CLASSIFICATIONS OF $\mathcal{T H} \mathcal{A}$-SURFACES IN \mathbb{I}^{3}

Bendehiba SENOUSSI ${ }^{* 1}$

Abstract

In classical differential geometry, the problem of obtaining Gaussian and mean curvatures of a surface is one of the most important problems. A surface \mathcal{M}^{2} in \mathbb{I}^{3} is a $\mathcal{T} \mathcal{H} \mathcal{A}$-surface of first type if it can be parameterized by $$
r(s, t)=(s, t, A f(s+a t) g(t)+B(f(s+a t)+g(t)))
$$

A surface \mathcal{M}^{2} in \mathbb{I}^{3} is a $\mathcal{T H} \mathcal{A}$ - surface of second type if it can be parameterized by

$$
r(s, t)=(s, A f(s+a t) g(t)+B(f(s+a t)+g(t)), t)
$$

where A and B are non-zero real numbers $[16,17,18]$. In this paper, we classify two types $\mathfrak{T H} \mathcal{A}$-surfaces in the 3 -dimensional isotropic space \mathbb{I}^{3} and study $\mathcal{T} \mathcal{H} \mathcal{A}$-surfaces with zero curvature in \mathbb{I}^{3}.

2000 Mathematics Subject Classification: 53A10, 53C42.
Key words: $\mathfrak{T H} \mathcal{A}$ - surfaces, minimal surfaces, Isotropic space, mean curvature.

1 Introduction

M.K. Karacan, D.W.Yoon, B. Bukcu [6], M.E.Aydin [1, 2] have studied some classes of surfaces in \mathbb{I}^{3}. R. López [9] studied translation surfaces in the 3dimensional hyperbolic space \mathbb{H}^{3} and classified minimal translation surfaces. R. López and M. I. Munteanu [10] constructed translation surfaces in Sol_{3} and investigated properties of minimal one. In a different aspect, H. Liu [7] considered the translation surfaces with constant mean curvature in 3-dimensional Euclidean space and Lorentz-Minkowski space.

Recently, K. Seo [20] gave a classification of the translation hypersurfaces with constant mean curvature or constant Gauss-Kronecker curvature in space forms.

Related works on minimal translation surfaces of \mathbb{E}^{3} are ([7], [14], [22]). B. Senoussi et al. [19] studied the translation surfaces in Lorentz-Heisenberg 3-space $N i l_{1}^{3}$. In this paper, we classify two types $\mathcal{T H} \mathcal{A}$-surfaces in the 3 -dimensional isotropic space \mathbb{I}^{3} and study $\mathcal{T H} \mathcal{A}$ - surfaces with zero curvature in \mathbb{I}^{3}.

[^0]Theorem 1 ([11]). i) The only translation surfaces with constant Gauss curvature $K_{G}=0$ are cylindrical surfaces.
ii) There are no translation surfaces with constant Gauss curvature $K_{G} \neq 0$ if one of the generating curves is planar.

Definition 1. A homothetical (factorable) surface \mathcal{M}^{2} in 3-dimensional Euclidean space \mathbb{E}^{3} is a surface that is a graph of a function

$$
z(u, v)=f(u) g(v)
$$

where $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ and $g: J \subset \mathbb{R} \rightarrow \mathbb{R}$ are two smooth functions.
Theorem 2 ([11]). Planes and helicoids are the only minimal homothetical surfaces in Euclidean space.

Theorem 3 ([8]). Let $r(x, y)=(x, y, z(x, y)=f(x)+g(a x+y))$ be a minimal affine translation surface. Then either $z(x, y)$ is linear or can be written as

$$
\begin{equation*}
z(x, y)=\frac{1}{c} \log \frac{\cos \left(c \sqrt{1+a^{2}} x\right)}{\cos [c(a x+y)]} \tag{1}
\end{equation*}
$$

Remark 1. If $a=0$, the minimal affine translation surface given by (1) is the classical Scherk surface.

Definition 2 ([8]). The minimal affine translation surface (1) is called generalized Scherk surface or affine Scherk surface in Euclidean 3-space.

2 Preliminaries

The 3 -dimensional isotropic space \mathbb{I}^{3} was introduced by Strubecker. The group G_{6} of motions of \mathbb{I}^{3} is a 6 parameter group, defined by (see [1], [12], [13]).

$$
\psi:\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right):\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
\lambda & \mu & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)+\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right),
$$

where $\left(x_{1}, x_{2}, x_{3}\right)$ denote the affine coordinates and $\phi, a, b, c, \lambda, \mu \in \mathbb{R}$.
The isotropic metric induced by the absolute figure is given by

$$
g_{\mathbb{I}^{3}}=\mathrm{d} s_{\mathbb{I}^{3}}^{2}=\mathrm{d} x_{1}^{2}+\mathrm{d} x_{2}^{2} .
$$

Consider the points $X=\left(x_{1}, x_{2}, x_{3}\right)$ and $Y=\left(y_{1}, y_{2}, y_{3}\right)$. The isotropic distance of two points X and Y is defined by

$$
\mathrm{d}_{\mathbb{I}^{3}}(X, Y)=\sqrt{\left(y_{1}-x_{1}\right)^{2}+\left(y_{2}-x_{2}\right)^{2}} .
$$

Two points $\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(x_{1}, x_{2}, y_{3}\right)$ with the same top view are called parallel points. The lines in x_{3} direction are called isotropic lines. The planes containing
an isotropic line are called isotropic planes. Non-isotropic planes are planes nonparallel to the z-direction.

