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CLASSIFICATIONS OF THA-SURFACES IN I3

Bendehiba SENOUSSI∗,1

Abstract

In classical differential geometry, the problem of obtaining Gaussian and
mean curvatures of a surface is one of the most important problems. A
surface M2 in I3 is a THA-surface of first type if it can be parameterized by

r(s, t) = (s, t, Af(s+ at)g(t) +B(f(s+ at) + g(t))).

A surfaceM2 in I3 is a THA- surface of second type if it can be parameterized
by

r(s, t) = (s, Af(s+ at)g(t) +B(f(s+ at) + g(t)), t),

where A and B are non-zero real numbers [16, 17, 18]. In this paper, we
classify two types THA-surfaces in the 3-dimensional isotropic space I3 and
study THA-surfaces with zero curvature in I3.
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1 Introduction

M.K. Karacan, D.W.Yoon, B. Bukcu [6], M.E.Aydin [1, 2] have studied some
classes of surfaces in I3. R. López [9] studied translation surfaces in the 3-
dimensional hyperbolic space H3 and classified minimal translation surfaces. R.
López and M. I. Munteanu [10] constructed translation surfaces in Sol3 and in-
vestigated properties of minimal one. In a different aspect, H. Liu [7] considered
the translation surfaces with constant mean curvature in 3-dimensional Euclidean
space and Lorentz-Minkowski space.

Recently, K. Seo [20] gave a classification of the translation hypersurfaces with
constant mean curvature or constant Gauss-Kronecker curvature in space forms.

Related works on minimal translation surfaces of E3 are ([7], [14], [22]). B.
Senoussi et al. [19] studied the translation surfaces in Lorentz-Heisenberg 3-space
Nil31. In this paper, we classify two types THA-surfaces in the 3-dimensional
isotropic space I3 and study THA- surfaces with zero curvature in I3.
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Theorem 1 ([11]). i) The only translation surfaces with constant Gauss curvature
KG = 0 are cylindrical surfaces.

ii) There are no translation surfaces with constant Gauss curvature KG ̸= 0
if one of the generating curves is planar.

Definition 1. A homothetical (factorable) surface M2 in 3-dimensional Euclidean
space E3 is a surface that is a graph of a function

z(u, v) = f(u)g(v),

where f : I ⊂ R → R and g : J ⊂ R → R are two smooth functions.

Theorem 2 ([11]). Planes and helicoids are the only minimal homothetical sur-
faces in Euclidean space.

Theorem 3 ([8]). Let r(x, y) = (x, y, z(x, y) = f(x) + g(ax + y)) be a minimal
affine translation surface. Then either z(x, y) is linear or can be written as

z(x, y) =
1

c
log

cos(c
√
1 + a2x)

cos[c(ax+ y)]
. (1)

Remark 1. If a = 0, the minimal affine translation surface given by (1) is the
classical Scherk surface.

Definition 2 ([8]). The minimal affine translation surface (1) is called generalized
Scherk surface or affine Scherk surface in Euclidean 3 - space.

2 Preliminaries

The 3-dimensional isotropic space I3 was introduced by Strubecker. The group
G6 of motions of I3 is a 6 parameter group, defined by (see [1], [12], [13]).

ψ : (x1, x2, x3) 7→ (x′1, x
′
2, x

′
3) :

 x′1
x′2
x′3

 =

 cosϕ − sinϕ 0
sinϕ cosϕ 0
λ µ 1

 x1
x2
x3

+

 a
b
c

 ,

where (x1, x2, x3) denote the affine coordinates and ϕ, a, b, c, λ, µ ∈ R.
The isotropic metric induced by the absolute figure is given by

gI3 = ds2I3 = dx21 + dx22.

Consider the points X = (x1, x2, x3) and Y = (y1, y2, y3). The isotropic
distance of two points X and Y is defined by

dI3(X, Y ) =
√

(y1 − x1)2 + (y2 − x2)2.

Two points (x1, x2, x3) and (x1, x2, y3) with the same top view are called parallel
points. The lines in x3 direction are called isotropic lines. The planes containing
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an isotropic line are called isotropic planes. Non-isotropic planes are planes non-
parallel to the z - direction.

