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Abstract

The purpose of the present paper is to introduce a new subclass of har-
monic univalent functions by applying q-calculus. Coefficient inequalities,
extreme points, distortion bounds, covering results, convolution condition
and convex combination are determined for this class. Finally, we discuss a
class preserving integral operator for this class.
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1 Introduction

A continuous complex valued function f = u+ iv defined in a simply-connected
domain D is said to be harmonic in D if both u and v are real harmonic in D. In
any simply-connected domain we can expressf = h+ ḡ, where h and g are analytic
in D, called the analytic and co-analytic part of the function f , respectively. The
jacobian of the function f = h+ ḡ is given by Jf (z) = |h′(z)|2 − |g′(z)|2. Accord-
ing to Lewy’s theorem every harmonic function f = h+ ḡ is locally univalent and
sense preserving in D is that |h′(z)|2 > |g′(z)|2, z ∈ D. For detail study one may
refer to Clunie and Sheil-Small [5], Duren [7],(see also [1, 2, 8, 15, 18]).

Further, we denote SH the class of function f = h + ḡ which are harmonic,
univalent and sense-preserving in the open unit disc U = {z : |z| < 1} for which
f(0) = fz(0)− 1 = 0.

If f = h+ ḡ ∈ SH then h and g are of the form

h(z) = z +

∞∑
k=2

akz
k and g(z) =

∞∑
k=1

bkz
k, |b1| < 1. (1.1)
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It is worthy to note that for g(z) = 0 the class SH reduced to the class S of
analytic univalent functions. For this class f(z) can be written as

f(z) = z +
∞∑
k=2

akz
k. (1.2)

The following definitions of fractional derivatives are given by Owa [12] and
Srivastwa and Owa [21]

Definition 1.1. The fractional derivative of order λ is defined for a function f(z)
by

Dλ
z f(z) =

1

Γ(1− λ)

d

dz

∫ z

0

f(ξ)

(z − ξ)λ
dξ, (1.3)

where 0 ≤ λ < 1, f(z) is an analytic function in a simply-connected region of the z
plane containing the origin and the multiplicity of (z−ξ)−λ is removed by requiring
log(z − ξ) to be real when (z − ξ) > 0.

Definition 1.2. Under the hypothesis of Definition 1.1, the fractional derivative
of order n+ λ is defined for a function f(z) by

Dn+λ
z f(z) =

dn

dzn
Dλ

z f(z),

where 0 ≤ λ < 1 and n ∈ N0 = {0, 1, 2, 3, ...}.

Using the Definition 1.1 and 1.2, Owa and Srivastava [13] introduced the
following fractional calculus operator
Ωλ : A −→ A, which is defined as Ωλf(z) = Γ(2 − λ)zλDλ

z f(z), (λ ̸= 2, 3, ...),
where A denotes the class of functions f of the form (1.2) which are analytic in
U.

Recently, it has come to know that the concept of q-calculus is widely used
in Geometric function theory. By using the definition of q- calculus various new
subclasses of analytic and harmonic univalent functions were investigated by sev-
eral researchers. In this direction noteworthy contribution may be found in [3],
[11] and [16].

The concept of q-calculus were initially introduced by Jackson [9] (see also
[4]). They defined the q-number for k ∈ N in the following way

[k]q =
1− qk

1− q
, 0 ≤ q < 1. (1.4)

It is easy to see that [k]q can be represented as a geometric series in the

following way [k]q =
∑k−1

i=0 qi.
Obviously, limk→−∞[k]q =

1
1−q and limq→−1[k]q = k.

The q-derivative for a function f is defined as

Dq(f(z)) =
f(qz)− f(z)

(q − 1)z
, q ̸= 1, z ̸= 0
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and Dq(f(0)) = f ′(0), provided f ′(0) exists.
If we take the function h(z) = zk then the q- derivative of h(z) is defined as

Dq(h(z)) = Dq(z
k) = 1−qk

1−q z
k−1 = [k]qz

k−1.

