Bulletin of the Transilvania University of Bragov
Series III: Mathematics and Computer Science, Vol. 4(66), No. 1 - 2024, 191-208
https://doi.org/10.31926 /but.mif.2024.4.66.1.14

AUTOMATA CONCEPTS OVER GAME DESIGN PROCESS

Alexandra BAICOIANU!, Cosmin DOBRE?, Mihnea LOPATARU?,
and Ioana Cristina PLAJER**

Abstract

Discrete states linked together by events can describe a series of classi-
cal video game scenarios. Therefore, the formal concept of automata seems
appropriate for describing such games. However, as simple finite automata
need to keep track of past events, they are less appropriate for complex de-
signs. By contrast, push-down automata featuring a stack present better
capabilities in this context. This paper discusses an enhanced version of the
classic PAC-MAN game with push-down automata. The modular design of
this game allows the extraction of discrete states, and its minimalist concept
enables various approaches and new versions without sacrificing its original
essence. Using push-down automata expanded the game with new features,
allowing an enhanced game experience. The automaton controls all aspects
of the game, ensuring a consistent gameplay. The presented project demon-
strates the capabilities of push-down automata in the gaming industry and
their potential in future game development projects.

2000 Mathematics Subject Classification: 68Q01, 68Q45, 03D05, 68N20.
Key words: game design, push-down automaton, formal methods, PAC-
MAN, Unity.

1 Introduction

The field of computer science that deals with formal methods and compilers is
widely recognized for its ability to establish precise data formats and programming
language syntax [1]. Furthermore, different authors underline the importance

'Faculty of Mathematics and Informatics, Transilvania University of Bragov, Romania, e-
mail: a.baicoianu@unitbv.ro

2Faculty of Mathematics and Informatics, Transilvania University of Bragsov, Romania, e-
mail: cosmin.dobre@student.unitbv.ro

3Faculty of Mathematics and Informatics, Transilvania University of Bragov, Romania, e-
mail: mihnea.lopataru@student.unitbv.ro

4= Corresponding author, Faculty of Mathematics and Informatics, Transilvania University of
Brasov, Romania, e-mail: ioana.plajer@unitbv.ro



192 Alexandra Baicoianu, Cosmin Dobre, Mihnea Lopataru and loana C. Plajer

of formal methods in software development, emphasizing their role in software
specifications and describing the system properties, like functional behavior or
system performance [2, 3].

Unsurprisingly, the video game industry has rapidly embraced many aspects of
this field for various purposes, such as managing game behavior and Al behavior,
as illustrated in literature [4, 5, 6].

Automata, such as finite state machines (FSMs) and Turing machines, play a
central role in formal methods. Moreover, in the video game industry, automata
can be utilized to establish a modeling interface that controls game behavior
[7]. Based on these considerations, we demonstrate in this paper that push-down
automata (PDA) can be successfully used to increase the features and capabilities
of a well-known game to allow users an enhanced experience. The project also
underlines the possibilities offered by such design patterns in the reiteration of
classical games [8].

PAC-MAN is a well-known game, even for people not passionate about this
field. At its core, the game is based on a rather minimalist concept, where the
player must eat the dots in the level and avoid the ghosts that roam the environ-
ment. Nevertheless, the mechanics and logic behind the game reveal a complexity
that enables new implementations and extensions in which the game’s behavior
can be automated using a PDA. Compared to a standard automaton, the ad-
ditional memory of a PDA proved to be very useful in managing the player’s
actions.

Moreover, an overall redesign was performed, resulting in the enhanced game
PAC-MAN Survival. This new version of the game adds randomness, a luck
component, to the game, making it harder to develop winning strategies and thus
creating a more modern and challenging version of this classic game.

1.1 Background considerations

Due to the popularity gained by PAC-MAN in its early years, it is not sur-
prising that since it was released, many interpretations and remakes have been
made [9], some of them using automata. However, most of these reiterations of
the game feature finite state machines, using them to either handle the Al of the
ghosts as in [10], or to handle the general behavior of the game [11].

There also exist implementations that use PDAs, as presented in [12, 13].
However, while they respect the basic concepts of PDAs, the implementation is
slightly forced, as the stack is not essential in running the game. The results of
these implementations are relatively similar to the original game and do not offer
new gaming experiences, in contrast to our new design.

