
Bulletin of the Transilvania University of Braşov
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Abstract

In this review paper, we present some basic notions and properties of
quaternionic exponentially dichotomous operators. Some perturbation re-
sults of quaternionic exponentially dichotomous operators are illustrated
which will help to consider the exponential dichotomous solutions to quater-
nionic evolution equations through semigroup theory.
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1 Slice quaternionic Banach algebra and multiplica-
tive quaternionic linear functionals

The notion of quaternions that is a noncommutative extension of complex
numbers is a mathematical concept introduced by Irish mathematician Hamilton
in 1843 and it has been widely applied to both pure and applied mathematics and
physics (see [1, 18]). Quaternionic algebra has been widely applied to dynamic
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equations on time scales (see [16, 25, 27]), differential and difference equations
(see [9, 24, 29]) and fuzzy dynamic equations (see [26]), etc.

The further development of spectral theory has deeply promoted the develop-
ment of the theory of operators and dynamic equations (see [4]).As a core notion
in dichotomy spectrum theory, exponentially dichotomous operators are the nat-
ural evolution operators of first order linear homogeneous differential equations
in an arbitrary Banach space in which causal effects will have influence on both
future and past events (see [5, 10, 11, 17, 19, 20, 21, 22]).

Based on the theory of quaternionic operators and spectral theory on S-
spectrum (see [3, 6, 7, 8, 12, 13, 14, 15, 23]), in this paper, we will present some
perturbation results of quaternionic exponentially dichotomous operators. For
more details, one may refer to [28].

Firstly, we begin with the fundamental knowledge of quaternionic space H.

Definition 1 ([8]). The algebra of quaternions space H is given by the elements
1, i, j, k satisfying the following relations

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Then a quaternion q is denoted by q = q0 + q1i+ q2j + q3k, ql ∈ R, l = 0, 1, 2, 3,
while the conjugate and the norm of q are given by

q = q0 − q1i− q2j − q3k, |q| =
√
qq =

√
qq =

√
q20 + q21 + q22 + q23.

The real part and the imaginary part of q are denoted by Re(q), Im(q), respectively
and q−1 = q̄/|q|2. For the convenience of later discussion, we let S be the 2-
dimensional sphere of purely imaginary unit quaternions, i.e.,

S =
{
q = q1i+ q2j + q3k ∈ H : q21 + q22 + q23 = 1

}
.

To each quaternion q it is possible to associate an element in S:

Iq =

{
Im(q)
|Im(q)| if Im(q) ̸= 0,

any element of S otherwise.

Given I ∈ S we denote by CI the complex plane R+IR containing elements of the
form x + Iy, x, y ∈ R. Obviously, the imaginary unit Ip determines the complex
plane CIp containing p.

Based on the notion of two-sided (i.e., bilateral) vector space, the quaternionic
linear operator can be defined and classified as follows.

Definition 2 ([23]). Let V be a two-sided vector space on H. A map T : V → V
is said to be a right linear operator if

T (u+ v) = T (u) + T (v), T (us) = T (u)s, for all s ∈ H, and for all u, v ∈ V.
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The set of right linear operators on V is both a left and a right vector space on H
with respect to the operations

(sT )(v) = sT (v), (Ts)(v) = T (sv), for all s ∈ H, and for all v ∈ V.

Similarly, a map T : V → V is said to be a left linear operator if

T (u+ v) = T (u) + T (v), T (su) = sT (u), for all s ∈ H, and for all u, v ∈ V.

The set of left linear operators on V is both a left and a right vector space on H
with respect to the operations

(Ts)(v) = T (v)s, (sT )(v) = T (vs), for all s ∈ H, and for all v ∈ V.

Now we state the quaternionic version of Cauchy kernel formula.

Definition 3 ([7]). Let s, q ∈ H, the so-called left slice Cauchy kernel and right
slice Cauchy kernel are defined as follows

S−1
L (s, q) = −(q2 − 2qRe(s) + |s|2)−1(q − s),

and
S−1
R (s, q) = −(q − s)(q2 − 2qRe(s) + |s|2)−1.

From the literature [14], for I ∈ S, there exists a real ∗-algebra isomorphism
φ̃I : C → CI as follows:

φ̃I(x+ iy) := x+ Iy, x, y ∈ R.

Now we introduce some notations. Let M be a complex Banach algebra, then
define ML :=

{
m = m0 +m1I : I ∈ S,mξ ∈ M, ξ = 0, 1

}
and Mc

I =
{
m ∈ ML :

mI = Im, I ∈ S
}
, we can expand the complex Banach algebraM to a quaternionic

Banach algebra ML and introduce a slice quaternionic Banach algebra as follows.