Let $X=\left(x_{1}, x_{2}, x_{3}\right)$ and $Y=\left(y_{1}, y_{2}, y_{3}\right)$ be vectors in \mathbb{I}^{3}. The isotropic inner product of X and Y is defined by

$$
g_{\mathbb{\Pi}^{3}}(X, Y)=\left\{\begin{array}{lr}
x_{3} y_{3}, & \text { if } x_{j}=0 \text { and } y_{j}=0,(j=1,2) \\
x_{1} y_{1}+x_{2} y_{2}, & \text { if otherwise. }
\end{array}\right.
$$

We call the surface \mathcal{M}^{2} admissible if it has no isotropic tangent planes.
If some admissible surface is locally parameterized by

$$
r: \Omega \subseteq \mathbb{R}^{2} \longrightarrow \mathbb{I}^{3}, \quad(u, v) \longmapsto(u, v, z(u, v)) .
$$

The coefficients of the first fundamental form and the second fundamental form are

$$
\begin{aligned}
& E=g_{\mathbb{} 3}\left(r_{u}, r_{u}\right), F=g_{\mathbb{} 1}\left(r_{u}, r_{v}\right), G=g_{\mathbb{}} 3 \\
& L=\frac{\operatorname{det}\left(r_{v}, r_{v}\right),}{\sqrt{E G-F^{2}}}, \quad, r_{u}, r_{v} \\
& L=\frac{\operatorname{det}\left(r_{u v}, r_{u}, r_{v}\right)}{\sqrt{E G-F^{2}}}, N=\frac{\operatorname{det}\left(r_{v v}, r_{u}, r_{v}\right)}{\sqrt{E G-F^{2}}},
\end{aligned}
$$

where $r_{u}=\frac{\partial r}{\partial u}, r_{v}=\frac{\partial r}{\partial v}$.
The isotropic mean curvature H and the isotropic Gaussian curvature K_{G} are, respectively, defined by

$$
H=\frac{E N+G L-2 F M}{2\left(E G-F^{2}\right)} \quad \text { and } \quad K_{G}=\frac{L N-M^{2}}{E G-F^{2}} .
$$

The surface \mathcal{M}^{2} is said to be isotropic minimal (resp. isotropic flat) if H (resp. K_{G}) vanishes ([1], [2], [6]).

The main purpose of this paper is to complete classification of $\mathcal{T H} \mathcal{A}$-surfaces in the 3 -dimensional isotropic space \mathbb{I}^{3}.

$3 \quad \mathcal{T} \mathcal{H} \mathcal{A}$-surfaces in \mathbb{I}^{3}

Let \mathcal{N}^{2} be a 2 -dimensional surface, of the isotropic 3 - space \mathbb{I}^{3}. Using the standard coordinate system of \mathbb{E}^{3} we denote the parametric representation of the surface $r(u, v)$ by

$$
r(u, v)=\left(r_{1}(u, v), r_{2}(u, v), r_{3}(u, v)\right) .
$$

In \mathbb{I}^{3}, a surface is called a translation surface if it is given by an immersion

$$
r: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}:(u, v) \mapsto(u, v, f(u)+g(v)),
$$

where f and g are smooth functions on opens of \mathbb{R}.

Definition 3. i) A surface \mathcal{N}^{2} in \mathbb{I}^{3} is a $\mathcal{T H} \mathcal{A}$-surface of first type if it can be parameterized by

$$
\begin{equation*}
r(s, t)=(s, t, A f(s+a t) g(t)+B(f(s+a t)+g(t))) . \tag{2}
\end{equation*}
$$

ii) A surface \mathcal{N}^{2} in \mathbb{I}^{3} is a $\mathfrak{T H} \mathcal{A}$ - surface of second type if it can be parameterized by

$$
\begin{equation*}
r(s, t)=(s, A f(s+a t) g(t)+B(f(s+a t)+g(t)), t) \tag{3}
\end{equation*}
$$

where A and B are non-zero real numbers [16, 17, 18].
Remark 2. i) If $A \neq 0$ and $B=0$ in (2), then \mathcal{N}^{2} is a affine factorable (homothetical) surface.
ii) If $A=0$ and $B \neq 0$ in (2), then \mathcal{M}^{2} is a affine translation surface.

$4 \mathcal{T H} \mathcal{A}$ - surfaces of first type with zero Gaussian curvature in \mathbb{I}^{3}

We classify the $\mathcal{T} \mathcal{H} \mathcal{A}$ - surfaces of first type with zero Gaussian curvature in \mathbb{I}^{3}.