Our implementation aligns with recent developments in the field, as evidenced
by the use of PDA in the design methodology [12, 13]. However, our approach dif-
fers notably, by the addition of a new state, walking poisoned pac, which enhances
the game’s difficulty and makes our implementation distinct. On the other hand,
alternative approaches have been taken in other projects, such as using finite state
machines [10] and applying decision theory for player analysis [14].



Automata for game design 193

An investigation was conducted to determine the feasibility of utilizing a PDA
in implementing a video game. The research reviewed relevant sources, such
as [11, 13], which confirmed the potential of the initial concept. The process’s
subsequent phase involved experimentation, testing different implementations and
making modifications or starting anew as necessary to accommodate the selected
case.

2 Problem formulation

2.1 Aim of the project

The project presented in this paper aims to redesign the classical PAC-MAN
game in a new and challenging way through a PDA and thus to underline the
relevance of theoretical formal methods concepts in game development.

As stated in section 1.1 of this paper, many iterations of PAC-MAN employ
automata, even PDAs. However, the ones that use it do not provide a meaningful
role for the PDA’s stack. For example, the implementations featured in [12,
13] load all the food items at the beginning of the game, only performing POP
operations during the game’s execution. While the approaches mentioned above
may not be inherently incorrect from a theoretical standpoint, they fail to utilize
the available memory adequately as they attempt to make minimal alterations to
the original PAC-MAN game. Our project’s objective is to exploit the potential
of the additional memory provided by a PDA to enhance the game’s interactivity
and complexity.

2.2 Original game description

PAC-MAN is an action, maze traveling game in which the player has to eat
all the pellets/dots in the level to finish it while avoiding the four colored ghosts
Blinky (red), Pinky (pink), Inky (cyan), and Clyde (orange) which roam through
the maze. Some of the pellets in the maze called Power Pellets are larger, and
eating them, allows the player, for a specific time to increase the speed and eat
the ghosts, thus gaining more points.

The original game has a relatively linear play style, and, while it may seem
minimalist compared to modern games, it has many subtleties [14]. The game
outcome depends on the choices made by the player, but also on the randomness
of the game itself, and can therefore be classified as a stochastic outcome game [15].
A primary characteristic of such games is the dynamic change of the environment
based on the player’s decisions.

The game features a series of agents, the four ghosts, each with its unique
behavior and walking pattern. There is a constant interaction between the player
and the ghosts, creating the concept of chasing and fleeing, one of the game’s
main elements. The game environment changes when the player eats a power-
up, becoming invulnerable to the ghost attack. The ghosts no longer chase the
PAC-MAN but run away, and the player can eat the ghosts himself.



194 Alexandra Baicoianu, Cosmin Dobre, Mihnea Lopataru and loana C. Plajer

It is worth noting that the game’s layout remains constant, and the ghosts’
behavior can be learned over time, enabling the development of winning strategies.
By following these strategies, players can successfully complete each level. These
strategies typically take the form of specific walking patterns, with the Apple
pattern [16] being one of the most widely used.

2.3 Enhanced game proposal

Our iteration of PAC-MAN aims to retain the original game’s essence while
providing a new, more challenging experience. The core aspects of the game, such
as decision making and the chase and flee concept, are maintained. However, the
randomness present in the original version is increased, requiring the player to
constantly adapt to a changing and unpredictable environment.

One difference between the original game and our version is that the ghosts
no longer have a predefined walking pattern that can be learned. In our iteration,
the ghosts scatter randomly throughout the maze, each time choosing a different
path, making it impossible to learn their behavior. This forces the player to be
observant and carefully calculate the moves to avoid being caught by one of the
ghosts. If the player gets too close to one of the ghosts, that particular agent will
enter chase mode, following the player until either the player is caught and killed
or the player escapes its attack range.

The survival aspect of our game also adds another random factor, as food
items have a chance of being either a power-up or power-down or a normal pellet,
leading to one of the states:

e poisoned-pac (25% probability): the player’s speed is decreased, and he can
no longer eat the dots, making him susceptible to the ghost attacks and also
to losing by running out of food;

e super-pac (15% probability): the player’s speed is increased, and he becomes
invulnerable, being able to attack the ghosts and eat them;

e normal-state (60% probability): the player is in the usual state.

Thus the new game introduces an added layer of complexity through the un-
known abilities a player may acquire. Additionally, it determines a constant
pursuit of food. A previously eaten item is removed from the automaton’s stack
at a specific time interval, the necessary modifications are applied, and the pro-
cess repeats. If an attempt is made to remove an item from an empty stack,
the player loses the game. As a result, the player must always have at least one
item in the stack, leading to critical decision making and risk-taking to ensure the
PAC-MAN’s survival.