Definition 4 ([28]). Let D ⊂ C and M be a complex Banach algebra with unite
element e. If Mc

I over the field φ̃I(D) is a quaternionic Banach space, then Mc
I is

called a slice quaternionic Banach algebra (or s-quaternionic Banach algebra) for
I ∈ S. Generally, if Mc

I over the field φ̃I(D) is a quaternionic Hilbert space, then
Mc

I is called a slice quaternionic Hilbert space (or s-quaternionic Hilbert space).

Let Mc
I be a s-quaternionic Banach algebra with unit element e and Z be a

commutative Banach subalgebra of Mc
I satisfying e ∈ Z and mz = zm for m ∈ Mc

I

and z ∈ Z. Let Y be a closed subalgebra of Mc
I . Then by Z ⊗ Y we denote the

algebraic tensor product of Z and Y, i.e.,

Z⊗ Y =

{
n∑

ξ=1

zξyξ : zξ ∈ Z, yξ ∈ Y, n ∈ Z+

}
.

For the convenience of discussion, some following basic definitions will be
introduced and we assume that Z⊗ Y is a dense linear subspace of Mc

I .
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Definition 5 ([28]). Let Z ⊂ Mc
I (I ∈ S) be a commutative s-quaternionic Banach

algebra, φI is a bounded linear functional on Z, if for any z1, z2 ∈ Z,

φI(z1z2) = φI(z1)φI(z2).

Then φI is called multiplicative linear functionals for I ∈ S. Let Ũ be the set of
all continuous multiplicative linear functionals on Z.

Next, we will give some basic properties of s-quaternionic Banach algebra
which shall be used in the later discussion.

Definition 6 ([28]). Let Mc
I be a s-quaternionic Banach algebra and m ∈ Mc

I , if
there exists m−1 ∈ Mc

I such that

mm−1 = m−1m = e,

then m is called invertible. Define the S-spectrum of a m ∈ Mc
I as follows

σI(m) :=
{
s ∈ CI : m2 − 2Re(s)m+ |s|2e is not invertible in Mc

I , I ∈ S
}

and for s ̸∈ σI(m), define Rs(m) = S−1
R (s,m).

Theorem 1 ([28]). Let Mc
I(I ∈ S) be a s-quaternionic Banach algebra, if m ∈ Mc

I

satisfies ∥m∥Mc
I
< 1, then e−m is reversible and (e−m)−1 =

∑∞
ξ=0m

ξ.

Corollary 1 ([28]). Let Mc
I(I ∈ S) be a s-quaternionic Banach algebra, m ∈ Mc

I .

(1) (e− tm)−1 → e as t→ 0.

(2) For m0 is invertible in Mc
I and m1 ∈ Mc

I such that ∥m1∥Mc
I
< ∥m−1

0 ∥−1
Mc

I
,

then m = x0 +m1 is invertible and

m−1 = (e+m−1
0 m1)

−1m−1
0 .

(3) Rs(m) is continuous function on CI\σI(m) respect to s.

Theorem 2 ([28]). Let Mc
I(I ∈ S) be a s-quaternionic Banach algebra, for any

m ∈ Mc
I , s, q ∈ CI\σI(m), the following properties holds:

(1) Rs(m)Rq(m) = Rq(m)Rs(m);

(2) Rs(m)−Rq(m) = (q − s)Rs(m)Rq(m).

Corollary 2 ([28]). Let Mc
I(I ∈ S) be a s-quaternionic Banach algebra, m ∈ Mc

I

and s0 ∈ CI\σI(m),

d

ds

(
Rs(m)

)∣∣
s=s0

= −
(
Rs0(m)

)2
.

Theorem 3 ([28]). Let Mc
I(I ∈ S) be a s-quaternionic Banach algebra, for m ∈

Mc
I , then
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(1) for any f ∈
(
Mc

I

)∗
, the function F (s) = f

(
Rs(m)

)
is s-regular on CI\σI(m)

and F (s) → 0 as |s| → ∞.

(2) σI(m) is a nonempty compact set on CI and r(m) ⩽ ∥m∥Mc
I
, where r(m) =

sups∈σI(m) |s|.

In what follows, a sufficient condition is given to guarantee the s-quaternionic
Banach algebra Mc

I is isometric and isomorphic to CI .

Lemma 1 ([28]). Let Mc
I (I ∈ S) be a s-quaternionic Banach algebra, if Mc

I is a
field, then Mc

I is isometric and isomorphic to CI .

A proper and maximal ideal of a s-quaternionic Banach algebra has the fol-
lowing property.

Lemma 2 ([28]). Let Mc
I (I ∈ S) be a s-quaternionic Banach algebra and J be

a proper ideal of Mc
I , then J is contained in some maximal ideal of Mc

I and any
maximal ideal of Mc

I is closed.

