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MINIMAL NUMBER OF SENSORS FOR 3D COVERAGE

Tatiana TABIRCA∗,1

Abstract

This paper presents some theoretical results on the smaller numberNk(a, b, c)
of sensors to achieve k coverage for the 3D rectangular area [0, a] × [0, b] ×
[0, c]. The first properties outline some theoretical results for the numbers
Nk(a, b, c), including symmetry, sub-additivity and monotony on each vari-
able. We use then these results to establish some lower and upper bounds for
Nk(a, b, c). The main contribution proposes a result concerning the minimal
density of sensors to achieve k-coverage.

2000 Mathematics Subject Classification: 68RXX.
Key words: sensor coverage, sensor density.

1 Problem statement

We start from S = {s1, s2, s3, ..., sn}, a set of sensors in the 3D plane with the
same sensing range r, which means that each sensor can cover a spherical volume
or radius r. The position of each sensor si is known given by (xi, yi, zi). The
target area A to monitor is defined as a 3D rectangle A = [0, w]× [0, l]× [0, h] of
width w, length l and height h.

Definition 1. A point (x, y, z) ∈ A is covered by a sensor si if√
(xi − x)2 + (yi − y)2 + (zi − z)2 ≤ r.

The target area A is k-covered by the sensors S if each point (x, y, z) ∈ A is
covered by at least k different sensors.

Most covering problems present huge difficulties to solve or to derive a poly-
nomial algorithm even in particular cases like regular or simple shapes and lower
dimensional space. The 2D and 3D problems of covering a bounded domain with
arbitrary shaped objects were proven to be exponential on the size of the packing
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space [9]. The particular case of covering any 2D or 3D polygon with n simi-
lar disks is known to be NP-hard [3]. Consequently, the problem of finding the
least number of disks to k-cover a 3D rectangle is NP-hard. All these works have
shown that calculating the minimal number of circles to pack a rectangle is a
hard problem and there is no pattern associated with this covering. Moreover,
the results concerning the minimal number of circles for k-coverage are all either
asymptotical based on some limits or approximative based on some inequalities.

The 3D coverage problem can have multiple practical applications when sen-
sors have to be deployed in a 3D environments. The first scenario that can be
considered is the deployment of the sensors in buildings. This problem can in-
vestigate how to deploy the sensors to have a good coverage, however one may
need to know how many sensors are needed. Because, building environments are
accessible easily, these sensors can be deployed manually at some predefined loca-
tions. The second scenario can consider the distribution of sensors in 3D terrain
environments, like forests, in order to monitor fire hazards. Usually, a number
of sensors are thrown from airplanes to cover the areas that are not reachable.
Some sensors can fall on trees and some on the ground however those landing on
trees would have a 3D distribution. For this problem, one should know a minimal
number of sensors that can thrown in order to have good connectivity of the WSN
network.

2 Related works

The literature review has been carried out based on the PRISMA methodol-
ogy outlined in [11]. Firstly, a scholar google search has been performed using the
filtering words like ’coverage in WSN’ or ’3D coverage’ or variants of that. The
period of the search has been set between 2000 to date however only few search
results have been generated in recent years. The search results have been then
processed in 2 steps. Firstly, the abstract has been analysed to see if the con-
tribution matches the literature review context. Secondly, the articles of interest
have been read to identify the main important results. To report on the PRISMA
outputs, more than 50 articles have been ’abstract’ screened, from which 15 have
been retrieved for further reading. Finally, the following articles are assessed as
eligible and important for the context of optimal coverage.

2.1 Coverage in 2D

Investigating 1-coverage or circle packing has been researched as geometrical
combinatorial since 1939. Researchers have tried to find mathematical equations
for the optimal 1-covering or even to prove that some configurations are optimal.
For example Kershner [6] investigated the problem of covering any 2D set of
points with similar circles based on some geometrical combinatorial techniques.
This early work proved that the minimal number of circles N(ε) of radius ε to
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cover a close set of point M satisfies

lim
ε→0

N(ε) =
2
√
3

9 · ε2
· |M |,

where |M | denotes the area of closed by M . The result was proven by using a
double inequality for the quantity πε2N(ε) representing the total area covered
by the circles. An important consequence of this result is that the proportion

of unavoidable overlapping can be approximated by 2π
√
3

9 ≃ 1.209. We can also
mention the early work of Verblunsky [15] who proved that the minimum number
N(l) of circles of radius 1 to cover a square of length l should satisfy

N(l) ≥ 2l2 + l

3
√
3

.

