published on this topic. In this context, we will use a
dissipative mechanism in order to prove that the equipartition asymptotic occurs
between the mean strain and kinetic energies.
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We will not approach this issue in its abstract version, but we will prefer to
make it concrete in the practical situation of the thermoelastic Cosserat bodies.

The structure of our study is following one. First we will state the basic
equations and conditions, initial and boundary, for the mixed problem in the
context of the linear theory of Cosserat termoelastic bodies. After that, we prove
some identities of the Lagrange type and define some Cesaro means of different
parts of total energy, associated to the solutions of our problem. Based on previous
estimations, we finally will prove some estimate that characterises the asymptotic
behaviour in mean of the different parts of the total energy.

It is necessary to specify that many studies have been published that address
different variants of Lagrange’s identity, such as Levine [6], Rionero and Chirita
[12], Gurtin [3], Marin [11] and so on. There are many published works that use
means of Cesaro type, in different context, as Levine [6], Day [2] and so on.

2. Main equations and conditions

We will work on D, which is a domain of the Euclidian space R3, which
in its reference configuration is occupied by a homogeneous Cosserat material.
It is supposed that the domain D is regular and has the boundary ∂D and the
closure D̄ so that D = ∂D ∪ D̄. A rectangular system of axes is used and the
Cartesian vector and tensor notation are adopted. Any point in D is identifiable
by its coordinates xj and by t∈[0,∞), where t is the temporal variable.

If there is no risk of confusion, then the specification of the dependence of a
function upon its temporal variable or on the spatial variables can be omitted.

To describe the evolution of a Cosserat thermoelastic medium, the variables
vm, ϕm and ϑ will be used, that is, the components of the displacement, the com-
ponents of the microrotation and the variation of the temperature, respectively.

The strain tensors are introduced by means of the following kinematic rela-
tions:

emn = vn,m + εnmkϕk,

εmn = ϕn,m. (1)

The components of stress tensor τmn, the components of couple stress σmn,
the components of the heat conduction vector qm and the specific entropy η are
introduced by means of the constitutive relations. So, if we suppose that our solid
has in each point of the reference state a center of symmetry and is otherwise
non-isotropic, then the constitutive relations have the following form:

τmn = Amnklekl +Bmnklεkl + αmn(ϑ+ αϑ̇),

σmn = Bmnklekl + Cmnklεkl + βmn(ϑ+ αϑ̇), (2)

qm = −ϑ0kmnϑ,n,

ϱη = a+ dϑ+ hϑ̇− αmnemn − βmnεmn,

where all these equations having place for (t, x) ∈ [0,∞)×D.
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The tensors Amnkl, Bmnkl, ..., in (2) are constants which satisfy the following
symmetry relations:

Amnkl = Aklmn, Cmnkl = Cklmn, kmn = knm. (3)

In the case that the volume force, the volume body couple and supply of heat
are not present, the basic equations in linear theory of the thermoelasticity of a
Cosserat body are, (see [5]):

- the motion equations:

τmn,n = ϱv̈m, (4)

σmn,n + εmjkτjk = Imnϕ̈n; (5)

- the equation of energy:

qm,m = −ϱϑ0η̇, (6)

where these equations having place for (t, x) ∈ [0,∞)×D.
The notations used in the previous relations have the following meanings:

ϱ-the constant density in the reference state, ϑ0-the constant temperature in the
initial state, Imn- the inertia tensor and εijk-the Ricci’s tensor, i.e., the alternating
symbol.

In order to designate the differentiation of a function with respect to time t
a superposed dot is used, and a subscript preceded by a comma designates the
differentiation of a function with respect to the corresponding spatial variable.

The constants ϱ, Imn and ϑ0 satisfy the conditions:

ϱ > 0, ϑ0 > 0, Imn > 0. (7)

From the Clausius-Duhem inequality, that is, the inequality of entropy pro-
duction, the following conditions are obtained:

dα− h ≥ 0, kmnxmxn ≥ 0, ∀xm, (8)

from which the positive definition of tensors Amnkl, Cmnkl, kmn is deduced, that
is:

Amnklxmnxkl ≥ k0xmnxmn, k0 > 0, ∀xmn = xnm,

Cmnklxmnxkl ≥ k1xmnxmn, k1 > 0, ∀xmn = xnm, (9)

kmnxmxn ≥ k2xmxm, k2 > 0, ∀xm.

According to a suggestion from [11], it can be supposed that:

α > 0, h > 0, dα− h > 0. (10)

In order to complete the mixed problem, the following boundary conditions
are prescribed:

vm = 0 on [0,∞)× ∂D1, τm ≡ τmknk = 0 on [0,∞)× ∂Dc
1,

ϕm = 0 on [0,∞)× ∂D2, σm ≡ σmknk = 0 on [0,∞)× ∂Dc
2, (11)

ϑ = 0 on [0,∞)× ∂D3, q ≡ qknk = 0 on [0,∞)× ∂Dc
3,
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where ∂D1, ∂D2, ∂D3 and ∂D
c
1, ∂D

c
2, ∂D

c
3 are subsets of ∂D and their complements

with respect to ∂D, so that:

∂D1 ∪ ∂Dc
1 = ∂D2 ∪ ∂Dc

2 = ∂D3 ∪ ∂Dc
3 = ∂D,

∂D1 ∩ ∂Dc
1 = ∂D2 ∩ ∂Dc

2 = ∂D3 ∩ ∂Dc
3 = ∅,

and ni are the components of the unit outward normal to ∂D.
For the same mixed problem, the initial data are attached, in their most

general form:

vm(0, x) = v0m(x), v̇m(0, x) = v1m(x), ϕm(0, x) = ϕ0m(x),

ϕ̇m(0, x) = ϕ1m(x), ϑ(0, x) = ϑ0(x), ϑ̇(0, x) = ϑ1(x). (12)