By using a closed proper ideal of the s-quaternionic Banach algebra, one can
obtain a new s-quaternionic Banach algebra through a quotient algebra in the
following theorem.

Theorem 4 ([28]). Let Mc
I be a s-quaternionic Banach algebra and J is a closed

proper ideal in Mc
I . Then quotient algebra Mc

I/J is a s-quaternionic Banach al-
gebra with the unit [e].

Lemma 3 ([28]). Let Z ⊂ Mc
I (I ∈ S) be a commutative s-quaternionic Banach

algebra, for any maximal ideal N in Z, there exists a unique continuous multi-
plicative linear functional φI such that N = Ker φI .

According to Lemma 3, the following theorem will justify the compactness of
the maximal ideal space of Z for I ∈ S.

Theorem 5 ([28]). Let Z ⊂ Mc
I (I ∈ S) be a commutative s-quaternionic Banach

algebra, the set of all maximal ideals of Z is a compact Hausdorff space for any
I ∈ S.

According to Theorem 5, the set Ũ of all multiplicative linear functionals on
Z is compact, we say Ũ the maximal ideal space of Z, then we introduce the
following definition.

Definition 7 ([28]). Let Z be a commutative Banach subalgebra of s-quaternionic
Banach algebra Mc

I for I ∈ S and Ũ be the maximal ideal space of Z, for every

φI ∈ Ũ , define ϕφI : Z⊗ Y → Mc
I as follows

ϕφI

 n∑
ξ=1

zξyξ

 =

n∑
ξ=1

φI(zξ)yξ.

Then Mc
I is said to be realizable as a tensor product of Z and Y if and only if ϕφI

extends to a bounded linear operator on Mc
I for each φI ∈ Ũ .
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According to Definition 7,

ϕφI (M
c
I) ⊂ Y, (ϕφI )

2 = ϕφI , ϕφI (m1m2) = ϕφI (m1)ϕφI (m2)

for m1,m2 ∈ Mc
I . Thus, ϕφI will be called the multiplicative projection associated

with the multiplicative linear functional φI .
From the properties of the s-quaternionic Banach algebra and the maximal

ideals, one can obtain a basic lemma as follows.

Lemma 4 ([28]). Let Z ⊂ Mc
I (I ∈ S) be a closed commutative Banach algebra

with e ∈ Z. If J is a maximal left (resp. right) ideal in Mc
I , then J∩Z is a maximal

ideal in Z.

Based on Lemma 4, the following Allan-Bochner-Phillips Theorem of the
quaternionic version can be established.

Theorem 6 ([28]). Let Mc
I (I ∈ S) be a s-quaternionic Banach algebra with the

unit element e realized as a tensor product of a commutative subalgebra Z and
some subalgebra Y, where e ∈ Z. Let Ũ denote the maximal ideal space of Z.
Then m ∈ Mc

I is left (resp. right) invertible in Mc
I if and only if ϕφI (m) is left

(resp. right) invertible in Y for each φI ∈ Ũ .

2 Perturbation results of quaternionic exponentially
dichotomous operators

The following concept of the semigroup in quaternionic version was introduced
by F. Colombo and I. Sabadini (see [8]), which will be used to analyze the expo-
nential dichotomy of evolution operators in this paper.

Definition 8 ([8]). Let X be a two-sided quaternionic Banach space and t ∈ R,
then we call {E(·)} a quaternionic strongly continuous semigroup on quaternionic
Banach space X if the function E(·) : [0,∞) → B(X) having the following prop-
erties

(1) E(t+ s) = E(t)E(s) for t, s ⩾ 0,

(2) E(·)x : [0,∞) → X is continuous for x ∈ X,

(3) E(0) = IX .

In addition, if the map t → E(t) is continuous in the uniform operator topology,
then we call the family {E(·)} a uniformly continuous quaternionic semigroup in
B(X).

We introduce the concept of the quaternionic bisemigroup as follows.

Definition 9 ([28]). Let X be a quaternionic Banach space, by a (strongly contin-
uous) bisemigroup we mean a function E(·) : R\{0} → B(X) having the following
properties:
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(1) If t, s > 0 we have E(t)E(s) = E(t+s) and for t, s < 0 we have E(t)E(s) =
−E(t+ s).

(2) For every x ∈ X the function E(·)x : R\{0} → X is continuous, apart from
a jump discontinuity in t = 0. That is,

lim
t→0±

∥E(t)x− E(0±)x∥X = 0, x ∈ X.

(3) E(0+)x− E(0−)x = x for every x ∈ X.

(4) There exist M,λ > 0 such that ∥E(t)∥B(X) ⩽Me−λ|t| for t ∈ R\{0}.