These two results come to suggest that the sensor density for 1-coverage can be

estimated by 2
√
3

9 ≈ 0.384.
However, these early works [6], [15] do not provide any information about the

pattern of circles used to achieve the minimal coverage. Recently, several articles
on circle packing problems investigated efficient ways to cover a rectangle with
similar circles (see [8], [10] or [14] amongst others). These geometrical combina-
torics researches confirmed that optimal packing is difficult to be achieve even for
small number of circles. Furthermore, no pattern was detected for the packing
configuration that gives optimality.

Lately, several papers have dealt with the k-coverage problems in the context
of sensor networks studying conditions when this is achieved or algorithms to
detected when this happens. Some of these contributions have made marginal
reference to the minimum number or equivalently to the minimum density of
sensors that assures k-covering of a given area. Generally, all these works have
considered that the number of sensors to use is big enough to k-cover the target
area. Adlakha and Srivasyava [1] developed an exposure-based model to find the
sensor density required to achieve full coverage of a given area. They proved that
the number of sensors to achieve 1-covering is in the order of O(A/r2), where A
is the area to cover however they did not provide any constant for the magnitude
of A/r2.

Ammari and Das [2] investigated the problem of k-coverage proposing a condi-
tion to achieve it. They considered the target area divided in ”Reuleaux” triangles
which are formed by the intersection of 3 circles. The main result of their work
states that the target area is k-covered if and only if each ”Reuleaux” triangle
contains at least k-active sensors. Another important results proposed by Am-
mari and Das gives that the minimal density of sensors to guarantee k-coverage
is λ(r, k) = 2k

(π−
√
3)·r2 = 1.4188·k

r2
, where r is the radius of the sensing disks.

Tabirca et.al. [13] proposed a study for the minimal number of sensors for
the 2D coverage, where some mathematical equations are provided and some
lower and upper bounds are given for these numbers. The authors also table the
numbers for small values of a, b.
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2.2 Coverage in 3D

The research into the 3D coverage has been driven by the necessity to have
good coverage in WSN networks deployed in buildings or even in cellular networks.
These works focussed mainly in finding efficient deployments based on 3D geomet-
rical shapes including spheres, octahedrons or dodecahedrons. Another research
direction has dealt with theoretical results on the coverage analysing properties
like coverage density, uncovered areas etc. However, the transition from 2D cov-
erage to 3D coverage is hugely more difficult posing multiple challenges.

Zhang et.al. [17] investigated the full-coverage deployment problem using the
concept of lattice mostly inspired by the some results from both in discrete compu-
tational geometry and WSNs. They made a connection between optimal patterns
under certain regularity constraints and some important natural constructs that
show strong regularity in their components. Because the coverage exposed prop-
erties of periodicity and homogeneity, the authors decided to model the coverage
using lattices. The main contribution of this research work ca be summarised
as follows. Firstly, a new deployment coverage patterns was proposed to obtain
optimality for connectivity under some constraints of the lattice. Secondly, the
authors showed how their optimal patterns based on the sphere sensing and com-
munication can be used with some practical models.

Huang et. al. [5] work proposed an efficient solution for the coverage based
on a reduction of the geometric problem from a 3D space to a 2D space and then
to a 1D space. Their approach used spheres and spheres’ intersections (spheres’
caps) to propose a polynomial algorithm for coverage. They defined the notions
of spheres’ coverage and field sensing and proposed some theoretical results for
them. To determined whether each sensor’s sphere is sufficiently covered, the
authors looked at how each spherical cap is covered. By projecting each circle on
a 1-dimensional line, they proposed a method to determine the level of coverage.

Yun et. al. [16] proposed an optimal patterns for sensors deployment that
achieve full coverage as well as k-connectivity for WSNs. The authors stated that
there exists a hexagon-based universally elemental pattern that can be used to
generate all other patterns. They then proved the optimality of designed pattern
coverage and proposed a new deployment polygon based methodology. For this
type of deployment, Yun et. al. studied the k-connectivity problem showing that
it is optimal for k < 6 based on a theoretical result that connects the coverage
with connectivity graph topology.

Priyadarshi et.al. [12] developed recently a method in which deterministic sen-
sor deployment to cover the entire space is generate by using some non linear op-
timisation. Several geometrical properties have been proposed between the sphere
radius and the sizes of the area to cover. Then these expressions are integrated
into a multivariable function that is then maximised using Lagrange multipliers to
generates an optimal value for coverage volume based on the radius. The authors
proposed a three-dimensional coverage pattern and deployment structure based
on cuboid, where the monitor region is partitioned into three-dimensional grid.
Some experiments showed that the number of sensors decreases to a large extent
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compared with traditional deployed method such as cube and regular tetrahedron
deployment schemes.