If we take into account the constitutive relations (2), from equations (4), (5)
and (6), we are led to the following system of differential equations:

ϱv̈m = Amnklekl,n +Bmnklεkl,n + αmn(ϑ,n + αϑ̇,n),

Imnϕ̈n = Bmnklekl,n + Cmnklεkl,n + βmn(ϑ,n + αϑ̇,n)

+εmjk(Ajknlenl +Bjknlεnl + αjk(ϑ+ αϑ̇)), (13)

hϑ̈ = −dϑ̇+ αmnėmn + βmnε̇mn + kmnϑ,mn,

where all these equations having place for (t, x) ∈ [0,∞)×D.
An ordered array (vm, ϕm, ϑ) is called a solution of the mixed problem in the

thermoelasticity of Cosserat bodies, considered in the cylinder Ω0 = [0,∞) ×D,
if it satisfies the system of partial differential equations (13) for all (t, x) ∈ Ω0,
the boundary conditions (11) and the initial data (12).

In the conditions in which it is assumed that meas ∂D1 = 0 and meas ∂D2 = 0,
it was found that there is a family of motions, which are rigid, and a temperature
null that satisfies the equations (13) and the boundary relations (11). As such,
the initial data v0m, ϕ

0
m, v

1
m, ϕ

1
m, can be decomposed as follows:

v0m = v0∗m + V 0
m, v

1
m = v1∗m + V 1

m,

ϕ0m = ϕ0∗m +Φ0
m, ϕ

1
m = ϕ1∗m +Φ1

m, (14)

in which v0∗m , ϕ
0∗
m , v

1∗
m , ϕ

1∗
m can be computed knowing that V 0

m, Φ0
m, V

1
m, Φ̇1

m

verify the following equations:∫
D
ϱV 0

mdV = 0,

∫
D
ϱ(εmnkxnV

0
m +Φ0

m)dV = 0,∫
D
ϱV 1

mdV = 0,

∫
D
ϱ(εmnkxnV

1
k +Φ1

m)dV = 0. (15)

If the case that meas ∂D1 = 0 and meas ∂D2 ̸= 0, then only must be imposed
the conditions: ∫

D
ϱV 0

mdV = 0,

∫
D
ϱV 1

mdV = 0.
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In the last situation, that is, meas ∂D3 = 0, it was found that there is a set of
null motions and constant temperatures, which verify the equations (13) and the
boundary conditions (11). This is the reason why the initial temperature data,
ϑ0, ϑ̇0, can be decomposed as follows:

ϑ0 = ϑ∗ + T 0, ϑ̇0 = ϑ̇∗ + T 1, (16)

where the constants ϑ∗ and ϑ̇∗ can be computed so that:∫
D
T 0dV = 0,

∫
D
T 1dV = 0. (17)

3. Preliminaries

The set of scalar functions which admits derivatives up to the n-th order
in D, these being continuous on the domain D, is denoted by Cn(D). We define
the norm for a function u ∈ Cn(D) by:

∥u∥ =
n∑

k=0

∑
i1,i2,...,ik

max
D

|u,i1...ik |.

The set of vector functions with six components, each being an element of
Cn(D), is denoted by Cn(D). For a vector function w ∈ Cn(D), w = (wk) , k =
1, 6, the norm is defined by:

∥w∥ =

6∑
k=1

∥wk∥Cn(D).

Let us denote by ∥.∥Wn(D) the norm induced by the following inner product:

(u, v)Wn(D) =
n∑

k=0

∫
D
u,i1...ikv,i1...ikdV.

The completion of the space Cn(D) in relation to this norm is a Hilbert space
denoted by Wn(D).

Now, we denote by ∥.∥Wn(D) the norm induced by the following inner product:

(v,w)Wn(D) =
6∑

k=1

(vk, wk)Wn(D).

The completion of the space Cn(D) in relation to this norm is denoted by
Wn(D). For a Cartesian product of some normed spaces, the norm will be the
sum of the norms of the factor spaces.

In what follows, we will use the next notations:



40 Holm Altenbach, Andreas Öchsner and Sorin Vlase

Ĉ1(D) = {ω ∈ C1(D) : ω = 0 on ∂D3; if meas ∂D3 = 0, then
∫
D ωdV = 0};

Ĉ1(D) ≡ {(vm, ϕm) ∈ C1(D) : vm = 0 on ∂D1, ϕm = 0 on ∂D2;
if meas ∂D1 =meas ∂D2 = 0, then∫

D ϱvmdV = 0,
∫
D ϱ(εmnkxnvk + ϕm)dv = 0;

if meas ∂D1 = 0 and meas ∂D2 ̸= 0 ⇒
∫
D ϱvmdV = 0};

Ŵ1(D) ≡ the completion of the space Ĉ1(D) by means of ∥.∥W1(D);

Ŵ1(D) ≡ the completion of Ĉ1(D) by means of ∥.∥W1(D).