Definition 10 ([28]). Let {E(t)}t⩾0 be a quaternionic strongly continuous semi-
group, the infimum of all λ ∈ R satisfying ∥E(t)∥B(X) = O(eλt) as t → ∞, is
called the exponential growth bound of {E(t)}t⩾0 and denoted by λ(E).

Proposition 3.1 in [28] implies that E(0+) and −E(0−) are bounded comple-
mentary, we may introduce the concept of the constituent semigroup of a bisemi-
group {E(t)}t∈R\{0} as follows.

Definition 11. Let {E(t)}t∈R\{0} be a strongly continuous bisemigroup, then
we call the operator P = −E(0−) the separating projection of the bisemigroup
{E(t)}t∈R\{0}. The restriction of E(t) to Ker P is a quaternionic strongly contin-
uous semigroup on Ker P , while the restriction of −E(−t) to Im P is a strongly
continuous semigroup on Im P . These two semigroups are called the constituent
semigroups of the bisemigroup {E(t)}t∈R\{0}.

Definition 11 indicates that we can describe the exponential growth bounds of
{E(t)}t∈R\{0} through the exponential growth bounds of its corresponding con-
stituent semigroups, hence we introduce the following notion.

Definition 12 ([28]). Let Ej : [0,∞) → Xj(j = 1, 2) be the quaternionic strongly
continuous semigroups, and both have a negative exponential growth bound, we
define the strongly continuous bisemigroup {E(t)}t∈R\{0} on X = X1 ⊕X2 by

E(t) =

{
E1(t)⊕ 0X2 , t > 0,

0X1 ⊕
(
− E2(−t)

)
, t < 0,

which has {E1(t)}t⩾0 and {E2(t)}t⩾0 as its constituent semigroups. For the pair
of exponential growth bounds of a bisemigroup {E(t)}t∈R\{0}, we denote the pair
of (necessarily negative) exponential growth bounds of its constituent semigroups
by: {

λ+(E), λ−(E)
}
.

For the exponential growth bound λ(E) of a bisemigroup {E(t)}t∈R\{0}, we denote
it by

λ(E)
def
= max

{
λ−(E), λ+(E)

}
< 0.
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Definition 13 ([28]). Let T+(Ker P → Ker P ) and −T−(Im P → Im P ) stand
for the infinitesimal generators of the constituent semigroups of the bisemigroup
{E(t)}t∈R\{0} on X, then the linear quaternionic operator T (X → X) defined by

D(T ) =
{
x+ ⊕ x− : x+ ∈ D(T+), x− ∈ D(T−)

}
,

T (x+ ⊕ x−) = T+ (x+)− T− (x−)

is called the (infinitesimal) generator of the bisemigroup {E(t)}t∈R\{0}, since
T (X → X) is closed and densely defined, then we define the constituent Laplace
transform formulas as follows:

S−1
R (s, T+)x+ =

∫ ∞

0
e−stE(t)x+ dt, x+ ∈ Ker P, Re(s) > λ+(E),

S−1
R (−s,−T−)x− =−

∫ ∞

0
estE(−t)x− dt, x− ∈ Im P, Re(−s) > λ−(E),

where both of λ±(E) < 0, which imply the Laplace transform formula

S−1
R (s, T )x =

∫ ∞

−∞
e−stE(t)x dt, λ+(E) < Re(s) < −λ−(E), (1)

where the (Bochner) integral converges absolutely in the norm of X. From now
on we will write E(t, T ) for the strongly continuous bisemigroup with infinitesimal
generator T .

In what follows, we introduce the concept of a quaternionic exponentially
dichotomous operator.

Definition 14 ([28]). A closed and densely defined linear quaternionic opera-
tor T (X → X) on a quaternionic Banach space X is called exponentially di-
chotomous if it is the infinitesimal generator of a strongly continuous bisemigroup
{E(t)}t∈R\{0} on X.

Definition 15 ([8]). Let X be a two-sided quaternionic Banach space.

(i) We denote by KR(X) the set of right linear closed operators T : D(T ) ⊂
X → X, such that

(1) D(T ) is dense in X,

(2) D(T 2) ⊂ D(T ) is dense in X,

(3) T − s̄I is densely defined in X.

(ii) We denote by KL(X) the set of left linear closed operators satisfying (1) and
(2) and such that T − Is̄ is densely defined in X.