Similar to the original PAC-MAN game, the primary objective for the player
is to gather pellets generated in the level while evading ghosts. However, players
must continually consume food in our modified version to avoid starvation. After
a specific period, the stack has POPped a pellet and changes the player state



Automata for game design 195

according to the type of the POPped pellet. If the player does not eat enough,
he can reach the point where the PAC-MAN’s stomach is empty, resulting in the
loss of the game.

Another notable distinction is the inclusion of a poisoned pac state, which slows
the player down and disables the ability to consume food. In addition to the two
standard states of normal and super-pac, this further complicates the gameplay,
adding a layer of challenge for the player to navigate. This use case highlights
the importance of quick reflexes, strategic thinking, and precise movement in
navigating the game’s challenges while working towards completing the level.

The role of the PDA is to efficiently implement the new concept of survival, in
which the stack’s PUSH operation adds a food item whenever the player consumes
one, and the POP operation removes the item from PAC-MAN’s stomach and
apply the resultant modifiers (power-up or power-down), as well as to enable the
modeling and management of the overall game behavior, by creating a general
mapping of the model onto specific states.

3 Materials and methods

3.1 Push-down automata basics

A push-down automaton is a finite state machine augmented with additional
memory in the form of a stack [17]. This stack allows the PDA to recognize a
larger class of languages, namely the context-free ones. A PDA is a finite state
control in which the transitions are determined by the current state and the
current element in the input, as well as by the content of the stack. The head of
the stack is analyzed for transitioning, then the element is popped and processing
continues. The transition between states is defined through the use of a transition
function, which models the PDA’s behavior. If the PDA encounters a nonvalid
input, a phenomenon named deadlock occurs. This is why paying attention when
designing an automaton is important, as unwanted deadlock effects can lead to
unpredictable behavior.

Since a PDA is an extension of a FSM, the main characteristics of a FSM
still apply, as they are presented in [3, 17]. The difference is in the additional
definitions needed to integrate the stack, including the stack’s alphabet and the
PUSH/POP operations. A scheme of a PDA is represented in Figure 1.
Formally, a push-down automaton M is defined by a structure:

M= (Q,%,T,6,q0, Zo, F)

where () is the finite set of states of the PDA, in which ¢y € @ is the initial
state, 2 is the set of input symbols, I" represents the alphabet of the stack, with
Zy € I the initial symbol in the stack, § gives the mathematical definition of the
transition function and F' C @ a set of final/accepting states.

The transition function § defines the behavior of the PDA for a given triplet
(¢,a,X), where ¢ is the current state, a is the input symbol, and X the symbol



196 Alexandra Baicoianu, Cosmin Dobre, Mihnea Lopataru and loana C. Plajer

| Input 1 | Input 2 | ------ | Input n |

PUSH _| FINITE STATE
POP CONTROL

Stack

| Output 1 | Output 2 | ------ | Output n

Figure 1: Push-down automaton.

on top of the stack. For a given transition (¢,a,X) — (p,Y) (Figure 2), the
automaton performs the following actions:

e scans the input symbol a (which may be null);

e shifts from state ¢ to state p;

e POPs the symbol X, located at the top of the stack, and PUSHes the symbol
Y onto the stack. Each symbol may be null, in which case the corresponding
action (PUSH/POP) is not performed.

@0

Figure 2: Transition function for PDA.

The general definition of a PDA is inherently non-deterministic. However,
considering the use-case for our study, a deterministic approach was necessary to
ensure the game’s predictable and consistent behavior during each run.

3.2 PDA representation for PAC-MAN extension

This section focuses on the development of the PDA in the context of the game
considered. Therefore, it is relevant to follow the generalization of the initial game,
the description of the newly defined PDA, and the deployment of the extended
game.

3.2.1 States description

Analyzing the original game, several game states are essential for a logical
sequence of events. These states can be mapped out and implemented into an
automaton, allowing for smooth transitions based on what is happening in the
game. The main states detected in the authentic game are:



Automata for game design 197

e a loading state
e o normal walking PAC-MAN state
o a super pac walking state

One of the significant factors affecting PAC-MAN players’ performance is
strategy representation. Different techniques are used to represent players’ be-
havior, and one of the successful techniques is using the automata-based model
to represent and control participated agents. Therefore, the specified states can
be implemented using a finite state machine, resulting in a functioning version of
PAC-MAN. However, another crucial game aspect must also be considered which
is eating the dots. This aspect of the game would need to be implemented as well
in order to replicate the gameplay of the original PAC-MAN fully.