Then limq→1Dq(h(z)) = limq→1[k]q(z
k−1) = kzk−1 = h′(z)

where h′ is the ordinary derivative
Now, we define the subclass SH(α, λ, µ, q) of SH consisting of functions f of

the form (1.1) satisfying the following condition

ℜ

{
z[Dq(Ω

λh(z))]− zDq(Ωλg(z))

µ(z[Dq(Ω
λh(z))]− z[Dq(Ωλg(z))]) + (1− µ){Ωλh(z) + Ωλg(z)}

}
≥ α (1.5)

where 0 ≤ α < 1, 0 ≤ µ < 1, 0 ≤ λ < 1, 0 < q < 1.
Next, we define TSH(α, λ, µ, q) be the subclass of

SH(α, λ, µ, q) for which f(z) = h(z) + g(z), where h(z) and g(z) are of the form

h(z) = z −
∞∑
k=2

|ak|zk, g(z) =
∞∑
k=1

|bk|zk, |b1| < 1. (1.6)

It should be worthy to note that for specific values of α, µ, λ, q on the sub-
classes SH(α, λ, µ, q) and TSH(α, λ, µ, q), we obtain the following known sub-
classes of SH studied earlier by various researchers.

1. SH(α, λ, µ, 1) ≡ SH(α, λ, µ) and
TSH(α, λ, µ, 1) ≡ TSH(α, λ, µ) studied by Porwal and Kanaujia [17].

2. SH(α, λ, 0, 1) ≡ SH(α, λ) and TSH(α, λ, 0, 1) ≡ TSH(α, λ) studied by Dixit
and Porwal [6].

3. SH(α, 0, µ, 1) ≡ SH(α, µ) and TSH(α, 0, µ, 1) ≡ TSH(α, µ) studied by Öztürk
et.al. [14].

4. SH(α, 0, 0, 1) ≡ S∗
H(α, ) and TSH(α, 0, 0, 1) ≡ TS∗

H(α) studied by Jahangiri
[10].

5. SH(0, 0, 0, 1) ≡ S∗
H and TSH(0, 0, 0, 1) ≡ TS∗

H studied by Slverman [19],
Silverman and Silvia [20].

In the present paper, we obtain coefficient inequality, extreme points, distor-
tion bounds, covering results, convolution condition and convex combination for
the class TSH(α, λ, µ, q). Finally, we discuss a class preserving integral operator
and q- Jackson type integral operator for this class.

2 Main results

In our first theorem, we give a sufficient coefficient bound for function in the
class SH(α, λ, µ, q).
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Theorem 2.1. Let f = h+g be such that h and g are given by (1.1). Furthermore
let

∞∑
k=2

[k]q(1− αµ)− α(1− µ)

1− α
ϕ(k, λ)|ak|+

∞∑
k=1

[k]q(1− αµ) + α(1− µ)

1− α
ϕ(k, λ)|bk| ≤ 1.

(2.1)

where 0 ≤ α < 1, 0 ≤ µ < 1, 0 ≤ λ < 1, 0 < q < 1 and

ϕ(k, λ) =
Γ(k + 1)Γ(2− λ)

Γ(k + 1− λ)

Then f is sense-preserving, harmonic univalent in U and f ∈ SH(α, λ, µ, q).

Proof. First we note that f is locally univalent and sense-preserving in U . This
is because

|h′(z)| ≥ 1−
∞∑
k=2

k|ak|rk−1

> 1−
∞∑
k=2

k|ak|

≥ 1−
∞∑
k=2

[k]q(1− αµ)− α(1− µ)

1− α
ϕ(k, λ)|ak|

≥
∞∑
k=1

[k]q(1− αµ) + α(1− µ)

1− α
ϕ(k, λ)|bk|

≥
∞∑
k=1

k|bk|

>
∞∑
k=1

k|bk|rk−1

≥ |g′(z)|.

To Show that f is univalent in U , suppose that z1, z2 ∈ U such that z1 ̸= z2 then∣∣∣∣f(z1)− f(z2)

h(z1)− h(z2)

∣∣∣∣ ≥ 1−
∣∣∣∣ g(z1)− g(z2)

h(z1)− h(z2)

∣∣∣∣ =
∣∣∣∣∣ 1−

∑k=∞
k=1 bk(z

k
1 − zk2 )

z1 − z2 +
∑k=∞

k=2 ak(z
k
1 − zk2 )

∣∣∣∣∣
> 1−

∑k=∞
k=1 k|bk|

1−
∑k=∞

k=2 k|ak|
≥

1−
∑k=∞

k=1
[k]q(1−αµ)+α(1−µ)

1−α ϕ(k, λ)|bk|

1−
∑k=∞

k=2
[k]q(1−αµ)−α(1−µ)

1−α ϕ(k, λ)|ak|
≥ 0.