3 Minimal number of sensors

Consider the following problem ”Find the smallest number of sensors Nk(a, b, c)
that should be used to achieve k-coverage for a 3D rectangular area [0, a]× [0, b]×
[0, c] with sensors of the same radius”. We can suppose that all the sensors have
the coverage radius of 1 unit. By convention Nk(a, b, c) = 0 when a ≤ 0 or b ≤ 0
or c ≤ 0. It is clear that a k-coverage with n sensors satisfies

n ≥ Nk(a, b, c). (1)

The following results can be directly obtained based on Equation 1 and on the
definition of Nk(a, b, c).

Lemma 1. The function Nk(a, b, c) is symmetrical on a, b, c

Nk(a, b, c) = Nk(p(a, b, c)), ∀a, b, c > 0 and ∀p permutation of a, b, c.

Lemma 2. The function Nk(a, b, c) is monotonically on each variable a, b, c as
well as in k:

a1 ≤ a2 ⇒ Nk(a1, b, c) ≤ Nk(a2, b, c).

b1 ≤ b2 ⇒ Nk(a, b1, c) ≤ Nk(a, b2, c).

c1 ≤ c2 ⇒ Nk(a, b, c1) ≤ Nk(a, b, c1).

k1 ≤ k2 ⇒ Nk1(a, b, c) ≤ Nk2(a, b, c).

Lemma 3. The function Nk(a, b, c) is sub-additive on each variable a, b, c as well
as in k:

Nk(a1 + a2, b, c) ≤ Nk(a1, b, c) +Nk(a2, b, c).

Nk(a, b1 + b2, c) ≤ Nk(a, b1, c) +Nk(a, b2, c).

Nk(a, b, c1 + c2) ≤ Nk(a, b, c1) +Nk(a, b, c2).

Nk1+k2(a, b, c) ≤ Nk1(a, b, c) +Nk2(a, b, c).

It is simple to observe that a cube of size s has the diagonal of size d =
√
3 · s,

hence a cube o size s = 2√
3
can be 1-covered by a sphere of radius 1, because the

sphere circumscribe the cube (see Figure 1).

Proposition 1. N1(
2√
3
· n, 2√

3
·m, 2√

3
· p) ≤ n ·m · p when n,m, p ∈ N .

Proof. Consider that the 3D rectangular area of sizes a = 2√
3
· n, b = 2√

3
·

m and c = 2√
3
·p is divided into a grid of n×m×p cubes of size 2√

3
(see Figure 2).

Each such cube can be 1-covered by its circumscribed sphere of radius 1. Hence,
N1(

2√
3
·n, 2√

3
·m, 2√

3
·p) ≤ n ·m ·p since there is a 1-coverage with n ·m ·p spheres

of the whole volume.
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Figure 1: Covering a Cube.
Figure 2: Covering the cuboid

Proposition 2. The numbers N1(a, b, c) satisfy the following inequality

N1(a, b, c) ≤ ⌈
√
3a

2
⌉ · ⌈

√
3b

2
⌉ · ⌈

√
3c

2
⌉, ∀a, b ∈ R (2)

where ⌈x⌉ is the ceiling function.

Proof. Consider n = ⌈
√
3a
2 ⌉ ∈ N so that we have

√
3a
2 ≤ n or a ≤ n · 2√

3
. Similarly,

we have b ≤ m · 2√
3
and c ≤ k · 2√

3
. Now, the following inequality can be derived

based on Lemma 1

N1(a, b, c) ≤ N1

(
n · 2√

3
,m · 2√

3
, n · 2√

3

)
⇒

N1(a, b, c) ≤ n ·m · k ⇒ N1(a, b, c) ≤ ⌈
√
3a

2
⌉ · ⌈

√
3b

2
⌉ · ⌈

√
3c

2
⌉,

which it proves the theorem.

The result above gives only an upper bound of values in which the number
N1(a, b, c) can be located.