(iii) We use the symbol K(X) when we do not distinguish between KL(X) and
KR(X).
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We can obtain that T 2 − 2Re(s)T + |s|2I : D(T 2) ⊂ X → X is a closed operator.
If T ∈ K(X) we denote by ρS(T ) the S-resolvent set of T as

ρS(T ) = {s ∈ H : (T 2 − 2Re(s)T + |s|2I)−1 ∈ B(X)},

and σS(T ) = H\ρS(T ). Now, we denote by Qs(T ) the operator

Qs(T ) := (T 2 − 2Re(s)T + |s|2I)−1 where Qs(T ) : X → D(T 2).

Moreover, let A be an operator containing the term Qs(T )T (resp. TQs(T )) and
let s ∈ ρS(T ), we will denote Â the operator obtained from A according to substi-
tuting each occurrence of Qs(T )T

(
resp. TQs(T )

)
by TQs(T )

(
resp. Qs(T )T

)
.

Definition 16 ([28]). Let X be a quaternionic Banach space and SIc(X) =
{
T ∈

K(X) : TI = IT, I ∈ S
}
, a quaternionic operator T is called slice quaternionic

operator on X if T ∈ CS
I(X), where

CS
I(X) :=

{
T ∈ K(X) : T = T0 + IT1, I ∈ S, Tl ∈ SIc(X), l = 0, 1

}
and CS

I(X) is called a slice operator space with respect to I ∈ S.

Naturally, we introduce a convolution of functions on s-quaternionic Banach
space and it will be used later.

Definition 17 ([28]). Let Mc
I (I ∈ S) be a s-quaternionic Banach space, φ,ψ ∈

CS
I(M

c
I) be Bochner integrable functions on R with values in Mc

I , the convolution
of φ and ψ is denoted by φ ∗ ψ and defined as follows(

φ ∗ ψ
)
(t) =

∫ ∞

−∞
φ(τ)ψ(t− τ) dτ =

∫ ∞

−∞
φ(t− τ)ψ(τ) dτ.

Theorem 7 (Convolution Theorem on s-quaternionic Banach space, [28]). Let
Mc

I(I ∈ S) be a s-quaternionic Banach space, φ,ψ ∈ CS
I(M

c
I) be Bochner integrable

functions on R with values in Mc
I , let L(φ),L(ψ) be the Laplace transforms of φ

and ψ, respectively. Then

L
(
φ(t)

)
L
(
ψ(t)

)
= L

(
(φ ∗ ψ)(t)

)
.

Next, an additive compact perturbations of the quaternionic exponentially
dichotomous operators will be taken into account.

Theorem 8 ([28]). Let T0 ∈ CS
I(M

c
I) (I ∈ S) be a quaternionic exponentially

dichotomous operator on s-quaternionic Banach space Mc
I and H be a compact

operator on Mc
I such that T = T0+H ∈ CS

I(M
c
I), D(T ) = D(T0). Suppose that the

hyper-imaginary axis I ∈ S is contained in the S-resolvent set of T . Then T is a
quaternionic exponentially dichotomous operator. Furthermore, E(t, T )−E(t, T0)
is a compact operator in the limits as t→ 0±.

To obtain the perturbation theorem of the quaternionic exponentially dichoto-
mous operator, we need the following two lemmas.
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Lemma 5 ([28]). Let Mc
I (I ∈ S) be a s-quaternionic Banach space, suppose a

map K : R×Mc
I → Mc

I such that

(1) K(·,m) ∈ L1(R,Mc
I) for every m ∈ Mc

I ;

(2) K(t, s1m1+s2m2) = s1K(t,m1)+s2K(t,m2) for s1, s2 ∈ CI , I ∈ S, m1,m2 ∈
Mc

I , and a.e. t ∈ R.

Then there exists a unique bounded linear operator H on L1(R,Mc
I) such that

(HϕI)(t) =

∫ ∞

−∞
K
(
t− τ, ϕI(τ)

)
dτ (2)

for integrable simple function ϕI(I ∈ S), while the norm of H is bounded above by

sup
∥m∥Mc

I
=1

∫ ∞

−∞
∥K(t,m)∥B(Mc

I)
dt.

Lemma 6 ([28]). Let Mc
I (I ∈ S) be a s-quaternionic Hilbert space and let K :

R × Mc
I → Mc

I be a quaternionic map such that the assumptions of Lemma 5
holds, then the linear operator defined by (2) for each integrable simple function
ϕI extend to a unique bounded linear operator on L2(R,Mc

I) with norm given by

∥H∥B(Mc
I)

= sup
∥x∥Mc

I
=1,τ∈R

∥∥F[K(τ,m)
]∥∥

Mc
I
,

where

F
[
K(τ,m)

]
=

∫ ∞

−∞
e−2πIτtK(t,m) dt, I ∈ S.