Now, we show that f ∈ SH(α, λ, µ, q), using the fact that ℜ{w} ≥ α, if and only
if, |1− α+ w| ≥ |1 + α− w| it suffices to show that

|A(z) + (1− α)B(z)| − |A(z)− (1 + α)B(z)| ≥ 0, (2.2)
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where A(z) = z[Dq(Ω
λh(z))]− z[Dq(Ωλg(z))] and

B(z) = µz[Dq(Ω
λh(z))]− z[Dq(Ωλg(z))] + (1− µ){Ωλh(z) + Ωλg(z)}.

Substituting the values of A(z) and B(z) in L.H.S. of (2.2) and performing the
simple calculation, we obtain

= |(2− α)z +
∞∑
k=2

[k]q + (1− α)µ[k]q + (1− α)(1− µ)ϕ(k, λ)akz
k

| −
∞∑
k=1

[k]q − (1− α)µ[k]q − (1− α)(1− µ)ϕ(k, λ)bkz
k|

| − αz +
∞∑
k=2

[k]q − (1− α)µ[k]q − (1− α)(1− µ)ϕ(k, λ)akz
k|

| −
∞∑
k=1

[k]q − (1− α)µ[k]q + (1− α)(1− µ)ϕ(k, λ)bkz
k|

≥ 2(1− α)|z|
[
1−

k=∞∑
k=2

{ [k]q(1− αµ)− α(1− µ)

1− α
}ϕ(k, λ)|ak||z|k−1

−
∞∑
k=1

{ [k]q(1− αµ) + α(1− µ)

1− α
}ϕ(k, λ)|bk||z|k−1

]

> 2(1− α)|z|
[
1−

k=∞∑
k=2

{ [k]q(1− αµ)− α(1− µ)

1− α
}ϕ(k, λ)|ak|

−
k=∞∑
k=1

{ [k]q(1− αµ) + α(1− µ)

1− α
}ϕ(k, λ)|bk|

]
≥ 0, (Using (2.1)).

The coefficient bound given by (2.1) is sharp because equality holds for the
following functions

f(z) = z +

∞∑
k=2

{ 1− α

[k]q(1− αµ)− α(1− µ)}ϕ(k, λ)
xkz

k

+

∞∑
k=1

1− α

{[k]q(1− αµ) + α(1− µ)}ϕ(k, λ)
ykzk,

where
∞∑
k=2

|xk|+
∞∑
k=1

|yk| = 1.

This completes the proof of Theorem 2.1.

In our next theorem, we prove that the condition (2.1) is also necessary for
the function f = h+ g, where h and g are of the form (1.6).
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Theorem 2.2. Let the function f = h+g be such that h and g are given by (1.6).
Then f ∈ SH(α, λ, µ, q), if and only if

∞∑
k=2

{[k]q(1− αµ)− α(1− µ)}ϕ(k, λ)|ak|

+

∞∑
k=1

{[k]q(1− αµ) + α(1− µ)}ϕ(k, λ)|bk| ≤ 1− α, (2.3)

where 0 ≤ α < 1, 0 ≤ µ < 1, 0 ≤ λ < 1, 0 < q < 1 and

ϕ(k, λ) =
Γ(k + 1)Γ(2− λ)

Γ(k + 1− λ)
.

Proof. Since TSH(α, λ, µ, q) ⊂ SH(α, λ, µ, q) this gives the if part of the theorem.
To this end, for function f of the form (1.6), we notice that the condition

ℜ

{
z[Dq(Ω

λh(z))]− zDq(Ωλg(z))

µ(z[Dq(Ω
λh(z))]− z[Dq(Ωλg(z))]) + (1− µ){Ωλh(z) + Ωλg(z)}

}
≥ α

is equivalent to

ℜ



(1− α)z −
∞∑

k=2

{[k]q + (1− αµ)− α(1− µ)}ϕ(k, λ)|ak|zk

−
∞∑

k=1

{[k]q(1− αµ) + α(1− µ)}ϕ(k, λ)|bk|z̄k

z −
∞∑

k=2

{[k]qµ+ (1− µ)}ϕ(k, λ)|ak|zk

−
∞∑

k=1

{[k]qµ− (1− µ)}ϕ(k, λ)|bk|z̄k



≥ α.