To implement such a feature, additional memory is required to check what the
last eaten dot was and change the game state if a power-up dot was eaten. One
solution to this issue is to use a PDA instead of an FSM, as its stack provides the
necessary memory. Additionally, the stack’s Last In First Out (LIFO) property
allows for quick access to the last item that the player ate, as it will be at the top
of the stack.

It is obvious that PDAs can easily be used to implement the PAC-MAN game,
as its design allows for a series of states that can be modeled and added to the
automaton. However, even though the stack of the PDA is useful for implementing
the original game, it could easily be replaced by another data structure.

Additionally, the specific PUSH and POP operations are not evenly distributed
throughout the game but instead concentrated in the beginning and end. Fur-
thermore, the POP operations may not be necessary, as checking the top of the
stack would be sufficient instead of removing the element.

The PDA’s stack is no longer optional for the proposed PAC-MAN version,
as we have distributed the PUSH and POP operations throughout the game.
This data structure provides the necessary supplementary memory and ensures
that these operations are completed in O(1) complexity time, resulting in a faster
running application.

Overall, the use of a PDA in the implementation of the PAC-MAN game can
provide a flexible and efficient way to model the game’s states and transitions and
provide a way to keep track of critical game-related scenarios.

3.2.2 Formal PDA description

The purpose of the PDA is to manage the operation of the whole game per-
spective. The entire flow is illustrated in Figure 3. When creating the automaton,
defining the possible game states and specifying the transitions between them was
a crucial step. The diagram shows the blueprint behind the implementation of
the PDA.

Further on, we will comment on the role and meaning of each state introduced:



198 Alexandra Baicoianu, Cosmin Dobre, Mihnea Lopataru and loana C. Plajer

Timer finisehd,
Food ->¢

PAC eats Food,
g ->Food

Timer finisehd, Timer finisehd,
Food ->¢ Food ->¢

Figure 3: PDA Diagram.

e Start game - the necessary initialization is done, and assets are loaded, player
navigation is disabled;

o Walking PAC (normal) - the PAC-MAN is in its normal state, no modifiers
are applied and the player is able to navigate around the maze;

e Walking PAC (super) - the PAC-MAN has a series of modifiers applied in
order to give the player an advantage: it becomes invulnerable, the speed is
increased alongside the dimensions of the PAC-MAN in order to facilitate
dots consumption;

e Walking PAC (poisoned) - the PAC-MAN has a series of modifiers applied
in order to give the play a disadvantage: its size is decreased, making it
harder to eat the dots, and the speed also receives a lower value making it
an easier target for the ghosts and the player can no longer eat the dots,
making it susceptible to loosing from running out of food;

e Win - the game is stopped, and a winning message is displayed alongside a
series of options from which the player can choose;

e Lose - the game is stopped, and a loss message is displayed alongside a series
of options from which the player can choose, such as retrying the level.



Automata for game design 199

As the PDA diagram highlights, the transition from one state to another is done
if the necessary criteria are met. It is essential to mention that while from a given
state, we can transition to multiple ones, the deterministic characteristic of the
automaton is not invalidated, as the requirements for each transition are different.

Another important aspect illustrated in the above diagram is the continuous
flow of PUSH and POP operations from the stack, which is constantly modified
during the running of the states, highlighting the idea of spreading these opera-
tions across the entire game.

Considering all these aspects, the proposed PDA aligns with the mathematical
model outlined in the previous section 3.1.

3.2.3 Game development

The primary objective during the implementation of the PDA for our redesign
was to create a generalized version that could be adapted to meet the unique
requirements of any similar project. A graphical representation of the application
flow can be seen in Figure 4, which illustrates the connections between the enti-
ties implemented in our game. From a technical point of view, it was essential

GAME STATES
________ Playerstates
I |
: GameWalkingPacState !
I = = |
| GameWalkingPoisonedPacState -----Use--->{ Player --Use->{| Food |
| |
. | GameWalkingSuperPacState | ’E\ K ?
,,,,,,, Initial game state E S
: ! Use Use Uée
! = N i K i «Interface»
| GameLoadingFoodState | : ';a E -P: GameState.
] TUsey P/ i A

| GameManager ‘ :. Use

Final game states A : ‘\A ' :
””””””””””””” | . h ' '
\ 1| Use ! P e —
! GameWinGameState el Use i «Interface» }
! 1’ : |GameStateMachine|
! GameLoseGameState | \i(

|

I

Figure 4: Architectural UML.

to develop an implementation that was as generic as possible, extensible, scalable
and, very important, to follow the principles of a clean code. The game state
architecture illustrated in Figure 4 encompasses all the dynamic phases the game
undergoes: Player States, Initial Game State, and Final Game States. These
states play a crucial role in guiding the player character’s interactions and reac-
tions to in-game events.