Theorem 9 ([28]). Let T ∈ CS
I(M

c
I) be a closed and densely defined linear operator

on the quaternion Banach space X satisfying the conditions (a) and (b). Then
T is a quaternionic exponentially dichotomous operator if and only if there exist
E : R×X → X and constants r > 0, M > 0 such that for every x ∈ X we have
E(·, x) ∈ L∞(R, X) and

∥E(·, x)∥L∞(R,X) ⩽Me−r|·|∥x∥X ,

and for some η > 0, we have the Laplace transform formula

S−1
R (s, T )x =

∫ ∞

−∞
e−stE(t, x) dt,

where x ∈ X, s ∈ {s ∈ H : |Re(s)| ⩽ η} ∩ CIλ.

Now we will establish a perturbation theorem of a quaternionic exponentially
dichotomous operator as follows.

Theorem 10 ([28]). Let T0 ∈ CS
I(M

c
I) (I ∈ S) be a quaternionic exponentially

dichotomous operator on s-quaternionic Banach space Mc
I , and let H ∈ B(Mc

I) ∩
CS
I(M

c
I). Then there exists δ̃ = δ̃(T0) > 0 such that ∥H∥B(Mc

I)
< δ̃ implies T =

T0 +H is a quaternionic exponentially dichotomous operator.
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The following proof is from reference [28].

Proof. Let T0 be a quaternionic exponentially dichotomous operator on a s-
quaternionic Banach space Mc

I , according to Theorem 9, for M > 0 and a fixed
r > 0,

∥E(t, T0)m∥Mc
I
⩽Me−r|t|∥m∥Mc

I
, t ∈ R\{0}, m ∈ Mc

I .

Thus, for 0 < ε < r, we have∫ ∞

−∞
eε|t|

∥∥E(t, T0)m
∥∥
Mc

I
dt ⩽

2M∥m∥Mc
I

r − ε
, m ∈ Mc

I .

Now, for each δ̃ ∈ (−r, r), considerK(·,m) = eδ̃|·|HE(·, T0)m, thenK(·,m) satisfy
the conditions (1) and (2) in Lemma 5. Thus, for integrable simple function
ϕI(I ∈ S), the operator

(
H

δ̃
ϕI

)
(t) =

∫ ∞

−∞
eδ̃|t−τ |HE(t− τ, T0)ϕI(τ) dτ (3)

is bounded on L1(R,Mc
I) with norm satisfying

∥H
δ̃
∥B(Mc

I)
= sup

∥m∥Mc
I
=1

∫ ∞

−∞

∥∥eδ̃|t|HE(t, T0)m
∥∥
Mc

I
dt ⩽

2Mb∥H∥B(Mc
I)

r − δ̃
.

Therefore, ∥H∥B(Mc
I)
< r/2M and 0 < δ̃ < r− 2M∥H∥B(Mc

I)
imply

2M∥H∥B(Mc
I
)

r−δ̃
<

1. Hence, consider the integral equation as follows

SF (t,m) =

∫ ∞

−∞
E(t− τ, T0)HF (τ,m) dτ + E(t, T0)m. (4)

Then, we have∥∥SF1(t,m)−SF2(t,m)
∥∥
Mc

I
=∥∥∥∥∫ ∞

−∞
E(t− τ, T0)HF1(τ,m) dτ −

∫ ∞

−∞
E(t− τ, T0)HF2(τ,m) dτ

∥∥∥∥
Mc

I

⩽
∫ ∞

−∞

∥∥E(t− τ, T0)H
∥∥
Mc

I
dτ ·

∥∥F1(t,m)− F2(t,m)
∥∥
Mc

I

⩽
2M∥H∥B(Mc

I)

r − δ̃

∥∥F1(t,m)− F2(t,m)
∥∥
Mc

I
.

According to the contraction mapping principle (see [2]), (4) has a unique solu-
tion F (·,m) ∈ L1(R,Mc

I) for every m ∈ Mc
I and note that F (·,m) is strongly

measurable for each m ∈ Mc
I . Thus, we obtain

F (t,m) =

∫ ∞

−∞
E(t− τ, T0)HF (τ,m) dτ + E(t, T0)m. (5)
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Then for ∥H∥B(Mc
I)
< r/2M ,∥∥F (t,m)

∥∥
Mc

I
=
∥∥∥∫ ∞

−∞
E(t− τ, T0)HF (τ,m) dτ + E(t, T0)m

∥∥∥
Mc

I

⩽
∥∥∥∫ ∞

−∞
E(t− τ, T0)HF (τ,m) dτ

∥∥∥
Mc

I

+
∥∥E(t, T0)m

∥∥
Mc

I

⩽M∥H∥B(Mc
I)

∫ ∞

−∞
∥F (τ,m)∥Mc

I
e−r|t−τ | dτ +Me−r|t|∥m∥Mc

I
.