The above condition must holds for all values of z, |z| = r < 1. Upon choosing
the values of z on the positive real axis where 0 ≤ z = r < 1, we must have

(1− α)−
∞∑
k=2

{[k]q + (1− αµ)− α(1− µ)}ϕ(k, λ)|ak|rk−1

−
∞∑
k=1

{[k]q(1− αµ) + α(1− µ)}ϕ(k, λ)|bk|rk−1

1−
∞∑
k=2

{[k]qµ+ (1− µ)}ϕ(k, λ)|ak|rk−1

−
∞∑
k=1

{[k]qµ− (1− µ)}ϕ(k, λ)|bk|rk−1



≥ 0 (2.4)

If the condition (2.3) does not hold then the numerator in (2.4) is negative for r
sufficiently close to 1.Thus there exists a z0 = r0 in (0, 1) for which the quotient in
(2.4) is negative. This contradicts the required condition for f ∈ TSH(α, λ, µ, q)
and so the proof is complete.
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Next, we determine the extreme points of closed convex hulls of TSH(α, λ, µ, q)
denoted by clcoTSH(α, λ, µ, q).

Theorem 2.3. If f ∈ clcoTSH(α, λ, µ, q), if and only if

f(z) =

∞∑
k=1

{xkhk(z)) + ykgk(z)} (2.5)

where h1(z) = z

hk(z) = z − 1− α

{[k]q(1− αµ)− α(1− µ)}ϕ(k, λ)
zk, (k = 2, 3, 4, ...)

gk(z) = z +
1− α

{[k]q(1− αµ) + α(1− µ)}ϕ(k, λ)
z̄k, (k = 1, 2, 3, ...),

xk ≥ 0, yk ≥ 0,
∞∑
k=1

(xk + yk) = 1.

In particular, the extreme points of TSH(α, λ, µ, q) are {hk} and {gk}.

Proof. For function f of the form (2.5), we have
f(z) =

∑∞
k=1{xkhk(z)) + ykgk(z)}

=
∞∑
k=1

(xk + yk)z −
∞∑
k=2

1− α

{[k]q(1− αµ)− α(1− µ)}ϕ(k, λ)
xkz

k

+

∞∑
k=1

1− α

{[k]q(1− αµ) + α(1− µ)}ϕ(k, λ)
ykz̄

k,

Then

∞∑
k=2

[k]q(1− αµ)− α(1− µ)

1− α
ϕ(k, λ)

{
1− α

[[k]q(1− αµ)− α(1− µ)]ϕ(k, λ)

}
xk

+

∞∑
k=1

[k]q(1− αµ) + α(1− µ)

1− α
ϕ(k, λ)

{
1− α

[[k]q(1− αµ) + α(1− µ)]ϕ(k, λ)

}
yk

=

∞∑
k=1

xk +

∞∑
k=2

yk = 1− x1 ≤ 1

and so f ∈ clcoTSH(α, λ, µ, q).
Conversely, suppose that f ∈ clcoTSH(α, λ, µ, q). Set

xk =
k(1− αµ)− α(1− µ)

1− α
ϕ(k, λ)|ak|, (k = 2, 3, 4...)

yk =
{k(1− αµ) + α(1− µ)}

1− α
ϕ(k, λ)|bk|, (k = 1, 2, 3, ...).
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then from Theorem 2.2, we have 0 ≤ xk ≤ 1(k = 2, 3, 4, ...) and 0 ≤ yk ≤ 1(k =
2, 3, 4, ...), we define

x1 = 1−
∞∑
k=2

xk −
∞∑
k=1

yk

and note that by Theorem 2.2, x1 ≥ 0. Consequently, we obtain

f(z) =
∞∑
k=1

{xkhk(z)) + ykgk(z)}

as required.

In our next theorem, we obtain the bounds for function in TSH(α, λ, µ, q)
which yields a covering results for this class.

Theorem 2.4. Let f ∈ TSH(α, λ, µ, q) then

|f(z)| ≤ (1 + |b1|)r +
(

1− α

1 + q − α(1 + qµ)
− 1 + α(1− 2µ)

1 + q − α(1 + qµ)
|b1|

)
2− λ

2
r2

and

|f(z)| ≥ (1− |b1|)r −
(

1− α

1 + q − α(1 + qµ)
− 1 + α(1− 2µ)

1 + q − α(1 + qµ)
|b1|

)
2− λ

2
r2|z|

= r < 1.