In the relations above Wm(D) is the known Sobolev space, see [1], and the
notation Wn(D) = [Wn(D)]6 was used. It should be emphasized that assumption
(8) guarantees validity of the Korn’s inequality that follows, [4], for all (w,ψ) ∈
Ŵ1(D), ∫

D
[Amnklemn(w,ψ)ekl(w,ψ) + 2Bmnklemn(w,ψ)εkl(w,ψ)

+Cmnklεmn(w,ψ)εkl(w,ψ)]dV ≥ (18)

≥ m1

∫
D
(wmwm + wm,nwm,n + ψmψm + ψm,nψm,n)dV,

where m1 > 0,m1 = const. and

emn(w,ψ) = wn,m + εmnkψk,

εmn(w,ψ) = ψn,m.

Under the hypothesis (8), for all ξ ∈ Ŵ1(D) the following Poincare’s inequality
holds ∫

D
kmnξ,mξ,ndV ≥ m2

∫
D
ξ2dV, m2 > 0. (19)

If simultaneously we have meas ∂D1 = 0 and meas ∂D2 = 0, it will be seen
that the decomposition of solution (vm, ϕm, ϑ) is useful, as follows:

vm = v∗m + tv̇∗m + wm, ϕm = ϕ∗m + tϕ̇∗m + ψm, ϑ = χ, (20)

where ((wm, ψm), χ) ∈ Ŵ1(D) × Ŵ1(D) is a solution of the system of equations
(12), with the boundary conditions (11) and satisfying the initial data:

vm = U0
m, v̇m = U̇0

m, ϕm = Φ0
m, ϕ̇m = Φ̇0

m, χ = ϑ0, χ̇ = ϑ̇0, on D, at t = 0.

Consider now that meas ∂D3 = 0. As such it is possible to use the decompo-
sitions (16) and (17) as well as the energy equation (3) in order to obtain a new
decomposition of the solution ((vm, ϕm), ϑ) as follows:

vm = wm, ϕm = ψm, ϑ = ϑ∗ +
h

d
[1− e−dt/h]ϑ̇∗ + χ, (21)

where ((vm, ψm), χ) ∈ Ŵ1(D) × Ŵ1(D) is a solution of the system of equations
(12), with the boundary conditions (11) and satisfying the initial data:

wm = V 0
m, ẇm = V 1

m, ψm = ϕ0m, ψ̇m = ϕ1m, χ = T 0, χ̇ = T 1,

on the domain D, at the initial moment t = 0.
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4. Some auxiliary identities

In the present section a few evolutionary identities, of integral type, will be
obtained. These will be the basis of some relations, which in turn, are essential
for obtaining the equipartition of the total energy, of asymptotic type. Thus, in
the first theorem a law on energy conservation is proven.

Theorem 1. Consider a solution ((vm, ϕm), ϑ) of the mixed problem defined by
the equations (13), the boundary conditions (11) and the initial data (12). It is
also assumed that the initial data satisfies

(v0m, ϕ
0
m) ∈ W1(D), (v1m, ϕ

1
m) ∈ W0(D), ϑ0 ∈W1(D), ϑ1 ∈W0(D).

Then the following law of energy conservation holds:

E(t)≡ 1

2

∫
D
[ϱv̇m(t)v̇m(t)+Imnϕ̇m(t)ϕ̇n(t)+Amnklemn(t)ekl(t)

+Bmnklemn(t)εkl(t) + Cmnklεmn(t)εkl(t) + αkmnϑ,m(t)ϑ,n(t) (22)

+dϑ2(t) + αhϑ̇2(t) + 2hϑ(t)ϑ̇(t)

+

∫ t

0

∫
D
[kmnϑ,m(s)ϑ,n(s)+(dα− h)ϑ̇2(s)]dV ds=E(0),

for t ∈ [0,∞).

Proof. Considering the equations (12)1 and (12)2 we get

1

2

d

ds

[
ϱv̇mv̇m + Imnϕ̇mϕ̇n

]
=

(
v̇mτnm + ϕ̇mσnm

)
,n
−

−Amnklemnėkl −Bmnkl (εmnėkl + ε̇mnekl)− Cmnklεmnε̇kl − (23)

−αmn

(
ϑ+ αϑ̇

)
ėmn − βmn

(
ϑ+ αϑ̇

)
ε̇mn.

Now, we take into account the equation of energy (12)3 and obtain:

αmn

(
ϑ+ αϑ̇

)
ėmn + βmn

(
ϑ+ αϑ̇

)
ε̇mn

=
1

2

d

ds

[
dϑ2 + αkmnϑ,mϑ,n + αhϑ̇2 + 2ϑϑ̇

]
(24)

−
[
kmnϑ,n(ϑ+ αϑ̇)

]
,m

+ kmnϑ,mϑ,n + (dα− h)ϑ̇2.

Finally, we integrate the equalities (23) and (24), over a cylinder [0, t]×D and
take into account the boundary conditions (11) and the initial conditions (13).
Thus, we find the desired conservation law (22).

Theorem 2. Consider a solution ((vm, ϕm), ϑ) of the mixed problem defined by
the equations (13), the boundary conditions (11) and the initial data (12). It is
also assumed that the initial data satisfies(

v0m, ϕ
0
m

)
∈ W1(D),

(
v1m, ϕ

1
m

)
∈ W0(D), ϑ0 ∈W1(D), ϑ1 ∈W0(D).
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Then the following identity holds

2

∫
D

[
ϱvm(t)v̇m(t) + Imnϕm(t)ϕ̇n(t)

]
dV + 2

∫
D
[(dα− h)ϑ2(t)

+kmn

(∫ t

0
ϑ,m(ξ)dξ

)(∫ t

0
ϑ,n(ξ)dξ

)
+ 2αkmnϑ,m(t)