Let \mathcal{M}^{2} be a $\mathfrak{T H} \mathcal{A}$-surface in \mathbb{I}^{3} parameterized by (2). By a transformation

$$
\left\{\begin{array}{l}
x=s+a t \tag{4}\\
y=t,
\end{array}\right.
$$

and $\frac{\partial(x, y)}{\partial(u, v)} \neq 0$.
From (4) and (2) we have

$$
\begin{equation*}
r(x, y)=(x-a y, y, z(x, y)=A f(x) g(y)+B(f(x)+g(y))) \tag{5}
\end{equation*}
$$

The coefficients of the first fundamental form of \mathcal{M}^{2} are given by

$$
E=1, \quad F=-a, G=1+a^{2} .
$$

The coefficients of the second fundamental form are given by

$$
L=\frac{\gamma \alpha^{\prime \prime}}{A}, \quad M=\frac{\alpha^{\prime} \gamma^{\prime}}{A}, \quad N=\frac{\alpha \gamma^{\prime \prime}}{A}
$$

where $\alpha=(A f+B)$ and $\gamma=(A g+B)$.
A $\mathcal{T H} \mathcal{A}$-surfaces of first type in \mathbb{I}^{3} parameterized by (5) has Gaussian curvature

$$
K=\frac{\alpha \gamma \alpha^{\prime \prime} \gamma^{\prime \prime}-\gamma^{\prime 2} \alpha^{\prime 2}}{A^{2}}
$$

Hence that if $K=0$, then

$$
\begin{equation*}
\alpha \gamma \alpha^{\prime \prime} \gamma^{\prime \prime}-\gamma^{\prime 2} \alpha^{\prime 2}=0 \tag{6}
\end{equation*}
$$

We discuss the different cases according the functions α and γ.
The proof given in $[2,15]$. We can obtain the following:

Theorem 4. Let a $\mathfrak{T H} \mathcal{H}$-surface of first type in \mathbb{I}^{3} have constant Gaussian curvature K_{0} Then, for $\lambda, c_{0}, c_{1}, c_{2} \in \mathbb{R}$, we have
(1) if $K_{0}=0$, then
(a) $z(x, y)=c_{0} \alpha(x)$ or $z(x, y)=c_{0} \gamma(y)$
(b) $\alpha(x)=\lambda_{3} e^{k_{1} x}+\lambda_{4}$ and $\gamma(y)=\lambda_{5} e^{k_{2} y}+\lambda_{6}$
c) $\alpha(x)=c_{3}\left((1-\lambda) k_{1} x+c_{1}\right)^{\frac{1}{1-\lambda}}+c_{4}$ and $\gamma(y)=c_{5}\left(\left(\frac{\lambda-1}{\lambda}\right) k_{2} y+c_{2}\right)^{\frac{\lambda}{\lambda-1}}+c_{6}$.
(2) Otherwise, i.e. $K_{0} \neq 0$ then K_{0} is negative and
(a) $z(x, y)=c_{0}\left(\sqrt{-K_{0}} y+c_{1}\right)\left(x-a y+c_{2}\right)$
(b) $z(x, y)=c_{0}\left(\sqrt{-K_{0}}(x-a y) y+c_{1}\right)\left(y+c_{2}\right)$.

5 Minimal $\mathfrak{T H} \mathcal{A}$-surfaces of first type in \mathbb{I}^{3}

The expression of H is

$$
\begin{equation*}
H=\frac{\alpha \gamma^{\prime \prime}+2 a \alpha^{\prime} \gamma^{\prime}+\gamma \alpha^{\prime \prime}\left(1+a^{2}\right)}{2 A} \tag{7}
\end{equation*}
$$

Then \mathcal{M}^{2} is a minimal surface if and only if

$$
\begin{equation*}
\alpha \gamma^{\prime \prime}+2 a \alpha^{\prime} \gamma^{\prime}+\gamma \alpha^{\prime \prime}\left(1+a^{2}\right)=0 . \tag{8}
\end{equation*}
$$

Theorem 5. Let a $\mathcal{T H} \mathcal{A}$-surface of first type in \mathbb{I}^{3} be minimal.
Then, for $\lambda, \mu_{0}, \mu_{1}, \mu_{2} \in \mathbb{R}$, either
i) it is a non-isotropic plane; or
ii) $z(x, y)=\mu_{0} e^{\psi(x, y)}\left[\mu_{1} \cos (\varphi(x, y))+\mu_{2} \sin (\varphi(x, y))\right]$, where $\psi(x, y)=\frac{b(x-a y)}{1+a^{2}}, \varphi(x, y)=\frac{b(a x+y)}{1+a^{2}}$; or
iii) $z(x, y)=\mu_{0} e^{b y}\left[\mu_{1} \cos (b x)+\mu_{2} \sin (b x)\right]$.

Proof. The proof given in [2].

6 Minimal $\mathcal{T H} \mathcal{A}$-surfaces of second type in \mathbb{I}^{3}

Let \mathcal{N}^{2} be a $\mathcal{T} \mathcal{H} \mathcal{A}$-surface of second type in \mathbb{I}^{3} parameterized by (3). Let us put

$$
\begin{equation*}
x=s+a t, \quad y=t, \tag{9}
\end{equation*}
$$

and $\frac{\partial(x, y)}{\partial(u, v)} \neq 0$. From (9) and (3) we have

$$
E=\frac{\alpha^{\prime 2} \gamma^{2}+A^{2}}{A^{2}}, \quad F=\frac{-a A^{2}+\alpha \gamma \alpha^{\prime} \gamma^{\prime}}{A^{2}}, G=\frac{\alpha^{2} \gamma^{\prime 2}+A^{2} a^{2}}{A^{2}}
$$

where $\alpha=A f+B$ and $\gamma=A g+B$.
The coefficients of the second fundamental form are given by

$$
L=-\frac{\gamma \alpha^{\prime \prime}}{A W}, \quad M=-\frac{\alpha^{\prime} \gamma^{\prime}}{A W}, \quad N=-\frac{\alpha \gamma^{\prime \prime}}{A W},
$$

where $W=A^{-1}\left(\alpha \gamma^{\prime}+a \gamma \alpha^{\prime}\right)$.
\mathcal{M}^{2} is a minimal surface if and only if

$$
\begin{equation*}
\alpha \gamma^{\prime \prime}\left(\alpha^{\prime 2} \gamma^{2}+A^{2}\right)-2 \alpha^{\prime} \gamma^{\prime}\left(-a A^{2}+\alpha \gamma \alpha^{\prime} \gamma^{\prime}\right)+\gamma \alpha^{\prime \prime}\left(\alpha^{2} \gamma^{\prime 2}+a^{2} A^{2}\right)=0 \tag{10}
\end{equation*}
$$