Proof. We only prove the right hand inequality. The proof for left hand inequality
is similar and will be omitted. Let f ∈ TSh(α, λ, µ, q). Then taking the absolute
value of f we have

|f(z)| ≤ (1 + |b1|)r +
∞∑
k=2

(|ak|+ |bk|)r2

= (1 + |b1|)r +
1− α

{1 + q − α(1 + qµ)}ϕ(2, λ)
×

×
∞∑
k=2

(
{1 + q − α(1 + qµ)}ϕ(2, λ)

1− α
(|ak|+ |bk|)

)
r2

≤ (1 + |b1|)r +
(1− α)(2− λ)

2{1 + q − α(1 + qµ)}

∞∑
k=2

(
{[k]q(1− αµ)− α(1− µ)}

1− α
|ak|+

{[k]q(1− αµ) + α(1− µ)}
1− α

|bk|
)
ϕ(k, λ)r2

≤ (1 + |b1|)r +
(1− α)(2− λ)

2{1 + q − α(1 + qµ)}

(
1− 1 + α(1− 2µ)

1− α
|b1|

)
r2

≤ (1 + |b1|)r +
(

1− α

1 + q − α(1 + qµ)
− 1 + α(1− 2µ)

1 + q − α(1 + qµ)
|b1|

)
2− λ

2
r2.
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The following covering result follows from the left hand inequality of Theorem
2.4.

Corollary 2.5. Let f ∈ TSH(α, λ, µ, q). Then{
w : |w| <

(
1− (1− α)(2− λ)

2 (1 + q − α(1 + qµ))
−
(
1− [1 + α(1− 2µ)] (2− λ)

2(1 + q − α(1 + qµ))

)
|b1|

)}
⊂ f(U).

3 Convolution and convex combination

In this section, we prove that the class TSH(α, λ, µ, q) is closed under convolu-
tion and convex combination. Now, we need the following definition of convolution
of two harmonic functions.

Definition 3.1. Let the function f(z) and F (z) be defined by

f(z) = z −
∞∑
k=2

|ak|zk +
∞∑
k=1

|bk|zk

and

F (z) = z −
∞∑
k=2

|Ak|zk +
∞∑
k=1

|Bk|zk.

Then the convolution of f(z) and F (z) are denoted by f(z) ∗ F (z) and defined by

(f ∗ F )(z) = f(z) ∗ F (z)

(f ∗ F )(z) = z −
∞∑
k=2

|ak||Ak|zk +
∞∑
k=1

|bk||Bk|zk. (3.1)

Using this definition we show that the class TSH(α, λ, µ, q) is closed under
convolution.

Theorem 3.2. For 0 ≤ β ≤ α < 1, let f ∈ TSH(α, λ, µ, q) and F ∈ TSH(β, λ, µ, q).
Then (f ∗ F ) ∈ TSH(α, λ, µ, q) ⊂ TSH(β, λ, µ, q).

Proof. Let f(z) = z−
∑∞

k=2 |ak|zk+
∑∞

k=1 |bk|zk be in TSH(α, λ, µ, q) and F (z) =
z −

∑∞
k=2 |Ak|zk +

∑∞
k=1 |Bk|zk be in TSH(β, λ, µ, q). Then the convolution (f ∗

F )(z) is given by (3.1). To prove that (f ∗ F ) ∈ TSH(α, λ, µ, q), from Theorem
2.2 it is sufficient to show that

∞∑
k=2

{{[k]q(1− αµ)− α(1− µ)}
1− α

}|akAk|ϕ(k, λ)+

∞∑
k=1

{{[k]q(1− αµ) + α(1− µ)}
1− α

|bkBk|ϕ(k, λ)} ≤ 1− α.

Since F ∈ TSH(β, λ, µ, q) then by Theorem 2.2, we obtain |Ak| ≤ 1, and |Bk| ≤ 1
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Now

∞∑
k=2

{[k]q(1− αµ)− α(1− µ)}
1− α

|akAk|ϕ(k, λ)+

∞∑
k=1

{[k]q(1− αµ) + α(1− µ)}
1− α

|bkBk|ϕ(k, λ)

≤
∞∑
k=2

{[k]q(1− αµ)− α(1− µ)}
1− α

|ak|ϕ(k, λ)+

∞∑
k=1

{[k]q(1− αµ) + α(1− µ)}
1− α

|bk|ϕ(k, λ)

≤ 1, since (f)(z) ∈ TSH(α, λ, µ, q).

Therefore (f ∗ F )(z) ∈ TSH(α, λ, µ, q).

In our next theorem, we prove that the class TSH(α, λ, µ, q) is closed under
convex combination.

Theorem 3.3. The class TSH(α, λ, µ, q) is closed under convex combination.