(∫ t

0
ϑ,n(ξ)dξ

)
]dV

= 2

∫ t

0

∫
D
[ϱv̇m(s)v̇m(s) + Imnϕ̇m(s)ϕ̇n(s)−Amnklemn(s)ekl(s)

−2Bmnklemn(s)εkl(s)− Cmnklεmn(s)εkl(s)− dϑ2(s)− 2hϑ(s)ϑ̇(s)

−αhϑ̇2(s)− αkmnϑ,m(s)ϑ,n(s)]dV ds+ 2

∫
D

[
ϱv0mv

1
m + Imnϕ

0
mϕ

1
n

]
dV

+

∫
D
(dα− h)(ϑ0)2(t)dV − 2

∫ t

0

∫
D
(a− ϱη0)[ϑ(s) + αϑ̇(s)]dV ds, (25)

where

ϱη0 = a+ dϑ0 + hϑ1 − αmne
0
mn − βmnε

0
mn, e

0
mn = v0n,m + e0mnkϕ

0
k, ε

0
mn = ϕ0n,m.

Proof. First, by using the equations (11), we obtain

d

ds
[ϱvmv̇m + Imnϕmϕ̇n] = (vmτnm + ϕmσnm),n −Amnklemnekl

−2Bmnklεmnekl − Cmnklεmnεkl − αnm(ϑ+ αϑ̇)enm (26)

−βnm(ϑ+ αϑ̇)εnm + ϱv̇mv̇m + Imnϕ̇mϕ̇n.

After that, the equation of energy (12) is used to reach:

αnm(ϑ+ αϑ̇)enm + βnm(ϑ+ αϑ̇)εnm = αkmn[ϑ̇,m

∫ s

0
ϑ,n(ξ)dξ + ϑ,mϑ,n]

−αkmnϑ,mϑ,n+kmn(ϑ,m+αϑ̇,m)

∫ s

0
ϑ,n(ξ)dξ−[kmn(ϑ+ αϑ̇)

∫ s

0
ϑ,n(ξ)dξ],m

+αkmn[ϑ̇,m

∫ s

0
ϑ,n(ξ)dξ + ϑ,mϑ,n] + (dα− h)ϑϑ̇ (27)

+kmnϑ,m

∫ s

0
ϑ,n(ξ)dξ + dϑ2 + αhϑ̇2 + 2hϑϑ̇+ (a− ϱη0)(ϑ+ αϑ̇).

From (26) and (27) it results

d

ds

[
ϱvmv̇m + Imnϕmϕ̇n

]
= (vmτnm + ϕmσnm),n

−Amnklemnekl − 2Bmnklεmnekl − Cmnklεmnεkl

+ϱv̇mv̇m + Imnϕ̇mϕ̇n + [kmn(ϑ+ αϑ̇)

∫ s

0
ϑ,n(ξ)dξ],m (28)

−(a−ϱη0)(ϑ+αϑ̇)+αkmnϑ,mϑ,n−αkmn

[
ϑ̇,m

∫ s

0
ϑ,n(ξ)dξ+ϑ,mϑ,n

]
−kmnϑ,m

∫ s

0
ϑ,n(ξ)dξ − dϑ2 − αhϑ̇2 − 2hϑϑ̇− (dα− h)ϑϑ̇.
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An integration of the identity (28) over B × (0, t) , followed by the use of the
boundary conditions (10), the initial conditions (13) and the symmetry relations
(5), lead to the identity (25) and the proof of Theorem 2 is complete.

Theorem 3. Consider a solution ((vm, ϕm), ϑ) of the mixed problem defined by
the equations (13), the boundary conditions (11) and the initial data (12). It is
also assumed that the initial data satisfies(

v0m, ϕ
0
m

)
∈ W1(D),

(
v1m, ϕ

1
m

)
∈ W0(D), ϑ0 ∈W1(D), ϑ1 ∈W0(D).

Then the following identity holds

2

∫
D

[
ϱvm(t)v̇m(t) + Imnϕm(t)ϕ̇n(t)

]
dV +

∫
D
[(dα− h)ϑ2(t)

+kmn

(∫ t

0
ϑ,m(ξ)dξ

)(∫ t

0
ϑ,n(ξ)dξ

)
+2αkmnϑ,m(t)

(∫ t

0
ϑ,n(ξ)dξ

)
]dV

=

∫
D
ϱ[v1mvm(2t) + v0mv̇m(2t)] + Imn[ϕ

1
mϕn(2t) + ϕ0mϕ̇n(2t)]dV (29)

+

∫
D
[(dα− h)ϑ0ϑ(2t) + αkmnϑ

0
,m

(∫ 2t

0
ϑ,n(ξ)dξ

)
]dV

+

∫ t

0

∫
D
(a−ϱη0)

(
ϑ(t+ s)−ϑ(t− s)+α

[
ϑ̇(t+ s)−ϑ̇(t− s)

])
dV ds.