Let X = (x1, x2, x3) and Y = (y1, y2, y3) be vectors in I3. The isotropic inner
product of X and Y is defined by

gI3(X,Y ) =

{
x3y3, if xj = 0 and yj = 0, (j = 1, 2)
x1y1 + x2y2, if otherwise.

We call the surface M2 admissible if it has no isotropic tangent planes.

If some admissible surface is locally parameterized by

r : Ω ⊆ R2 −→ I3, (u, v) 7−→ (u, v, z(u, v)).

The coefficients of the first fundamental form and the second fundamental
form are

E = gI3(ru, ru), F = gI3(ru, rv), G = gI3(rv, rv),

L =
det(ruu, ru, rv)√

EG− F 2
, M =

det(ruv, ru, rv)√
EG− F 2

, N =
det(rvv, ru, rv)√

EG− F 2
,

where ru = ∂r
∂u , rv =

∂r
∂v .

The isotropic mean curvature H and the isotropic Gaussian curvature KG are,
respectively, defined by

H =
EN +GL− 2FM

2(EG− F 2)
and KG =

LN −M2

EG− F 2
.

The surface M2 is said to be isotropic minimal (resp. isotropic flat ) if H
(resp. KG) vanishes ([1], [2], [6]).

The main purpose of this paper is to complete classification of THA-surfaces
in the 3-dimensional isotropic space I3.

3 THA-surfaces in I3

Let M2 be a 2-dimensional surface, of the isotropic 3- space I3. Using the
standard coordinate system of E3 we denote the parametric representation of the
surface r(u, v) by

r(u, v) = (r1(u, v), r2(u, v), r3(u, v)).

In I3, a surface is called a translation surface if it is given by an immersion

r : Ω ⊂ R2 → R3 : (u, v) 7→ (u, v, f(u) + g(v)),

where f and g are smooth functions on opens of R.
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Definition 3. i) A surface M2 in I3 is a THA-surface of first type if it can be
parameterized by

r(s, t) = (s, t, Af(s+ at)g(t) +B(f(s+ at) + g(t))). (2)

ii) A surface M2 in I3 is a THA- surface of second type if it can be parameterized
by

r(s, t) = (s, Af(s+ at)g(t) +B(f(s+ at) + g(t)), t), (3)

where A and B are non-zero real numbers [16, 17, 18].

Remark 2. i) If A ̸= 0 and B = 0 in (2), then M2 is a affine factorable (homo-
thetical) surface.
ii) If A = 0 and B ̸= 0 in (2), then M2 is a affine translation surface.

4 THA- surfaces of first type with zero Gaussian cur-
vature in I3

We classify the THA- surfaces of first type with zero Gaussian curvature in
I3.

Let M2 be a THA-surface in I3 parameterized by (2). By a transformation{
x = s+ at
y = t,

(4)

and ∂(x,y)
∂(u,v) ̸= 0.

From (4) and (2) we have

r(x, y) = (x− ay, y, z(x, y) = Af(x)g(y) +B(f(x) + g(y))), (5)

The coefficients of the first fundamental form of M2 are given by

E = 1, F = −a, G = 1 + a2.

The coefficients of the second fundamental form are given by

L =
γα′′

A
, M =

α′γ′

A
, N =

αγ′′

A
,

where α = (Af +B) and γ = (Ag +B).

A THA-surfaces of first type in I3 parameterized by (5) has Gaussian curvature

K =
αγα′′γ′′ − γ′2α′2

A2
.

Hence that if K = 0, then

αγα′′γ′′ − γ′2α′2 = 0. (6)

We discuss the different cases according the functions α and γ.
The proof given in [2, 15]. We can obtain the following:
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Theorem 4. Let a THA-surface of first type in I3 have constant Gaussian cur-
vature K0 Then, for λ, c0, c1, c2 ∈ R, we have
(1) if K0 = 0, then
(a) z(x, y) = c0α(x) or z(x, y) = c0γ(y)
(b) α(x) = λ3e

k1x + λ4 and γ(y) = λ5e
k2y + λ6

c) α(x) = c3((1− λ)k1x+ c1)
1

1−λ + c4 and γ(y) = c5((
λ−1
λ )k2y + c2)

λ
λ−1 + c6.