200 Alexandra Baicoianu, Cosmin Dobre, Mihnea Lopataru and loana C. Plajer

The Game States

Within the Player States section, a suite of classes orchestrates the various
conditions the character undergoes in response to consuming different types of
pellets.

1. GameWalkingPacState - is the default state of the character when navigat-
ing the game environment without any enhancements. In this state, the
character maintains standard attributes and capabilities.

2. GameWalkingPoisonedPacState - upon consuming a poisoned pellet, the
character transitions into this state that imposes a reduction in the charac-
ter’s size and a decrement in movement speed, simulating the debilitating
effect of the poison.

3. GameWalkingSuperPacState - conversely, consuming a super-power pellet
ushers the character into this state, which bestows augmented attributes
such as increased size and movement speed. Additionally, this state empow-
ers the character to consume ghosts, thereby gathering extra points for the
player, enhancing the interactive game experience.

The Initial Game State section encompasses the GameLoadingFood-
State. This state employs a specialized Grid Mesh, a native feature of the Unity
game engine, which facilitates the randomized deployment of pellets throughout
the game map for dynamic gameplay initiation.

The Final Game State contains two pivotal classes: GameWinGameS-
tate and GameLoseGameState. The first one is triggered upon the successful
collection of all pellets, culminating in a display of the player’s score and duration
of play. The second one is initiated if the player’s character is captured by a ghost
or if the supply of consumable pellets depletes, resulting in a display of the final
score achieved.

The Game Manager

This component operates as the core conduit for controlling the game flow,
interfacing seamlessly with the player state classes as well as other integral game
components, such as Player, Food, and Ghost Al It orchestrates the transitions
between states, ensuring a consistent gameplay experience.

In the architecture, we introduced two interfaces that highlight the general
in-game behavior for the most important instances in the game. The interfaces
conform to the structure and mathematical model of the PDA.

The GameState Interface

This interface has the role to establish a general framework to which all states
must adhere, in order to ensure the automaton’s proper functioning. Therefore,
when creating a new state, it must implement the following methods:



Automata for game design 201

1. EnterState() - performs the necessary initialization to enable the state to
start and run smoothly

2. UpdateState() - implements the execution of the state, covering the necessary
actions to be taken while the state is active

3. EuxitState() - ensures that when transitioning to a different state, the current
state is properly closed without leaving any memory leaks or lingering modi-
fications that could impact the next scene. This helps to maintain stability
and prevents unintended effects.

By mandating that all states implement the required methods, the integration of
new states into the automaton becomes smooth and error-free, leading to better
game operation. This promotes code reusability and simplifies maintenance. Fur-
thermore, if a state needs additional methods, they can be defined and customized
to suit its specific needs.

The PDA Interface

In a manner similar to the GameState Interface, the PDA Interface facili-
tates the creation of a generic model that aligns with the definitions of a PDA.
This model can then be modified to suit a specific purpose. In our scenario, the
PDA Interface encompasses the following methods that must be implemented by
any class seeking to fulfill the role of the automaton:

e SwitchState() - performs the transition from one state to another
e PopFromStack() - POPs an element from the automaton’s stack
e PushToStack() - PUSHes an element in the automaton’s stack

Following the implementation of the interface, a class was established to manage
the overall behavior of the game. This class, which is derived from the PDA
Interface, implements its specific methods and subsequently declares supplemen-
tary functions and members to guarantee the proper operation of the game. The
class, referred to as GameManager, implements the mandatory functions inherited
from the interface and includes additional functions and members to guarantee a
successful game run, such as holding all possible game states.

The suggested implementation demonstrates the versatility and feasibility of
using a PDA in developing video games. We enhanced the classic PAC-MAN by
implementing the automaton, resulting in an automated game with a dynamic and
fluid gaming experience directly impacted by the player’s choices. Ensuring code
reusability is one of the most important aspects when developing a game. This
technique is still used and assures that once a feature is implemented, it can be
reused and perhaps adapted to serve a similar role in a completely different game.
Our project considers this aspect, offering a general interface for the automaton,
which can be adapted and specialized for a specific game. Furthermore, the way
in which the states of the game are designed assures that, if needed, a new state
can be easily added without altering the functionality of the previous ones.