We distinguish two cases for (10):
Case 1. $a=0$. Equation (10) writes as

$$
\begin{equation*}
\gamma^{\prime \prime}\left(\alpha^{\prime 2} \gamma^{2}+A^{2}\right)+\gamma \gamma^{\prime 2}\left(\alpha \alpha^{\prime \prime}-2 \alpha^{\prime 2}\right)=0 . \tag{11}
\end{equation*}
$$

We distinguish several cases.
(i). Assume $\gamma^{\prime}=0$, then $\gamma(y)=b_{1} \in \mathbb{R}-\{0\}$. In such case, $H=0$ is satisfied for any function α.
(ii). Assume $\alpha^{\prime}=0\left(\gamma^{\prime} \neq 0\right)$, then $\alpha(x)=b_{2} \in \mathbb{R}-\{0\}$. From (11), we have $\gamma^{\prime \prime}=0$.
(iii). Assume $\alpha^{\prime \prime}=0$. Then $\left(\alpha^{\prime}=b_{2} \neq 0\right)$, and (11) gives

$$
\begin{equation*}
\gamma^{\prime \prime}\left(b_{2}^{2} \gamma^{2}+A^{2}\right)=2 b_{2}^{2} \gamma \gamma^{\prime 2} . \tag{12}
\end{equation*}
$$

A direct integration implies that there exist c_{1}, c_{2} such that

$$
\gamma=\frac{A}{b_{2}} \tan \left(c_{1} y+c_{2}\right) .
$$

(iv). Assume $\alpha^{\prime \prime} \neq 0$. Equation (11) writes as

$$
\begin{equation*}
\frac{\gamma^{\prime \prime}}{\gamma \gamma^{\prime 2}}\left(\alpha^{\prime 2} \gamma^{2}+A^{2}\right)=-\left(\alpha \alpha^{\prime \prime}-2 \alpha^{\prime 2}\right) \tag{13}
\end{equation*}
$$

Differentiating (13) with respect to x, we have an identity of two functions, one depending only on y and the other one depending only on x. Then both functions are equal to a same constant

$$
\begin{equation*}
-\frac{\left(\alpha \alpha^{\prime \prime}-2 \alpha^{2}\right)_{, x}}{2 \alpha^{\prime} \alpha^{\prime \prime}}=c=\frac{\gamma \gamma^{\prime \prime}}{\gamma^{\prime 2}} . \tag{14}
\end{equation*}
$$

If $c=0$, then the second equation of (14) implies $\gamma^{\prime \prime}=0$.
Then (11) gives

$$
\alpha \alpha^{\prime \prime}-2 \alpha^{\prime 2}=0 .
$$

Integration with respect to x leads to

$$
\alpha=-\frac{1}{c_{3} x+c_{4}}, c_{3}, c_{4} \in \mathbb{R} .
$$

If $c \neq 0$. Substituting $c=\frac{\gamma \gamma^{\prime \prime}}{\gamma^{\prime 2}}$ in (13), one obtain

$$
\begin{equation*}
A^{2} \frac{\gamma^{\prime \prime}}{\gamma \gamma^{\prime 2}}=-\left(\alpha \alpha^{\prime \prime}-2 \alpha^{\prime 2}\right)-\alpha^{\prime 2} c \tag{15}
\end{equation*}
$$

Since α and γ are functions of two independent variables, the above equation can be written as

$$
A^{2} \frac{\gamma^{\prime \prime}}{\gamma \gamma^{\prime 2}}=c_{4}, \quad\left(\alpha \alpha^{\prime \prime}-2 \alpha^{\prime 2}\right)-\alpha^{\prime 2} c=-c_{4} .
$$

Hence from $A^{2} \frac{\gamma^{\prime \prime}}{\gamma \gamma^{\prime 2}}=c_{4}$ and $\frac{\gamma \gamma^{\prime \prime}}{\gamma^{\prime 2}}=c$ we can write

$$
\begin{equation*}
A^{2} c=c_{4} \gamma^{2} \tag{16}
\end{equation*}
$$

From (16), $\gamma=$ constant leads to a contradiction.
Case 2. $a \neq 0$. We distinguish several cases.
(i). Assume $\gamma^{\prime}=0$. Then $\gamma(y)=b_{1} \in \mathbb{R}-\{0\}$ and (10) implies $\alpha^{\prime \prime}=0$.
(ii). Assume $\gamma^{\prime \prime}=0$. Then $\gamma^{\prime}=b_{2} \in \mathbb{R}-\{0\}$ and (10) implies

$$
\begin{equation*}
\alpha^{\prime \prime}\left(\alpha^{2} b_{2}^{2}+a^{2} A^{2}\right)=\frac{2 a A^{2} \alpha^{\prime} b_{2}}{\gamma}-2 \alpha \alpha^{\prime 2} b_{2}^{2} \tag{17}
\end{equation*}
$$