Thus, there exists φ̃ : R → R such that the norms of (5) are dominated by

φ̃(t)−M∥H∥B(Mc
I)

∫ ∞

−∞
e−r|t−τ |φ̃(τ) dτ =Me−r|t|∥m∥Mc

I
,

where

φ̃(t) =
M∥m∥Mc

I

r − 2M∥H∥B(Mc
I)
e
−|t|

(
r−2M∥H∥B(Mc

I
)

)
is its unique solution. Then

∥F (t,m)∥B(Mc
I)

⩽
M∥m∥Mc

I

r − 2M∥H∥B(Mc
I)
e
−|t|(r−2M∥H∥B(Mc

I
))

for a.e. t ∈ R and each m ∈ Mc
I . Moreover, similar to the proof of Theorem 8, we

have

S−1
R (s, T )m =

∫ ∞

−∞
e−st

[
E(t, T0)m+

∫ ∞

−∞
E(τ, T0)ϕ̃φI (t− τ) dτ

]
dt,

where ϕ̃φI (t) = HF (t,m), noting that∫ ∞

−∞
E(τ, T0)ϕ̃φI (t− τ) dτ =

∫ ∞

−∞
E(t− τ, T0)HF (τ,m) dτ

which implies that

S−1
R (s, T )m =

∫ ∞

−∞
e−stF (t,m) dt, |Re(s)| < r − 2M∥H∥B(Mc

I)
.

By Theorem 9, it follows that T is a quaternionic exponentially dichotomous
operator. This completes the proof.

To obtain the most general result for perturbation theorem on s-quaternionic
Hilbert space, we need the following Parseval’s Theorem in quaternionic version.

Theorem 11 ([28]). Let Mc
I(I ∈ S) be a s-quaternionic Banach space, f, g ∈

L2
(
R,Mc

I

)
, then ∫ ∞

−∞
f(t)g(t) dt =

1

2π

∫ ∞

−∞
F
[
f(t)

]
F
[
g(t)

]
dt, (6)

where g(t) is the conjugate of g(t), F
[
f(τ)

]
=

∫∞
−∞ e−2πIτtf(t) dt, I ∈ S is the

Fourier transform on s-quaternionic Banach space Mc
I .
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The following result is the most general perturbation theorem on s - quater-
nionic Hilbert space.

Theorem 12 ([28]). Let T0 ∈ CS
I(M

c
I) (I ∈ S) be a quaternionic exponentially

dichotomous operator on a s-quaternionic Hilbert space Mc
I , H ∈ B(Mc

I)∩CS
I(M

c
I),

and T = T0 +H. If

QI
η =

{
s ∈ CI : |Re(s)| ⩽ η

}
⊂ ρSI

(T )

for some η > 0 and S−1
R (s, T ) is bounded on QI

η, then T is a quaternionic expo-
nentially dichotomous operator.

The proof progress presented in the following is from reference [28].

Proof. Let ε ∈ (0, η], m ∈ Mc
I , then e

ε|·|E(·, T0)m : R → Mc
I is Pettis integrable.

Therefore, according to Lemma 6, for any δ̃ ∈ (−ε, ε) the operator given by (3) is
bounded on L2(R,Mc

I) with norm bounded above by

sup
s∈IR

∥∥W (s− δ̃)− I
∥∥
B(Mc

I)
, I ∈ S, (7)

where W (s) = I − S−1
R (s, T0)H, |Re(s)| < ε. Thus, for each δ̃ ∈ (−ε, ε) the

operator H
δ̃
is bounded on L2 (R,Mc

I) with norm bounded above by (7). From

the proof of Theorem 8, we have W−1(s) = I+S−1
R (s, T )H for |Re(s)| sufficiently

small, then

M
δ̃

def
= sup

Re(s)=−δ̃

∥∥W−1(s)
∥∥
B(Mc

I)
<∞, δ̃ ∈ [−η, η]. (8)

Next, recall the integral equation (5). Then for δ̃ ∈ (−ε, ε), eδ̃|t|F (·,m) ∈
L2 (R,Mc

I) and F (·,m) satisfies∫ ∞

−∞
e−stF (t,m) dt =W−1(s)S−1

R (s, T0)m = S−1
R (s, T )m, (9)

where m ∈ Mc
I , |Re(s)| < ε. By the hypothesis (7) and Theorem 11, we have∫ ∞

−∞
∥F (t,m)∥2e2δ̃|t| dt = 1

2π

∫ ∞

−∞

∥∥F[eδ̃|t|F (t,m)]
∥∥2
Mc

I
dt

=
1

2π

∫ ∞

−∞

∥∥∥∥∫ ∞

−∞
e−2πItτeδ̃|τ |F (τ,m) dτ

∥∥∥∥2
Mc

I

dt

=
1

(2π)2

∫ ∞

−∞
∥S−1

R (−δ̃ + Iu, T )m∥2Mc
I
du

⩽
(M

δ̃
)2

(2π)2

∫ ∞

−∞
∥S−1

R (−δ̃ + Iu, T0)m∥2Mc
I
du

⩽
(M

δ̃
)2

2π

∫ ∞

−∞
∥E(t, T0)m∥2Mc

I
e2δ̃|t| dt <∞,
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where m ∈ Mc
I , I ∈ S.