202 Alexandra Baicoianu, Cosmin Dobre, Mihnea Lopataru and loana C. Plajer

In addition to traditional gameplay, we have enriched PAC-MAN with a Sur-
vival mode, incorporating a new layer of complexity that demands players to
adapt to ever-evolving scenarios. Central to this mode is the introduction of a
randomly generated environment, which significantly elevates the unpredictability
and challenge. Specifically, the map is designed with a series of predefined spawn
locations for food pellets. At the start of each game session, a random selection
process activates, choosing a varying number of points from these predefined po-
sitions as the initial spawn points for the food pellets. This method ensures that
each game presents a unique challenge, intertwining elements of luck and strategy
due to the dynamic and unpredictable nature of the environment. Consequently,
developing a consistent winning strategy becomes more challenging, as the game
environment differs with every playthrough.

Despite increasing the original game’s difficulty, we made it easy for new play-
ers to learn the basics and mechanics of the game through standard keyboard
mapping and intuitive level designs that guide the player through the map. This
makes it simple for new players to understand the main aspects of the game,
while the challenge lies in applying these concepts to achieve the desired outcome
of winning.

One final adaptation is the behavior of the ghosts, PAC-MAN’s enemies. In the
original game, each ghost had a distinct walking pattern, making their behavior
predictable. In our variant, the ghosts roam freely throughout the maze and will
chase the player if they come within a certain range of the ghost. This ensures that
the core design concept of the original PAC-MAN, the chase and flee dynamic, is
still present in our version.

3.2.4 Performance assessment

Determining the performance profiler of an algorithm is part of its subsequent
testing and aims to determine the precise order of complexity of the algorithm’s
execution time. In addition, the resulting information is usually used to validate
or invalidate, respectively, to refine the results of the a priori estimation.

Profiling is the process of measuring and analyzing the performance of a game,
including its runtime behavior and resource usage. This information provides
insights into areas of the game that may be causing performance issues, such
as low frame rates, slow loading time, or excessive memory usage. In addition,
the profiling data can be used to identify and address bottlenecks in the game’s
performance, such as areas of code that are taking longer to execute than expected
or objects that are consuming more memory than necessary. This information can
then be used to optimize the game’s performance and improve the overall player
experience.

A combination of quantitative and qualitative measures was used in evaluat-
ing the performance of the proposed PAC-MAN game implementation. On the
quantitative side, metrics such as average completion time, survival rate, and
score were investigated. These measures allowed us to assess the game’s difficulty
and track players’ progress over time. The analysis has focused on the perfor-



Automata for game design 203

mance metrics of critical game mechanics, specifically the stack overview, death
text, and current player state given by their crucial role in the game’s mechanics.
By examining the performance, we aim to understand better how they impact
the overall game experience and identify any areas for potential optimization or
improvement.

The profiling process was performed using Unity Profiler (a built-in applica-
tion) to examine the impact of PAC-MAN state transitions on CPU and Memory
performance. Unity Profiler is part of the Unity Editor, and it comes with a
low-level native plug-in Profiler APT [18].

As depicted in Figure 5, the results indicate that altering the PAC-MAN state
does not significantly affect CPU usage. The profile’s CPU section displays orange
lines corresponding to script loading, while purple lines indicate other components,
such as the Unity Profiler and Unity Editor, which consume a substantial CPU
side. Examining the cyan graph at the bottom of the diagram, which illustrates
the rendering of the scene, it can be observed that the game maintains a consistent
state within the boundaries delineated by the green boxes. These encapsulated
segments signify periods of stability where no state transition occurs. In contrast,
the transition from one state to another is represented by a noticeable fluctuation,
which is depicted by the pink frame. This spike symbolizes the dynamism of
the game’s state changes, marking the points of departure from one state to an
ensuing state, reflective of game events or player interactions that necessitate such
transitions.

Changing the state

Staying in the current state Staying in the new state

Figure 5: Performance when staying in the same state and when changing the
state.