Theorem 1. For k-coverage problem, the numbers Nk(a, b, c) satisfy the following
inequality

3 · k · a · b · c
4 · π

≤ Nk(a, b, c) ≤ k · ⌈
√
3a

2
⌉ · ⌈

√
3b

2
⌉ · ⌈

√
3c

2
⌉, ∀a, b ∈ R (3)

Proof. The sub-additivity property is used as follows

Nk(a, b, c) = N1+...+1(a, b, c) ≤ N1(a, b, c) + ...+N1(a, b, c) =

= k ·N1(a, b, c) ≤ k · ⌈
√
3a

2
⌉ · ⌈

√
3b

2
⌉ · ⌈

√
3c

2
⌉,

which proves the right hand side inequality. For the left hand side we considered
that each point of the 3D rectangle is covered by at least k spheres. Hence, the
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Nk(a, b, c) spheres cover the whole 3D rectangle volume by k times. Hence, the
volume of the spheres is greater than k times the volume of the 3D rectangle.

4

3
·Nk(a, b, c) · π · 13 ≥ k · a · b · c ⇒ Nk(a, b, c) ≥

3 · k · a · b · c
4 · π

.

Now we can look into the density of sensors to cover an area are the number
of sensors used over the volume of the target area. It make sense to investigate
the minimal density of sensors to cover the rectangular area [0, a] × [0, b] × [0, c]

as given by λa,b,c(k) = Nk(a,b,c)
a·b·c . We can assume that the minimal density of

sensors λa,b,c(k) does not depend on a, b, c for large values of a, b, c, so that we can

write λ(k) ≃ Nk(a,b,c)
a·b·c ,∀a, b, c. In this case the minimal density of sensors can be

evaluated by the following result.

Theorem 2. The minimum density of sensors to achieve k-covering for rectan-
gular areas satisfies

3

4 · π
· k ≤ λ(k) ≤ 3 ·

√
3

8
· k. (4)

Proof. Each member of Equation 3 is divided by a · b · c to obtain

3 · k
4 · π

≤ Nk(a, b, c)

a · b · c
≤ k ·

⌈
√
3a
2 ⌉
a

·
⌈
√
3b
2 ⌉
b

·
⌈
√
3c
2 ⌉
c

.

Based on the above assumption that the minimum density to achieve k-
covering is independent of the area to cover when a, b, c are big, we can take

a, b, c → ∞. Hence, the fractions become lima→∞
⌈
√
3a
2

⌉
a =

√
3a
2 and similar for b

and c so that λ(k) sadisfies

3

4 · π
· k ≤ λ(k) ≤ 3 ·

√
3

8
· k, ∀a, b, c > 0.

Theorem 2 shows that the minimal density to achieve k-coverage with sensors
of radius 1 is between 0.238732 · k and 0.64951905 · k.

On the other hand, the minimal density of sensors Nk(a,b,c)
a·b·c can also have the

following upper bound for any a, b, c ≥ 0.

Nk(a, b, c)

a · b · c
≤ k ·

⌈
√
3a
2 ⌉
a

·
⌈
√
3b
2 ⌉
b

·
⌈
√
3c
2 ⌉
c

≤ k ·

√
3a
2 + 1

a
·

√
3b
2 + 1

b
·

√
3c
2 + 1

c

Nk(a, b, c)

a · b · c
≤ k ·

(√
3

2
+

1

a

)
·

(√
3

2
+

1

b

)
·

(√
3

2
+

1

c

)
=
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= k ·

[
3
√
3

8
+

3

4
·
(
1

a
+

1

b
+

1

c

)
+

√
3

2
·
(

1

ab
+

1

bc
+

1

ca

)
+

1

abc

]
=

= k ·

[
3
√
3

8
+

3

8
· 2 · a · b+ 2 · b · c+ 2 · c · a

a · b · c
+

√
3

8
· 4 · a+ 4 · b+ 4 · c

a · b · c
+

1

abc

]
=

k

8
·

[
3
√
3 +

3 ·A+
√
3 · P + 8

V

]
=⇒

Nk(a, b, c)

a · b · c
≤ k

8
·

[
3
√
3 +

3 ·A+
√
3 · P + 8

V

]
,

where P = 4 · a + 4 · b + 4 · c, A = 2 · a · b + 2 · b · c + 2 · c · a and V = a · b · c
are the perimeter, the area and the volume respectively of the 3D rectangle. This
provides an upper bound for the density based on the geometrical sizes of the
target area.

4 Conclusion

The article presented some theoretical results related to the minimal number
of sensors Nk(a, b, c). It was proven that these numbers are sub-additive and
increasing. Then some lower and upper bounds were proposed for Nk(a, b, c) to

show that the minimal density for k-coverage satisfies 3
4·π · k ≤ λ(k) ≤ 3·

√
3

8 · k.
The work can be extended by applying these theoretical results to some con-

crete 3D deployments, the most obvious being building deployments. Considering
the blueprints or a building plus the sensors’ coverage radius, some algorithms for
deployments can be developed.
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