(2) Otherwise, i.e. K0 ̸= 0 then K0 is negative and
(a) z(x, y) = c0(

√
−K0y + c1)(x− ay + c2)

(b) z(x, y) = c0(
√
−K0(x− ay)y + c1)(y + c2).

5 Minimal THA-surfaces of first type in I3

The expression of H is

H =
αγ′′ + 2aα′γ′ + γα′′(1 + a2)

2A
. (7)

Then M2 is a minimal surface if and only if

αγ′′ + 2aα′γ′ + γα′′(1 + a2) = 0. (8)

Theorem 5. Let a THA-surface of first type in I3 be minimal.
Then, for λ, µ0, µ1, µ2 ∈ R, either
i) it is a non-isotropic plane; or
ii) z(x, y) = µ0e

ψ(x, y)[µ1 cos(φ(x, y)) + µ2 sin(φ(x, y))],

where ψ(x, y) = b(x−ay)
1+a2

, φ(x, y) = b(ax+y)
1+a2

; or

iii) z(x, y) = µ0e
by[µ1 cos(bx) + µ2 sin(bx)].

Proof. The proof given in [2].

6 Minimal THA-surfaces of second type in I3

Let M2 be a THA-surface of second type in I3 parameterized by (3). Let us
put

x = s+ at, y = t, (9)

and ∂(x,y)
∂(u,v) ̸= 0. From (9) and (3) we have

E =
α′2γ2 +A2

A2
, F =

−aA2 + αγα′γ′

A2
, G =

α2γ′2 +A2a2

A2
,

where α = Af +B and γ = Ag +B.
The coefficients of the second fundamental form are given by

L = − γα′′

AW
, M = −α′γ′

AW
, N = −αγ′′

AW
,
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where W = A−1(αγ′ + aγα′).

M2 is a minimal surface if and only if

αγ′′(α′2γ2 +A2)− 2α′γ′(−aA2 + αγα′γ′) + γα′′(α2γ′2 + a2A2) = 0. (10)

We distinguish two cases for (10):

Case 1. a = 0. Equation (10) writes as

γ′′(α′2γ2 +A2) + γγ′2(αα′′ − 2α′2) = 0. (11)

We distinguish several cases.
(i). Assume γ′ = 0, then γ(y) = b1 ∈ R − {0}. In such case, H = 0 is satisfied
for any function α.
(ii). Assume α′ = 0 (γ′ ̸= 0), then α(x) = b2 ∈ R − {0}. From (11), we have
γ′′ = 0.
(iii). Assume α′′ = 0. Then (α′ = b2 ̸= 0), and (11) gives

γ′′(b22γ
2 +A2) = 2b22γγ

′2. (12)

A direct integration implies that there exist c1, c2 such that

γ =
A

b2
tan(c1y + c2).

(iv). Assume α′′ ̸= 0. Equation (11) writes as

γ′′

γγ′2
(α′2γ2 +A2) = −(αα′′ − 2α′2). (13)

Differentiating (13) with respect to x, we have an identity of two functions, one
depending only on y and the other one depending only on x. Then both functions
are equal to a same constant

−(αα′′ − 2α′2),x
2α′α′′ = c =

γγ′′

γ′2
. (14)

If c = 0, then the second equation of (14) implies γ′′ = 0.
Then (11) gives

αα′′ − 2α′2 = 0.

Integration with respect to x leads to

α = − 1

c3x+ c4
, c3, c4 ∈ R.

If c ̸= 0. Substituting c =
γγ′′

γ′2
in (13), one obtain
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A2 γ′′

γγ′2
= −(αα′′ − 2α′2)− α′2c. (15)

Since α and γ are functions of two independent variables, the above equation
can be written as

A2 γ′′

γγ′2
= c4, (αα′′ − 2α′2)− α′2c = −c4.

Hence from A2 γ′′

γγ′2
= c4 and

γγ′′

γ′2
= c we can write

A2c = c4γ
2. (16)

From (16), γ = constant leads to a contradiction.
Case 2. a ̸= 0. We distinguish several cases.

(i). Assume γ′ = 0. Then γ(y) = b1 ∈ R− {0} and (10) implies α′′ = 0.