However, the key distinction between the two states is in the time required
for state transition, see Figure 6. Specifically, the state transition process, which
includes updating the stack overview and death text, takes lms, representing
10% of all script loads. Conversely, remaining in the same state requires a mere
0.12ms, accounting for only 1.7% of all script loads, which includes updating the
stack overview and death text. In terms of memory, the state transition process is
represented by a big blue line in the Memory section, indicating 5.5K B of memory
usage, whereas the memory usage for remaining in the same state is 0.6 K B and
is represented by constant blue lines. The blue lines’ minor peaks signify the



204 Alexandra Baicoianu, Cosmin Dobre, Mihnea Lopataru and loana C. Plajer

NORMAL STATE

1.7% of all scripts load

RAM USAGE 0.6KB

CHANGING STATE

10% of all script loads

TJASKS

JASKS

1. UPDATE 1. TRANSITION TO A STATE
- STACK OVERVIEW 2. UPDATE
- DEATH TEXT - STACK OVERVIEW

- DEATH TEXT

Figure 6: Implementation performance details.

occurrence of particle-camera collisions.

On the qualitative side, we conducted surveys and user testing with a sample
group of ~ 100 players. Participants were asked to provide feedback on their over-
all experience, including elements such as gameplay and graphics. Additionally,
we collected data on player satisfaction with the game’s level of challenge and the
implementation of PDA for player states.

The results of our performance evaluation were overwhelmingly positive, with
the majority of players reporting a satisfying and challenging gaming experience.
PDAs were deemed successful in adding an extra layer of complexity to the game,
as evidenced by the increased average completion time and decreased survival
rate.

In conclusion, our performance assessment has verified the viability of incor-
porating PDAs for player states in PAC-MAN games and has revealed important
avenues for future development. This study offers a valuable resource for game
developers who are looking to adopt PDAs in their game designs.

4 Future developments

The implementation of PAC-MAN Survival using push-down automata (PDA)
has demonstrated the potential of integrating formal methods concepts into game
design, offering a new perspective on enhancing classic games. This approach
has opened new fronts for future developments, not only for the game itself but
also for the application of these concepts in other games. Firstly the proposed
enhanced version can further be developed. Secondly the potential of PDAs can
be exploited in other types of games.

4.1 TImprovements to PAC-MAN survival

One potential area for improvement in PAC-MAN Survival is the implemen-
tation of dynamic difficulty adjustment (DDA). This involves the game automat-
ically adjusting its difficulty level in real-time based on the player’s performance.
For instance, the game could monitor the player’s success rate, adjusting the speed
or intelligence of ghosts, or the effects of poisoned pellets, to maintain a challeng-
ing yet achievable gameplay experience. Incorporating DDA could enhance player



Automata for game design 205

engagement and ensure a balanced challenge for players of all skill levels.

Furthermore, adding a multiplayer mode could significantly expand the game’s
appeal, allowing players to compete or cooperate within the same game environ-
ment. This could involve one player controlling PAC-MAN while others control
the ghosts, or multiple players competing as different PAC-MAN characters try-
ing to survive the longest in the maze. Multiplayer mode would require careful
balancing to ensure fairness and competitiveness, potentially involving different
PDA configurations for different roles.

Another potential development concerns customized mazes and mod Support.
Allowing players to create and share their mazes could vastly increase the game’s
replayability and community engagement. This could be facilitated through in-
game maze design tools or by supporting mods that let players import custom
assets and game logic. This feature could also be enhanced by integrating a
stack-based logic for defining custom game rules or behaviors within the mazes,
leveraging the PDA’s capabilities for more creative gameplay designs.

4.2 Application to Other games

The concept of using PDAs can be extended to role-playing games (RPGs)
to manage complex character states and inventory systems. For example, a PDA
could track the effects of consumables or spells on a character, where each item
or spell has unique effects that can stack or counteract others. This approach
could lead to a more strategic gameplay, where players must carefully consider
the order of actions based on the current state of their character’s abilities and
status effects.

In real-time strategy games, PDAs could be used to manage the states of units
or buildings, allowing for more complex interactions and strategies. For instance,
a PDA could track the construction and upgrade paths of buildings, where certain
upgrades or buildings unlock new abilities or units. This could introduce a deeper
layer of strategy, as players would need to plan and execute their development
paths strategically to counter their opponents effectively.

Educational games could benefit from PDAs by dynamically adjusting the dif-
ficulty of puzzles or challenges based on the player’s performance. For example, in
a game designed to teach programming concepts, a PDA could track the player’s
progress and understanding, offering hints or adjusting the complexity of chal-
lenges to suit the player’s learning pace. This personalized approach could make
educational games more effective and engaging.

5 Conclusions

Push-down automata can be successfully used in game development to sim-
plify the processes that control the overall behavior of the game, including the
implementation chosen in this study. Furthermore, their versatility has been
demonstrated, by using them to revitalize a classic game such as PAC-MAN.