Proof. Consider um(x, s) and wm(x, s) as twice continuously differentiable func-
tions with respect to time variable s. It is easy to see that

d

ds
[ϱ (um(s)ẇm(s)− u̇m(s)wm(s))] = ϱ [um(s)ẅm(s)− üm(s)wm(s)] ,

such that, by integrating over [0, t]×D, it results∫
D
ϱ [um(t)ẇm(t)−u̇m(t)wm(t)] dV =

∫ t

0

∫
D
ϱ[um(s)ẅm(s)−üm(s)wm(s)] dV ds

+

∫
D
ϱ [um(0)wm(1)− u̇m(0)wm(0)] dV. (30)

By setting um(x, s) = vm(x, t − s), wm(x, s) = vm(x, t + s), s ∈ [0, t], t ∈
(0,∞), the relation (30) becomes:

2

∫
D
ϱvm(t)v̇m(t)dV =

∫
D
ϱ[v0mv̇m(2t) + v1mvm(2t)]dV

+

∫ t

0

∫
D
ϱ[vm(t+ s)v̈m(t− s)− vm(t− s)v̈m(t+ s)]dV ds, (31)

for t ∈ (0,∞).
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Similarly, for t ∈ (0,∞), we have

2

∫
D
Imnϕm(t)ϕ̇n(t)dV =

∫
D
Imn[ϕ

0
mϕ̇n(2t) + ϕ1mϕn(2t)]dV

+

∫ t

0

∫
D
Imn[ϕm(t+ s)ϕ̈n(t− s)− ϕm(t− s)ϕ̈n(t+ s)]dV ds. (32)

The inertial terms that appear in the last integrals of the relations (31) and
(32) can be eliminated. For this purpose the symmetries (3) and equations (13)
are used and obtained:

ϱ[vm(t+ s)v̈m(t− s)− vm(t− s)v̈m(t+ s)] + Imn[ϕm(t+ s)ϕ̈n(t− s)

−ϕm(t− s)ϕ̈n(t+ s)] = [vm(t+ s)τnm(t− s)− vm(t− s)τnm(t+ s)],n
+ [ϕm(t+ s)σnm(t− s)− ϕm(t− s)σnm(t+ s)],n (33)

+[αnmenm(t− s) + βnmεnm(t− s)][ϑ(t+ s) + αϑ̇(t+ s)]

−[αnmenm(t+ s) + βnmεnm(t+ s)][ϑ(t− s) + αϑ̇(t− s)].

Now we consider the enrgy equation (12)3 and deduce:

[αnmenm(t− s) + βnmεnm(t− s)]
[
ϑ(t+ s) + αϑ̇(t+ s)

]
− [αnmenm(t+ s) + βnmεnm(t+ s)]

[
ϑ(t− s) + αϑ̇(t− s)

]
+
(
a− ϱη0

) [
ϑ(t− s)− ϑ(t+ s) + α

(
ϑ̇(t− s)− ϑ̇(t+ s)

)]
+(dα− h)

[
ϑ(t− s)ϑ̇(t+ s)− ϑ(t+ s)ϑ̇(t− s)

]
+kmn

[
ϑ,m(t+ s)

(∫ t−s

0
ϑ,n(ξ)dξ

)
− ϑ,m(t− s)

(∫ t+s

0
ϑ,n(ξ)dξ

)]
(34)

+αkmn

[
ϑ̇,m(t+ s)

(∫ t−s

0
ϑ,n(ξ)dξ

)
− ϑ,m(t− s)ϑ,n(t+ s)

]
+αkmn

[
ϑ̇,m(t− s)

(∫ t+s

0
ϑ,n(ξ)dξ

)
− ϑ,m(t+ s)ϑ,n(t− s)

]
+

(
kmn

[
ϑ(t− s) + αϑ̇(t− s)

] ∫ t+s

0
ϑ,n(ξ)dξ

)
, m

−
(
kmn

[
ϑ(t+ s) + αϑ̇(t+ s)

] ∫ t−s

0
ϑ,n(ξ)dξ

)
, m

.

We now substitute (34) into (33) and we use the boundary conditions (10) in
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order to obtain the following identity

2

∫
D
[ϱvm(t)v̇m(t)+Imnϕm(t)ϕ̇n(t)]dV =

∫
D

[
ϱ
(
v0mv̇m(2t) + v̇0mvm(2t)

)
+Imn

(
ϕ0mϕ̇n(2t)+ϕ̇

0
mϕn(2t)

)]
dV +

∫ t

0

∫
D

(
a−ϱη0

)
[ϑ(t+ s)−ϑ(t− s)

+α
(
ϑ̇(t+ s)−ϑ̇(t− s)

)]
dV ds+

∫ t

0

∫
D

[
(dα−h) d

ds
(ϑ(t+ s)ϑ(t− s)) (35)

+
d

ds

(
kmn

∫ t+s

0
ϑ,m(ξ)dξ

∫ t−s

0
ϑ,n(ξ)dξ

)
+αkmnϑ,m(t+ s)

∫ t−s

0
ϑ,n(ξ)dξ

+αkmnϑ,m(t− s)

∫ t+s

0
ϑ,n(ξ)dξ

]
dV ds.

If we use the initial data (13) in (35), we obtain the desired identity (29),
which concludes the proof of Theorem 3.

Other applicable results can be found in [9-15].

5. Equipartition of total energy

In order to obtain the asymptotic partition of total energy, the main aim of
this section, we will use the estimations (22), (25) and (29) and we will take into
account the hypotheses from Section 2.

We start by considering the identity (22) from which we can identify several
types of energies, as follows:

KC(t) ≡
1

2t

∫ t

0

∫
D
[ϱv̇m(s)v̇m(s) + Imnϕ̇m(s)ϕ̇n(s)]dV ds,

LC(t) ≡
1

2t

∫ t

0

∫
D
[Amnklemn(s)ekl(s) + 2Bmnklemn(s)εkl(s)

+Cmnklεmn(s)εkl(s)]dV ds,

PC(t) ≡
1

2t

∫ t

0

∫
D
αKmnϑ,m(s)ϑ,n(s)dV ds, (36)

TC(t) ≡
1

2t

∫ t

0

∫
D
dϑ2(s)dV ds,

TKC(t) ≡
1

2t

∫ t

0

∫
D
αhϑ̇2(s)dV ds,

SC(t) ≡
1

2t

∫ t

0

∫ s

0

∫
D
[Kmnϑ,m(ξ) + (dα− h)ϑ̇2(ξ)]dV dξds,

which are Cesaro means of various energies.