(ii). Assume γ′′ = 0. Then γ′ = b2 ∈ R− {0} and (10) implies

α′′(α2b22 + a2A2) =
2aA2α′b2

γ
− 2αα′2b22. (17)

Differentiating (17) with respect to y, we get α′ = 0.

(iii). Assume α′′ = 0. Then α′ = b3 ∈ R− {0} and (10) implies

γ′′(γ2b23 +A2) =
2ab3A

2γ′

α
− 2γγ′2b23. (18)

Differentiating (18) with respect to x, we get γ′ = 0.

(iv). Assume αα′γγ′ ̸= 0 α′′γ′′ ̸= 0. Then (10) implies

A2γ′′

γα′2γ′2
+
γγ′′

γ′2
+
a2A2α′′

αα′2γ′2
+
αα′′

α′2 +
2aA2

αγα′γ′
− 2 = 0. (19)

Let us differentiate with respect to x and then with respect to y, to see

A2

(
γ′′

γγ′2

)
,y

(
1

α′2

)
,x

+ a2A2

(
α′′

αα′2

)
,x

(
1

γ′2

)
,y

+ 2aA2

(
1

αα′

)
,x

(
1

γγ′

)
,y

= 0.

(20)

If we divide (20) by

(
1

α′2

)
,x

(
1

γ′2

)
,y

, we have

A2

(
γ′′

γγ′2

)
,y(

1

γ′2

)
,y

+ a2A2

(
α′′

αα′2

)
,x(

1

α′2

)
,x

+ 2aA2

(
1

αα′

)
,x

(
1

γγ′

)
,y(

1

α′2

)
,x

(
1

γ′2

)
,y

= 0. (21)
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Differentiating now with respect to x and next with respect to y, we get
(

1

γγ′

)
,y

= c3

(
1

γ′2

)
,y(

1

αα′

)
,x

= c7

(
1

α′2

)
,x

.
(22)

Substituting this into (21), we get
(
γ′′

γγ′2

)
,y

= c1

(
1

γ′2

)
,y(

α′′

αα′2

)
,x

= c5

(
1

α′2

)
,x

.
(23)

From (22) and (23) we get
γ′′

γγ′2
= c1

(
1

γ′2

)
+ c2

1

γγ′
= c3

(
1

γ′2

)
+ c4

(24)


α′′

αα′2 = c5

(
1

α′2

)
+ c6

1

αα′ = c7

(
1

α′2

)
+ c8.

(25)

Differentiating (19) with respect to y, we have

A2

(
γ′′

γγ′2

)
,y

1

α′2 +

(
γγ′′

γ′2

)
,y

+a2A2 α′′

αα′2

(
1

γ′2

)
,y

+2aA2

(
1

γγ′

)
,y

1

αα′ = 0. (26)

Substituting (25) in (26) gives

A2

(
γ′′

γγ′2
+ a2c5

1

γ′2
+ 2ac7

1

γγ′

)
,y

+α′2

(
γγ′′

γ′2
+ a2A2c6

(
1

γ′2

)
,y

+ 2aA2c8

(
1

γγ′

)
,y

)
= 0.

For each fixed y, we can view this expression as a polynomial equation on α′

and thus, all coefficients vanish. Then

A2 γ′′

γγ′2
+ a2A2c5

1

γ′2
+ 2aA2c7

1

γγ′
= λ1, λ1 ∈ R, (27)

γγ′′

γ′2
+ a2A2c6

1

γ′2
+ 2aA2c8

1

γγ′
= λ2, λ2 ∈ R. (28)

Substituting (25) in (19) gives
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A2γ′′

γγ′2
1

α′2 +
γγ′′

γ′2
+
a2A2

γ′2

(
c5

(
1

α′2

)
+ c6

)
+
αα′′

α′2 +
2aA2

γγ′

(
c7

(
1

α′2

)
+ c8

)
−2 = 0.

(29)
Then (29) can be written as

λ1
α′2 + λ2 +

αα′′

α′2 − 2 = 0. (30)

Differentiating (30) with respect to x, we have

λ1

(
1

α′2

)
,x

+

(
αα′′

α′2

)
,x

= 0. (31)

Using (25), we have

α′2 − α2c5 − λ1 = 0.