Note that for eδ̃|t|F (·,m) ∈ L2 (R,Mc
I), any θ ∈ (−δ̃, δ̃) and each m ∈ Mc

I , by
Hölder inequality, we have∫ ∞

−∞
eθ|t|∥F (t,m)∥Mc

I
dt ⩽

[∫ ∞

−∞
e−2(δ̃−θ)|t| dt

] 1
2
[∫ ∞

−∞
e2δ̃|t|∥F (·,m)∥2Mc

I
dt

] 1
2

⩽
1√

2(δ̃ − θ)

[∫ ∞

−∞
e2δ̃|t|∥E(t, T0)m∥2Mc

I
dt

] 1
2

⩽
1√

2(δ̃ − θ)

M√
r − δ̃

∥m∥Mc
I

def
= û∥m∥Mc

I
.

Since

F (t,m) = E(t, T0)m−
∫ ∞

−∞
E(τ, T0)HF (t− τ,m) dτ,

then, from the proof of Theorem 10 we obtain

∥F (t,m)∥Mc
I
⩽

M∥m∥Mc
I

r − 2û∥H∥B(Mc
I)
e
−|t|(r−2û∥H∥B(Mc

I
)), a.e. t ∈ R.

Then by Theorem 9, we have T is a quaternionic exponentially dichotomous op-
erator. This completes the proof.

Since the significance of perturbation invariance of quaternionic exponentially
dichotomous operators and their comprehensive applications, the further investi-
gation of their related properties will be our main future work.
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[18] Qian, T., Singular integrals on the n-torus and its Lipschitz perturbations.
In: Clifford Algebras in Analysis and Related Topics, Studies in Advanced
Mathematics, CRC Press, Boca Raton (1996), 94-108.



34 Ravi P. Agarwal, Haoyun Liu, Zuxu Liu and Chao Wang

[19] Sacker, R.J. and Sell, G.R., Existence of dichotomies and invariant splittings
for linear differential systems, II., J. Diff. Eqs., 22 (1976), 478-496.

[20] Siegmund, S., Dichotomy spectrum for nonautonomous differential equations,
J. Dynam. Diff. Eqs., 14 (2002), 243-258.

[21] Zhang, X., Nonuniform dichotomy spectrum and normal forms for nonau-
tonomous differential systems, J. Funct. Anal., 267 (2014), 1889-1916.

[22] Zhou, L. and Zhang, W., Admissibility and roughness of nonuniform expo-
nential dichotomies for difference equations, J. Funct. Anal., 271 (2016),
1087-1129.

[23] Colombo, F. and Sabadini, I., On the formulations of the quaternionic func-
tional calculus, J. Geom. Phys., 60 (2010), 1490-1508.

[24] Wang, C., Chen, D. and Li, Z., General theory of the higher-order quaternion
linear difference equations via the complex adjoint matrix and the quaternion
characteristic polynomial, J. Diff. Equ. Appl., 27 (2021), 787-857.

[25] Wang, C., Li, Z. and Agarwal, R.P., A new quaternion hyper-complex space
with hyper argument and basic functions via quaternion dynamic equations,
J. Geom. Anal., 32 (2022), no. 2, 83pp.

[26] Wang, C., Li, Z. and Agarwal, R.P., Hyers-Ulam-Rassias stability of high-
dimensional quaternion impulsive fuzzy dynamic equations on time scales,
Discret. Contin. Dyn. Syst. Ser.-S, 5 (2022), 359-386.

[27] Wang, C., Li, Z. and Agarwal, R.P., Fundamental solution matrix and Cauchy
properties of quaternion combined impulsive matrix dynamic equation on time
scales, An. Stiint. Univ. Ovidius Constanta, Ser. Mat., 29 (2021), 107-130.

[28] Wang, C., Qin, G.Z. and Agarwal, R.P., Quaternionic exponentially dichoto-
mous operators through S-spectral splitting and applications to Cauchy prob-
lem, Adv. Math., 410 (2022), 108747.

[29] Wang, C. and Wang, J., Global behaviour of quaternion Riccati rational dif-
ference equation, J. Math. Anal. Appl., 518 (2023), 126779.