206 Alexandra Baicoianu, Cosmin Dobre, Mihnea Lopataru and loana C. Plajer

This study aims to use PDAs to generate a more challenging version of the
game. The paper focused on enhancements and the game development phase.
In addition to the utilization of PDAs, implementing this updated version of
PAC-MAN was facilitated by using the Unity engine for its development. Unity
streamlined the design of the GUI and graphics and accelerated the development
process through the availability of built-in tools and scripts for everyday game
actions, such as the character’s movement through the utilization of a character
controller integrated within Unity. Finally, the new game version was evaluated
quantitatively (e.g ., average solution time or mean average core) and qualitatively
(e.g ., user satisfaction and feedback).

In the final analysis, the utilization of a push-down automaton in the design
of PAC-MAN Survival has evidenced its capability in managing player states
and maintaining a record of the game’s objectives. The PDAs’ structure and
adaptable nature enabled a more intricate and dynamic gaming experience with
sophisticated mechanics. This method has proven to be a viable solution for the
management of game logic and could open up opportunities for further advance-
ments in the field. Integrating a push-down automaton in PAC-MAN exemplifies
the potential of this technology in developing complex and dynamic games.

Compared to other approaches, such as finite state machines or decision theory,
the push-down automata approach demonstrates a significant contribution to the
field, highlighting its potential for future development and innovation in game
design. These results have important implications for game designers, developers,
and researchers and contribute to the field’s evolution.

References

[1] Shallit, J., A second course in formal languages and automata theory, Cam-
bridge University, 2009.

[2] Clarke, E.M. and Wing, J.M., Formal methods: state of the art and future
directions, ACM Computing Surveys (CSUR), 28 (1996), no. 4, 626-643.

[3] Wang, J. and Tepfenhart, W., Formal methods in computer science, CRC
Press, 2019.

[4] Ali, K.F., Kalyan, V. and Kumar, K.A., Design and implementation of Ludo
game using automata theory, in Innovations in Power and Advanced Com-
puting Technologies (i-PACT) vol. 1 (2019), 1-6.

[5] Kowalski, J. and Szykula, M., Game description language compiler construc-
tion, in Al 2013: Advances in Artificial Intelligence: 26th Australasian Joint
Conference, Dunedin, New Zealand, December 1-6, 2013. Proceedings 26,
Springer, 234245, 2013.

[6] Ta, v. and Xu, L., Case study: designing and developing a game prototype,
Journal of Education and Social Development (2019), 35-40.



Automata for game design 207

[7]

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Bourg, D.M. and Seemann, G., Al for game developers, O’Reilly Media, Inc.,
2004.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design patterns:
elements of reusable object-oriented software, Addison-Wesley Professional
Computing Series, Pearson Education, 1994.

Wardrip-Fruin, N., How Pac-Man FEats, MIT Press, 2020.

Bairagi, S., Emulating Pac-Man using finite state machines, Dipl. Thesis,
Dept. of Computer Science, Indian Institute of Information Technology, 2020.

tute of Technology, 2017.

Vayadande, K., More, H., More, O., Mulay, S., Pathak, A. and Talnikar, V.,
Pac Man: game development using PDA and OOP. International Research
Journal of Engineering and Technology (IRJET) 9 (2022), no. 1, 959-961.

Yunita, A., Fadillah, R.Z. Darmawan, M.R. and Putra, A.D.G., Re-designing
the PACMAN game using push down automata, 4th Asia Pacific Conference
on Contemporary Research, 50-56, 2018.

Cowley, B.U., Charles, D.K., Black, M.M. and Hickey, R.J., Using decision
theory for player analysis in Pacman, in SAB’06 Workshop on adaptive ap-
proaches for optimizing player Satisfaction in computer and physical games,
At: Rome, 41-50, 2006.

Solan, E. and Vieille, N., Stochastic Games, Proceedings of the National
Academy of Sciences of the United States of America (PNAS) 112 (2015)
no. 45, 13743-13746.

Mulliken, J.D., Pac-Man. The ultimate key to winning, Running Press
Philadelphia, Pennsylvania, 1982.

Linz, P. and Rodger, S.H., An introduction to formal languages and automata,
Seventh edition, Jones & Bartlett Learning, 2022.

Unity Technologies, Unity User Manual. Profiler overview, 2023.



208 Alexandra Baicoianu, Cosmin Dobre, Mihnea Lopataru and loana C. Plajer