Differentiating this equation with respect to x, we obtain α′′ = c5α. From
(25), we get c6 = 0.

Differentiating (19) with respect to x, we have

A2γ′′

γγ′2

(
1

α′2

)
,x

+ a2A2

(
α′′

αα′2

)
,x

(
1

γ′2

)
+

(
αα′′

α′2

)
,x

+ 2aA2

(
1

γγ′

)(
1

αα′

)
,x

= 0.

(32)
Using (24), we have

A2c1

(
1

α′2

)
,x

+ a2A2

(
α′′

αα′2

)
,x

+ 2aA2c3

(
1

αα′

)
,x

+

γ′2

(
A2c2

(
1

α′2

)
,x

+

(
αα′′

α′2

)
,x

+ 2aA2c4

(
1

αα′

)
,x

)
= 0. (33)

For each fixed x, we can view this expression as a polynomial equation on γ′

and thus, all coefficients vanish. Then

A2c1

(
1

α′2

)
+ a2A2

(
α′′

αα′2

)
+ 2aA2c3

(
1

αα′

)
= λ3, λ3 ∈ R, (34)

A2c2

(
1

α′2

)
+

(
αα′′

α′2

)
+ 2aA2c4

(
1

αα′

)
= λ4, λ4 ∈ R. (35)

Using (24) in (19), we obtain

λ3
γ′2

+ λ4 +
γγ′′

γ′2
− 2 = 0. (36)

If we differentiate this equation with respect to y, we get
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λ3

(
1

γ′2

)
,y

+

(
γγ′′

γ′2

)
,y

= 0. (37)

Substituting (24) in (37) gives

γ′2 − c1γ
2 − λ3 = 0.

Differentiating this equation with respect to y, we obtain γ′′ = c1γ. From (24)
, we get c2 = 0.
Then

α′′ = c5α, γ′′ = c1γ. (38)

By substituting (38) into (10) and differentiating with respect to x and next
with respect to y, we get (

α′

α

)
,x

(
γ′

γ

)
,y

= 0.

Hence there are constants δ1, δ2 ∈ R− {0} such that

γ′ = δ1γ, α′ = δ2α. (39)

From (39) and (38), we obtain

δ22 = c5, δ21 = c1.

By using of relations (30) and (36) we find

λ1 + c5(λ2 − 1)α2 = 0, λ3 + c1(λ4 − 1)γ2 = 0.

Then λ1 = 0, λ2 = 1 and λ3 = 0, λ4 = 1. Since λ2 = 1, c6 = 0 and δ21 = c1,
we must have c8 = 0.
Now, from the equation (25) we obtain α′ = c7α.
Then c27 = c5, and (27) implies

√
c1 = −a√c5 = −ac7.

Substituting λ4 = 1 into (35) we obtain c4 = 0. This implies c3 =
√
c1. From

(39), we obtain

γ = b1e
−ac7y, α = b2e

c7x,

where b1, b2, c7 ∈ R− {0}.

Thus, we can state the following theorem:

Theorem 6. Let M2 be a THA-surface in I3. If M2 is minimal surface, then M2

parameterized as (3), where
(1). if a = 0, then
(i) g(y) = y0 ∈ R− {0} and f is any arbitrary function.
(ii) f(x) = x0 ∈ R− {0} and g(y) = b1y + b2; b1, b2 ∈ R.
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(iii) f(x) = b3x+b4, b3, b4 ∈ R and g(y) =
1

Ab3
tan(c1y+c2)+c3; b3, c1, c2, c3 ∈

R− {0}.
(iv) f(x) = − 1

c5x+ c6
− B

A
and g(y) = c7y + c8; ci ∈ R− {0}.

(2). if a ̸= 0, then
(i) g(y) = y0 ∈ R− {0} and f(x) = d1x+ d2, d1, d2 ∈ R− {0}.
(ii) f(x) = b0 ∈ R− {0} and g(y) = b1y + b2, b1, b2 ∈ R− {0}.
(iii) f(x) = λ3x+ λ4; λ3, λ4 ∈ R and g(y) = λ0 ∈ R− {0}.

(iv) f(x) =
λ5e

cx

A
− B

A
and g(y) =

λ6e
−acy

A
− B

A
; λi ∈ R− {0}.
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