With the help of these Cesaro means, the main result of the present study can
now be formulated and proved.
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Theorem 4. It is supposed that are satisfied the hypotheses formulated in Section
2. Then, no matter how the initial data:

(v0m, ϕ
0
m) ∈ W1(D), (v1m, ϕ

1
m) ∈ W0(D), ϑ0 ∈W1(D), ϑ1 ∈W0(D),

are chosen, the following two limits occur:

lim
t→∞

PC(t) = 0, lim
t→∞

TKC(t) = 0. (37)

Furthermore, it is proven that:
(i) if meas ∂D3 ̸= 0, then

lim
t→∞

TC(t) = 0; (38)

(ii) if meas ∂D2 = 0, then

lim
t→∞

TC(t) =
1

2

∫
D

1

d
(dϑ∗ + hϑ̇∗)dV ; (39)

(iii) if meas ∂D1 ̸= 0 and meas ∂D2 ̸= 0, then

lim
t→∞

KC(t) = lim
t→∞

LC(t), (40)

lim
t→∞

SC(t) = E(0)− 2 lim
t→∞

KC(t) = E(0)− 2 lim
t→∞

LC(t); (41)

(iv) if meas ∂D1 = 0 and meas ∂D2 = 0, then

lim
t→∞

KC(t) = lim
t→∞

LC(t) +
1

2

∫
D
[ϱv̇∗mv̇

∗
m + Imnϕ̇

∗
mϕ̇

∗
n]dV, (42)

lim
t→∞

SC(t) = E(0)− 2 lim
t→∞

KC(t) +
1

2

∫
D
[ϱv̇∗mv̇

∗
m + Imnϕ̇

∗
mϕ̇

∗
n]dV

= E(0)− 2 lim
t→∞

LC(t)−
1

2

∫
D
[ϱv̇∗mv̇

∗
m + Imnϕ̇

∗
mϕ̇

∗
n]dV. (43)

Proof. To obtain the limits (37), the hypotheses from Section 2 and the conser-
vation law (22) are used.

First, with the help of the assumptions hypotheses (10), it is obtained:

dϑ2(t) + αhϑ̇2(t) + 2hϑ(t)ϑ̇(t)

=
1

d

(
dϑ(t) + hϑ̇(t)

)2
+
h

d
(dα− h)ϑ̇2(t) (44)

=
h

α

(
ϑ(t) + αϑ̇(t)

)2
+

1

α
(dα− h)ϑ2(t) ≥ 0.

Then, considering (22) and (36), it is deduced that:

TKC(t) ≤
1

2t
hα (dα− h)−1E(0), (45)

PC(t) ≤
α

2t
E(0). (46)
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Finally, the relations (37) are obtained by letting t → ∞ into (45) and (46)
and using the criterion of increase for limits.

(i) If it is assumed that meas ∂D3 ̸= 0, then it is easy to show that ϑ ∈ Ŵ1(D).
After that, with the help of the Poincare’s inequality (19) and the equality (22),
it is obtained the estimate:∫ t

0

∫
D
dϑ2(s)dV ds ≤ d

m2

∫
0
t0
∫
D
kmnϑ,m(s)ϑ,n(s)dV ds ≤

d

m2
E(0). (47)

If relations (36) and (47) are taken into account, the conclusion (38) is reached.

(ii) Let us assume that meas ∂D3 = 0. Based on the decomposition (21) and
the fact that χ ∈ Ŵ1(D), the following identity are deduced:∫

D
ϑ2(t)dV =

∫
D
(ϑ∗ +

h

d
ϑ̇∗)2dV +

∫
D
χ2(t)dV

−2

∫
D

h

d
(ϑ∗+

h

d
ϑ̇∗)ϑ̇∗ exp(−dt

h
)dV +

∫
D

h2

d2
(ϑ̇∗)2 exp(−2dt

h
)dV. (48)

If the relations (36) and (48) are used, the next relation is reached:

TC(t) =
1

2

∫
D

1

d
(dϑ∗ + hϑ̇∗)2dV +

1

2t

∫ t

0

∫
D
dχ2(s)dV ds

−1

t
[1− exp(−d

h
t)]

∫
D

h2

d2
ϑ̇∗(dϑ∗ + hϑ̇∗)dV (49)

+
1

4t
[1− exp(−2

d

h
t)]

∫
D

h3

d2
(ϑ̇∗)2dV.

If the Poincare’s inequality in (19) is taken into account, then based on the
equality (22) and the fact that χ ∈ Ŵ1(D), it is obtained the following estimate:

1

2t

∫ t

0

∫
D
dχ2(s)dV ds ≤ d

2tm2

∫ t

0

∫
D
kmnχ,m(s)χ,n(s)dV ds

=
d

2tm2

∫ t

0

∫
D
kmnϑ,m(s)ϑ,n(s)dV ds ≤

d

2tm2
E(0). (50)

It is arrived to (40) by letting t→ ∞ in (49) and considering (9) and (50).