Differentiating (17) with respect to y, we get $\alpha^{\prime}=0$.
(iii). Assume $\alpha^{\prime \prime}=0$. Then $\alpha^{\prime}=b_{3} \in \mathbb{R}-\{0\}$ and (10) implies

$$
\begin{equation*}
\gamma^{\prime \prime}\left(\gamma^{2} b_{3}^{2}+A^{2}\right)=\frac{2 a b_{3} A^{2} \gamma^{\prime}}{\alpha}-2 \gamma \gamma^{\prime 2} b_{3}^{2} \tag{18}
\end{equation*}
$$

Differentiating (18) with respect to x, we get $\gamma^{\prime}=0$.
(iv). Assume $\alpha \alpha^{\prime} \gamma \gamma^{\prime} \neq 0 \alpha^{\prime \prime} \gamma^{\prime \prime} \neq 0$. Then (10) implies

$$
\begin{equation*}
\frac{A^{2} \gamma^{\prime \prime}}{\gamma \alpha^{\prime 2} \gamma^{\prime 2}}+\frac{\gamma \gamma^{\prime \prime}}{\gamma^{\prime 2}}+\frac{a^{2} A^{2} \alpha^{\prime \prime}}{\alpha \alpha^{\prime 2} \gamma^{\prime 2}}+\frac{\alpha \alpha^{\prime \prime}}{\alpha^{\prime 2}}+\frac{2 a A^{2}}{\alpha \gamma \alpha^{\prime} \gamma^{\prime}}-2=0 \tag{19}
\end{equation*}
$$

Let us differentiate with respect to x and then with respect to y, to see

$$
\begin{equation*}
A^{2}\left(\frac{\gamma^{\prime \prime}}{\gamma \gamma^{\prime 2}}\right)_{, y}\left(\frac{1}{\alpha^{\prime 2}}\right)_{, x}+a^{2} A^{2}\left(\frac{\alpha^{\prime \prime}}{\alpha \alpha^{\prime 2}}\right)_{, x}\left(\frac{1}{\gamma^{\prime 2}}\right)_{, y}+2 a A^{2}\left(\frac{1}{\alpha \alpha^{\prime}}\right)_{, x}\left(\frac{1}{\gamma \gamma^{\prime}}\right)_{, y}=0 \tag{20}
\end{equation*}
$$

If we divide (20) by $\left(\frac{1}{\alpha^{\prime 2}}\right)_{, x}\left(\frac{1}{\gamma^{\prime 2}}\right)_{, y}$, we have

$$
\begin{equation*}
A^{2} \frac{\left(\frac{\gamma^{\prime \prime}}{\gamma \gamma^{\prime 2}}\right)_{, y}}{\left(\frac{1}{\gamma^{\prime 2}}\right)_{, y}}+a^{2} A^{2} \frac{\left(\frac{\alpha^{\prime \prime}}{\alpha \alpha^{\prime 2}}\right)_{, x}}{\left(\frac{1}{\alpha^{\prime 2}}\right)_{, x}}+2 a A^{2} \frac{\left(\frac{1}{\alpha \alpha^{\prime}}\right)_{, x}\left(\frac{1}{\gamma \gamma^{\prime}}\right)_{, y}}{\left(\frac{1}{\alpha^{\prime 2}}\right)_{, x}\left(\frac{1}{\gamma^{\prime 2}}\right)_{, y}}=0 . \tag{21}
\end{equation*}
$$

Differentiating now with respect to x and next with respect to y, we get

$$
\left\{\begin{array}{l}
\left(\frac{1}{\gamma \gamma^{\prime}}\right)_{, y}=c_{3}\left(\frac{1}{\gamma^{\prime 2}}\right)_{, y} \tag{22}\\
\left(\frac{1}{\alpha \alpha^{\prime}}\right)_{, x}=c_{7}\left(\frac{1}{\alpha^{\prime 2}}\right)_{, x} .
\end{array}\right.
$$

Substituting this into (21), we get

$$
\left\{\begin{array}{l}
\left(\frac{\gamma^{\prime \prime}}{\gamma \gamma^{\prime 2}}\right)_{, y}=c_{1}\left(\frac{1}{\gamma^{\prime 2}}\right)_{, y} \tag{23}\\
\left(\frac{\alpha^{\prime \prime}}{\alpha \alpha^{\prime 2}}\right)_{, x}=c_{5}\left(\frac{1}{\alpha^{\prime 2}}\right)_{, x} .
\end{array}\right.
$$

From (22) and (23) we get

$$
\begin{align*}
& \left\{\begin{array}{l}
\frac{\gamma^{\prime \prime}}{\gamma \gamma^{\prime 2}}=c_{1}\left(\frac{1}{\gamma^{\prime 2}}\right)+c_{2} \\
\frac{1}{\gamma \gamma^{\prime}}=c_{3}\left(\frac{1}{\gamma^{\prime 2}}\right)+c_{4}
\end{array}\right. \tag{24}\\
& \left\{\begin{array}{l}
\frac{\alpha^{\prime \prime}}{\alpha \alpha^{\prime 2}}=c_{5}\left(\frac{1}{\alpha^{\prime 2}}\right)+c_{6} \\
\frac{1}{\alpha \alpha^{\prime}}=c_{7}\left(\frac{1}{\alpha^{\prime 2}}\right)+c_{8}
\end{array}\right. \tag{25}
\end{align*}
$$