If the law of conservation (22) and the relation (44) are used and the assump-
tions in Section 2 are taken into account, the following estimates are reached:∫

D
ϑ2(t)dV ≤ 2α

1

dα− h
E(0), t ∈ [0,∞), (51)∫

D

[
ϱv̇m(t)v̇m(t) + Imnϕ̇m(t)ϕ̇n(t)

]
dV ≤ 2E(0), t ∈ [0,∞), (52)∫ t

0

∫
D
kmnϑ,m(τ)ϑ,n(τ)dV dτ ≤ E(0), t ∈ [0,∞), (53)∫ t

0

∫
D
ϑ̇2(τ)dV ≤ 1

dα− h
E(0), t ∈ [0,∞). (54)
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Now, we consider the equalities (25) and (29) in order to obtain:

1

2t

∫ t

0

∫
D
[ϱv̇m(s)v̇m(s) + Imnϕ̇m(s)ϕ̇n(s)−Amnklemn(s)ekl(s)

−2Bmnklemn(s)εkl(s)− Cmnklεmn(s)εkl(s)]dV ds

=
1

2t

∫ t

0

∫
D

[
dϑ2(s)+2hϑ(s)ϑ̇(s)−αhϑ̇2(s)−αkmnϑ,m(s)ϑ,m(s)

]
dV ds

− 1

2t

∫
D
[ϱv0mv

1
m + Imnϕ

0
mϕ

1
n]dV − 1

4t

∫
D
(dα− h)(ϑ0)2dV (55)

+
1

4t

∫
D
[ϱ(v1mvm(2t) + v0mv̇m(2t)) + Imn(ϕ

1
mϕn(2t) + ϕ0mϕ̇n(2t))]dV

+
1

2t

∫ t

0

∫
D

(
a− ϱη0

) (
ϑ(s)+αϑ̇(s)

)
dV ds+

1

4t

∫
D
(dα−h)ϑ0ϑ(2t)dV

+αkmnϑ
0
,m

∫ 2t

0
ϑ,n(ξ)dξ +

1

4t

∫ t

0

∫
D
(a− ϱη0)[ϑ(t+ s)

−ϑ(t− s) + α
d

ds
(ϑ(t+ s) + ϑ(t− s))]dV ds.

If the initial data (13) is considered and the definitions (36) are taken into
account, the from previous relation (55) it is deduced:

KC(t)− LC(t) =
1

4t

∫
D

[
(dα− h)(ϑ0 + α(a− ϱη0)

] [
ϑ(2t)− ϑ0

]
dV

+
1

4t

∫ 2t

0

∫
D
αkmnϑ

0
,mϑ,n(s)dV ds+

1

t

∫ t

0

∫
D
hϑ(s)ϑ̇(s)dV ds

− 1

2t

∫
D

[
ϱv0mv

1
m + Imnϕ

0
mϕ

1
n

]
dV + TKC(t)− PC(t) (56)

+
1

4t

∫
D

[
ϱ
(
v1mvm(2t) + v0mv̇m(2t)

)
+ Imn

(
ϕ1mϕn(2t) + ϕ0mϕ̇n(2t)

)]
dV

+TC(t) +
1

4t

∫ t

0

∫
D

(
a− ϱη0

)
[ϑ(t+ s) + ϑ(s)]dV ds.

On the integrals from the right-hand side of the equality (56) the inequality
of Schwarz-Cauchy is used. Thus, with the help of the estimations from (45)-(47)
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and (51)-(54), the following evaluations are obtained:∣∣∣∣−1

2t

∫
D

[
ϱv0mv

1
m+Imnϕ

0
mϕ

1
n

]
dV

∣∣∣∣≤ 1

4t

∫
D

[
ϱ
(
v0mv

0
m+v1mv

1
m

)
+Imn

(
ϕ0mϕ

0
n+ϕ

1
mϕ

1
n

)]
dV;∣∣∣∣ 14t

∫
D

[
(dα− h)

(
ϑ0 + α(a− ϱη0

)] [
ϑ(2t)− ϑ0

]
dV

∣∣∣∣
≤ 1

8t

∫
D

[[
(dα− h)(ϑ0+α(a−ϱη0)

]2
+2(ϑ0)2

]
dV +

α

2t(dα−h)
E(0);∣∣∣∣ 14t

∫ 2t

0

∫
D
αkmnϑ

0
,mϑ,n(s)dV ds

∣∣∣∣ ≤ 1

4t

(∫ 2t

0

∫
D
αkmnϑ

0
,mϑ

0
,ndV ds

) 1
2

×
(∫ 2t

0

∫
D
αkmnϑ,m(s)ϑ,n(s)dV ds

) 1
2

≤ 1

2

(
α

2t
E(0)

∫
D
αkmnϑ

0
,mϑ

0
,ndV ds

) 1
2

; (57)∣∣∣∣1t
∫ t

0

∫
D
hϑ(s)ϑ̇(s)dV ds

∣∣∣∣ ≤ 1

t

(∫ t

0

∫
D
hϑ2(s)dV ds

) 1
2

×1

t

(∫ t

0

∫
D
hϑ̇2(s)dV ds

) 1
2

≤
(
2α

t

) 1
2 h

dα− h
E(0);∣∣∣∣ 14t

∫
D

[
ϱ
(
v1mvm(2t) + v0mv̇m(2t)

)
+ Imn

(
ϕ1mϕn(2t) + ϕ0mϕ̇n(2t)

)]
dV

∣∣∣∣
≤ 1

8t

∫
D

[
ϱv0mv

0
m + Imnϕ

0
mϕ

0
n

]
dV +

1

4t
E(0).