Differentiating (19) with respect to y, we have

$$
\begin{equation*}
A^{2}\left(\frac{\gamma^{\prime \prime}}{\gamma \gamma^{\prime 2}}\right)_{, y} \frac{1}{\alpha^{\prime 2}}+\left(\frac{\gamma \gamma^{\prime \prime}}{\gamma^{\prime 2}}\right)_{, y}+a^{2} A^{2} \frac{\alpha^{\prime \prime}}{\alpha \alpha^{\prime 2}}\left(\frac{1}{\gamma^{\prime 2}}\right)_{, y}+2 a A^{2}\left(\frac{1}{\gamma \gamma^{\prime}}\right)_{, y} \frac{1}{\alpha \alpha^{\prime}}=0 \tag{26}
\end{equation*}
$$

Substituting (25) in (26) gives

$$
\begin{aligned}
A^{2}\left(\frac{\gamma^{\prime \prime}}{\gamma \gamma^{\prime 2}}+a^{2} c_{5} \frac{1}{\gamma^{\prime 2}}\right. & \left.+2 a c_{7} \frac{1}{\gamma \gamma^{\prime}}\right)_{, y} \\
& +\alpha^{\prime 2}\left(\frac{\gamma \gamma^{\prime \prime}}{\gamma^{\prime 2}}+a^{2} A^{2} c_{6}\left(\frac{1}{\gamma^{\prime 2}}\right)_{, y}+2 a A^{2} c_{8}\left(\frac{1}{\gamma \gamma^{\prime}}\right)_{, y}\right)=0
\end{aligned}
$$

For each fixed y, we can view this expression as a polynomial equation on α^{\prime} and thus, all coefficients vanish. Then

$$
\begin{gather*}
A^{2} \frac{\gamma^{\prime \prime}}{\gamma \gamma^{\prime 2}}+a^{2} A^{2} c_{5} \frac{1}{\gamma^{\prime 2}}+2 a A^{2} c_{7} \frac{1}{\gamma \gamma^{\prime}}=\lambda_{1}, \quad \lambda_{1} \in \mathbb{R} \tag{27}\\
\frac{\gamma \gamma^{\prime \prime}}{\gamma^{\prime 2}}+a^{2} A^{2} c_{6} \frac{1}{\gamma^{\prime 2}}+2 a A^{2} c_{8} \frac{1}{\gamma \gamma^{\prime}}=\lambda_{2}, \quad \lambda_{2} \in \mathbb{R} \tag{28}
\end{gather*}
$$

Substituting (25) in (19) gives

$$
\begin{equation*}
\frac{A^{2} \gamma^{\prime \prime}}{\gamma \gamma^{\prime 2}} \frac{1}{\alpha^{\prime 2}}+\frac{\gamma \gamma^{\prime \prime}}{\gamma^{\prime 2}}+\frac{a^{2} A^{2}}{\gamma^{\prime 2}}\left(c_{5}\left(\frac{1}{\alpha^{\prime 2}}\right)+c_{6}\right)+\frac{\alpha \alpha^{\prime \prime}}{\alpha^{\prime 2}}+\frac{2 a A^{2}}{\gamma \gamma^{\prime}}\left(c_{7}\left(\frac{1}{\alpha^{\prime 2}}\right)+c_{8}\right)-2=0 \tag{29}
\end{equation*}
$$

Then (29) can be written as

$$
\begin{equation*}
\frac{\lambda_{1}}{\alpha^{\prime 2}}+\lambda_{2}+\frac{\alpha \alpha^{\prime \prime}}{\alpha^{\prime 2}}-2=0 \tag{30}
\end{equation*}
$$

Differentiating (30) with respect to x, we have

$$
\begin{equation*}
\lambda_{1}\left(\frac{1}{\alpha^{\prime 2}}\right)_{, x}+\left(\frac{\alpha \alpha^{\prime \prime}}{\alpha^{\prime 2}}\right)_{, x}=0 . \tag{31}
\end{equation*}
$$

Using (25), we have

$$
\alpha^{\prime 2}-\alpha^{2} c_{5}-\lambda_{1}=0
$$

Differentiating this equation with respect to x, we obtain $\alpha^{\prime \prime}=c_{5} \alpha$. From (25), we get $c_{6}=0$.

Differentiating (19) with respect to x, we have

$$
\begin{equation*}
\frac{A^{2} \gamma^{\prime \prime}}{\gamma \gamma^{\prime 2}}\left(\frac{1}{\alpha^{\prime 2}}\right)_{, x}+a^{2} A^{2}\left(\frac{\alpha^{\prime \prime}}{\alpha \alpha^{\prime 2}}\right)_{, x}\left(\frac{1}{\gamma^{\prime 2}}\right)+\left(\frac{\alpha \alpha^{\prime \prime}}{\alpha^{\prime 2}}\right)_{, x}+2 a A^{2}\left(\frac{1}{\gamma \gamma^{\prime}}\right)\left(\frac{1}{\alpha \alpha^{\prime}}\right)_{, x}=0 . \tag{32}
\end{equation*}
$$