(iii) Now, we suppose that meas ∂D1 ̸= 0 and meas ∂D2 ̸= 0. Taking into
account that (vm, ϕm) ∈ Ŵ1(D), it is deduced that, for τ ∈ [0,∞), the relations
(7), (18), (22) imply that:∫

D
[ϱvm(τ)vm(τ)+Imnϕm(τ)ϕn(τ)]dV ≤ k

m1

∫
D
[Amnklemn(τ)ekl(τ)

+2Bmnklemn(τ)εkl(τ) + Cmnklεmn(τ)εkl(τ)] dV ≤ 2k

m1
E(0), (58)

and thus it is obtained that:∣∣∣∣ 14t
∫
D

[
ϱ
(
v1mvm(2t) + v0mv̇m(2t)

)
+ Imn

(
ϕ1mϕn(2t) + ϕ0mϕ̇n(2t)

)]
dV

∣∣∣∣
≤ 1

8t

∫
D

[
ϱv1mv

1
m + Imnϕ

1
mϕ

1
n

]
dV +

k

4tm1
E(0). (59)

Now, it is assumed that meas ∂D3 ̸= 0. Thus, it is deduced that:∣∣∣∣TC(t) + 1

4t

∫ t

0

∫
D

(
a− ϱη0

)
[ϑ(t+ s) + ϑ(s)]dV ds

∣∣∣∣ ≤ TC(t)

+
1

4t

(∫ t

0

∫
D

(
a−ϱη0

)2
dV ds

) 1
2
(∫ t

0

∫
D
[ϑ(t+ s)+ϑ(s)]2dV ds

) 1
2

(60)

≤ TC(t) +

(
1

2d

∫
D
(a− ϱη0)2dV

) 1
2

[TC(2t)]
1
2 .



50 Holm Altenbach, Andreas Öchsner and Sorin Vlase

In order to obtain the relation (40), we will consider the estimations (57), (59)
and (60) and the relations (17) and (49) and we will pass to the limit in (56), with
t→ ∞.

Let us assume now that meas ∂D3 = 0. By using the assumptions (16), (17),
(21) and the expression of η0 (as in Theorem 2), from the equality (49) it is
concluded that:

TC(t) +
1

4t

∫ t

0

∫
D

(
a− ϱη0

)
[ϑ(t+ s) + ϑ(s)]dV ds

= − 1

4t

∫
D

h2

d2
ϑ̇∗

(
dϑ∗ +

3

2
hϑ̇∗

)[
exp(−2

dt

h
)− 1

]
dV (61)

+
1

t

∫
D

h2

d2
ϑ̇∗

(
dϑ∗+hϑ̇∗

)[
exp(−dt

h
)−1

]
dV +

1

2t

∫ t

0

∫
D
dχ2(s)dV ds

+
1

4t

∫ t

0

∫
D

[
αmne

0
mn+βmnε

0
mn−dT 0−hṪ 0

]
[χ(t+ s)+χ(s)]dV ds.

In equality (61) the inequality Schwarz - Cauchy is applied and considering
the relation (51), it is deduced that:

lim
t→∞

{
TC(t) +

1

4t

∫ t

0

∫
D

(
a− ϱη0

)
[ϑ(t+ s) + ϑ(s)]dV ds

}
= 0. (62)

The conclusion (40) can be again obtained by using the relations (37), (57),
(59), (62) in (56). It is not difficult to obtain the relation (41) considering the
Cesaro means in (22) and considering the relations (37), (38) and (40).

(iv) Let us consider the last possibility: meas ∂D1 = 0 and meas ∂D2 = 0.
In this situation the decomposition (20) is used and are took in consideration the
relations (14), (15) and the fact that (vm, ϕm) ∈ Ŵ1(D). Thus, it is deduced
that:

1

4t

∫
D

[
ϱv0mv̇m(2t) + Imnϕ

0
mϕ̇n(2t)

]
dV =

1

4t

∫
D

[
ϱv∗mv̇

∗
m + Imnϕ

∗
mϕ̇

∗
n

]
dV

+
1

2

∫
D

[
ϱv̇∗mv̇

∗
m + Imnϕ̇

∗
mϕ̇

∗
n

]
dV +

1

4t

∫
D

[
ϱV̇ 0

mvm(2t) + ImnΦ̇
0
mψj(2t)

]
dV. (63)

Considering that (wm, ψm) ∈ Ŵ1(D), with the help of the Korn inequality
(18), the next estimate is obtained:

1

4t

∫
D
[ϱwm(τ)wm(τ)+Imnψm(τ)ψn(τ)]dV ≤ k

m1

∫
D
[Amnklēmn(τ)ēkl(τ)

+2Bmnklēmn(τ)ε̄kl(τ) + Cmnklε̄mn(τ)ε̄kl(τ)] dV

=
k

m1

∫
D
[Amnklemn(τ)ekl(τ) + 2Bmnklemn(τ)εkl(τ) (64)

+Cmnklεmn(τ)εkl(τ)] dV ≤ 2k

m1
E(0), τ ∈ [0,∞),
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in which were used the notations: ēmn = wn,m + εnmkψk, ε̄mn = ψn,m.

If the limit in (57) is used, with t→ ∞, and are considered the limits (37), the
estimates (57), (60), (64) and the equality (63) it is arrived to the relation (42).

At the end, to obtain the relation (43) there are used the Cesaro means in
the law (22) and there are considered the limits (37), (38), (42) and the estimate
(57). In this way, theorem 4 is completely proven.

6. Conclusions

If we consider the initial data for which v̇∗m = ϕ̇∗m = 0, then it can be estab-
lished, from the relations (40) and (42), that it is insured the equipartition of
asymptotic type, in mean, of the strain and kinetic energies.
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