Using (24), we have

$$
\begin{gather*}
A^{2} c_{1}\left(\frac{1}{\alpha^{\prime 2}}\right)_{, x}+a^{2} A^{2}\left(\frac{\alpha^{\prime \prime}}{\alpha \alpha^{\prime 2}}\right)_{, x}+2 a A^{2} c_{3}\left(\frac{1}{\alpha \alpha^{\prime}}\right)_{, x}+ \\
\gamma^{\prime 2}\left(A^{2} c_{2}\left(\frac{1}{\alpha^{\prime 2}}\right)_{, x}+\left(\frac{\alpha \alpha^{\prime \prime}}{\alpha^{\prime 2}}\right)_{, x}+2 a A^{2} c_{4}\left(\frac{1}{\alpha \alpha^{\prime}}\right)_{, x}\right)=0 \tag{33}
\end{gather*}
$$

For each fixed x, we can view this expression as a polynomial equation on γ^{\prime} and thus, all coefficients vanish. Then

$$
\begin{gather*}
A^{2} c_{1}\left(\frac{1}{\alpha^{\prime 2}}\right)+a^{2} A^{2}\left(\frac{\alpha^{\prime \prime}}{\alpha \alpha^{\prime 2}}\right)+2 a A^{2} c_{3}\left(\frac{1}{\alpha \alpha^{\prime}}\right)=\lambda_{3}, \quad \lambda_{3} \in \mathbb{R} \tag{34}\\
A^{2} c_{2}\left(\frac{1}{\alpha^{\prime 2}}\right)+\left(\frac{\alpha \alpha^{\prime \prime}}{\alpha^{\prime 2}}\right)+2 a A^{2} c_{4}\left(\frac{1}{\alpha \alpha^{\prime}}\right)=\lambda_{4}, \quad \lambda_{4} \in \mathbb{R} . \tag{35}
\end{gather*}
$$

Using (24) in (19), we obtain

$$
\begin{equation*}
\frac{\lambda_{3}}{\gamma^{\prime 2}}+\lambda_{4}+\frac{\gamma \gamma^{\prime \prime}}{\gamma^{\prime 2}}-2=0 \tag{36}
\end{equation*}
$$

If we differentiate this equation with respect to y, we get

$$
\begin{equation*}
\lambda_{3}\left(\frac{1}{\gamma^{\prime 2}}\right)_{, y}+\left(\frac{\gamma \gamma^{\prime \prime}}{\gamma^{\prime 2}}\right)_{, y}=0 . \tag{37}
\end{equation*}
$$

Substituting (24) in (37) gives

$$
\gamma^{\prime 2}-c_{1} \gamma^{2}-\lambda_{3}=0 .
$$

Differentiating this equation with respect to y, we obtain $\gamma^{\prime \prime}=c_{1} \gamma$. From (24) , we get $c_{2}=0$.
Then

$$
\begin{equation*}
\alpha^{\prime \prime}=c_{5} \alpha, \quad \gamma^{\prime \prime}=c_{1} \gamma . \tag{38}
\end{equation*}
$$

By substituting (38) into (10) and differentiating with respect to x and next with respect to y, we get

$$
\left(\frac{\alpha^{\prime}}{\alpha}\right)_{, x}\left(\frac{\gamma^{\prime}}{\gamma}\right)_{, y}=0 .
$$

Hence there are constants $\delta_{1}, \delta_{2} \in \mathbb{R}-\{0\}$ such that

$$
\begin{equation*}
\gamma^{\prime}=\delta_{1} \gamma, \quad \alpha^{\prime}=\delta_{2} \alpha . \tag{39}
\end{equation*}
$$

From (39) and (38), we obtain

$$
\delta_{2}^{2}=c_{5}, \quad \delta_{1}^{2}=c_{1}
$$

By using of relations (30) and (36) we find

$$
\lambda_{1}+c_{5}\left(\lambda_{2}-1\right) \alpha^{2}=0, \quad \lambda_{3}+c_{1}\left(\lambda_{4}-1\right) \gamma^{2}=0
$$

Then $\lambda_{1}=0, \lambda_{2}=1$ and $\lambda_{3}=0, \lambda_{4}=1$. Since $\lambda_{2}=1, c_{6}=0$ and $\delta_{1}^{2}=c_{1}$, we must have $c_{8}=0$.
Now, from the equation (25) we obtain $\alpha^{\prime}=c_{7} \alpha$.
Then $c_{7}^{2}=c_{5}$, and (27) implies $\sqrt{c_{1}}=-a \sqrt{c_{5}}=-a c_{7}$.
Substituting $\lambda_{4}=1$ into (35) we obtain $c_{4}=0$. This implies $c_{3}=\sqrt{c_{1}}$. From (39), we obtain

$$
\gamma=b_{1} e^{-a c_{7} y}, \quad \alpha=b_{2} e^{c_{7} x}
$$

where $b_{1}, b_{2}, c_{7} \in \mathbb{R}-\{0\}$.
Thus, we can state the following theorem:
Theorem 6. Let \mathcal{M}^{2} be a $\mathfrak{T H} \mathcal{A}$-surface in \mathbb{I}^{3}. If \mathcal{N}^{2} is minimal surface, then \mathcal{N}^{2} parameterized as (3), where
(1). if $a=0$, then
(i) $g(y)=y_{0} \in \mathbb{R}-\{0\}$ and f is any arbitrary function.
(ii) $f(x)=x_{0} \in \mathbb{R}-\{0\}$ and $g(y)=b_{1} y+b_{2} ; b_{1}, b_{2} \in \mathbb{R}$.
(iii) $f(x)=b_{3} x+b_{4}, \quad b_{3}, b_{4} \in \mathbb{R}$ and $g(y)=\frac{1}{A b_{3}} \tan \left(c_{1} y+c_{2}\right)+c_{3} ; \quad b_{3}, c_{1}, c_{2}, c_{3} \in$ $\mathbb{R}-\{0\}$.
(iv) $f(x)=-\frac{1}{c_{5} x+c_{6}}-\frac{B}{A}$ and $g(y)=c_{7} y+c_{8} ; \quad c_{i} \in \mathbb{R}-\{0\}$.
(2). if $a \neq 0$, then
(i) $g(y)=y_{0} \in \mathbb{R}-\{0\}$ and $f(x)=d_{1} x+d_{2}, d_{1}, d_{2} \in \mathbb{R}-\{0\}$.
(ii) $f(x)=b_{0} \in \mathbb{R}-\{0\}$ and $g(y)=b_{1} y+b_{2}, b_{1}, b_{2} \in \mathbb{R}-\{0\}$.
(iii) $f(x)=\lambda_{3} x+\lambda_{4} ; \quad \lambda_{3}, \lambda_{4} \in \mathbb{R}$ and $g(y)=\lambda_{0} \in \mathbb{R}-\{0\}$.
(iv) $f(x)=\frac{\lambda_{5} e^{c x}}{A}-\frac{B}{A}$ and $g(y)=\frac{\lambda_{6} e^{-a c y}}{A}-\frac{B}{A} ; \quad \lambda_{i} \in \mathbb{R}-\{0\}$.

References

[1] Aydin, M.E., A generalization of translation surfaces with constant curvature in the isotropic space, J.Geom. 107 (2016), no. 3, 603-615.
[2] Aydin, M.E., Affine factorable surfaces in isotropic space, TWMS J. Pure Appl. Math. 11 (2020), no. 1, 72-88.
[3] Chen, B.Y., Total mean curvature and submanifolds of finite type, World Scientific, Singapore, 1984.
[4] Dillen, F., Pas, J. and Verstraelen, L., On surfaces of finite type in Euclidean 3-space, Kodai Math. J. 13 (1990), 10-21.
[5] Ferrandez, A., Garay, O.J. and Lucas, P., On a certain class of conformally flat Euclidean hypersurfaces, Proc. of the Conf, in Global Analysis and Global Differential Geometry, Berlin. (1990).
[6] Karacan, M.K., Yoon, D.W. and Bukcu, B., Translation surfaces in the three dimensional simply isotropic space \mathbb{I}_{3}^{1}, Int. J. Geom. Methods Mod. Phys. 13 (2016), 1650088.
[7] Liu, H., Translation surfaces with constant mean curvature in 3-dimensional spaces, J. Geom. 64 (1999), 141-149.
[8] Liu, H. and Yu. Y., Affine translation surfaces in Euclidean 3-space, Proc. Japan Acad. 89 (2013), 111-113.
[9] López, R., Minimal translation surfaces in hyperbolic space, Beitr. Algebra Geom. 52 (2011), 105-112.
[10] López, R. and Munteanu, M.I., Minimal translation surfaces in Sol $_{3}$, J. Math. Soc. Japan, 64 (2012), 985-1003.
[11] López, R. and Moruz, M., Translation and homothetical surfaces in Euclidean space with constant curvature, J. Korean Math. Soc. 52 (2015), 523-535.
[12] Milin - Sipus, Z., Translation surfaces of constant curvatures in a simply isotropic space, Period. Math. Hung. 68 (2014), 160-175.
[13] Milin - Sipus, Z. and Divjak, B., Curves in n - dimensional k - isotropic space, Glasnik Matematicki, (1998), 267-286.
[14] Munteanu, M.I. and Nistor, A.I., Polynomial translation Weingarten surfaces in 3-dimensional Euclidean space, Proceedings of the VIII International Colloquium on Differential Geometry, World Scientific, (2009), 316-320.
[15] Senoussi, B. and Bekkar, M., Translation and homothetical TH-surfaces in the 3-dimensional Euclidean space \mathbb{E}^{3} and Lorentzian-Minkowski space \mathbb{E}_{1}^{3}, Open J. Math. Sci. (2019), 74-83.
[16] Senoussi, B., Bennour, A. and Beddani, K., THA-surfaces in the Galilean space \mathbb{G}^{3}, J. Adv. Math. Stud. 14 (2021), 187-196.
[17] Senoussi, B., Bennour, A. and Beddani, K., THA-surfaces in 3-dimensional Euclidean space, Asia Pac. J. Math. 14 (2021), 1-15.
[18] Senoussi, B., Beddani, K. and Bennour, A., THA-surfaces of finite type in the Galilean space \mathbb{G}^{3}, Annals of West University of Timisoara Mathematics and Computer Science. 58 (2022), No. 1, 85-99.
[19] Senoussi, B., Beddani, K. and Bennour, A., Translation surfaces in LorentzHeisenberg 3-space Nill ${ }_{1}^{3}$, International Journal of Geometry (2022), No. 4, 34-46.
[20] Seo, K., Translation hypersurfaces with constant curvature in space forms, Osaka J. Math. 50 (2013), 631-641.
[21] Takahashi, T., Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan. 18 (1966), 380-385.
[22] Verstraelen, L., Walrave, J. and Yaprak, S., The minimal translation surfaces in Euclidean space, Soochow J. Math. 20 (1994), 77-82.

[^0]: 1* Corresponding author, Department of Mathematics, Ecole Normale Supérieure Mostaganem, Algeria, e-mail: snoussi.bendehiba19@gmail.com