Proof. For α = 1, 2, 3, ... let fi(z) ∈ TSH(α, λ, µ, q) where fi(z) is of the form

fi(z) = z −
∞∑
k=2

|aki |z
k +

∞∑
k=1

|bki |z
k.

Then from Theorem 2.2, we have

∞∑
k=2

{[k]q(1− αµ)− α(1− µ)}
1− α

|aki |ϕ(k, λ)+

∞∑
k=1

{[k]q(1− αµ) + α(1− µ)}
1− α

|bki |ϕ(k, λ) ≤ 1. (3.2)

For
∑∞

i=1 ti = 1, 0 ≤ ti ≤ 1, the convex combination of fi may be written as

∞∑
i=1

tifi(z) = z −
∞∑
k=2

( ∞∑
i=1

ti|aki |
)
zk +

∞∑
k=1

( ∞∑
i=1

ti|bki |
)
zk.

Then by the condition (3.2), we have

∞∑
k=2

{
{[k]q(1− αµ)− α(1− µ)}

1− α

}
(

∞∑
i=1

ti|aki |)ϕ(k, λ)+

∞∑
k=1

{
{[k]q(1− αµ) + α(1− µ)}

1− α

}
(

∞∑
i=1

ti|bki |)ϕ(k, λ)
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=

∞∑
i=1

ti

{ ∞∑
k=2

{{[k]q(1− αµ)− α(1− µ)}
1− α

}|aki |ϕ(k, λ)+

∞∑
k=1

{{[k]q(1− αµ) + α(1− µ)}
1− α

}|bki |ϕ(k, λ)
}

≤
∞∑
i=1

ti ≤ 1.

Then by Theorem 2.2, we have
∑∞

i=1 tifi(z) ∈ TSH(α, λ, µ, q).

4 A family of class preserving integral operators

Definition 4.1. Let f(z) = h(z) + g(z) be defined by (1.1) then F (z) be defined
by the relation

F (z) =
c+ 1

zc

∫ z

0
tc−1h(t)dt+

c+ 1

zc

∫ z

0
tc−1g(t)dt, (c > −1). (4.1)

Theorem 4.2. Let f(z) = h(z) + g(z) ∈ SH be given by (1.6) and f(z) ∈
TSH(α, λ, µ, q) 0 ≤ α < 1, 0 ≤ µ ≤ 1, 0 ≤ λ ≤ 1 and 0 < q < 1. Then
F (z) defined by (4.1) is also in the class TSH(α, λ, µ, q).

Proof. From the representation of (4.1) it follows that

F (z) = z −
∞∑
k=2

c+ 1

c+ k
|ak|zk +

∞∑
k=1

c+ 1

c+ k
|bk|zk. (4.2)

Since f ∈ TSH(α, λ, µ, q), we have

∞∑
k=2

{{[k]q(1− αµ)− α(1− µ)}
1− α

}|ak|ϕ(k, λ)+

∞∑
k=1

{{[k]q(1− αµ) + α(1− µ)}
1− α

}|bk|ϕ(k, λ) ≤ 1.

Now

∞∑
k=2

{{[k]q(1− αµ)− α(1− µ)}
1− α

} c+ 1

c+ k
|ak|ϕ(k, λ)+

∞∑
k=1

{{[k]q(1− αµ) + α(1− µ)}
1− α

} c+ 1

c+ k
|bk|ϕ(k, λ)

≤
∞∑
k=2

{{[k]q(1− αµ)− α(1− µ)}
1− α

}|ak|ϕ(k, λ)+
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∞∑
k=1

{{[k]q(1− αµ) + α(1− µ)}
1− α

}|bk|ϕ(k, λ)

≤ 1.

Then by Theorem 2.2, we have F (z) ∈ TSH(α, λ, µ, q).

Definition 4.3. Let f = h + ḡ be defined by (1.1). Then the q- Jackson type
integral operator Fq : H → H is defined by the relation

Fq(z) =
[c]q
zc+1

∫ z

0
tch(t)dqt+

[c]q
zc+1

∫ z

0
tcg(t)dqt (4.3)

where [c]q is the q- number defined by (1.4) and H is the class of functions of the
form (1.1), which are harmonic in U .

Theorem 4.4. Let f(z) = h(z) + g(z) ∈ SH be given by (1.6) and f(z) ∈
TSH(α, λ, µ, q) where 0 ≤ α < 1, 0 ≤ µ ≤ 1, 0 ≤ λ ≤ 1 and 0 < q < 1.
Then Fq(z) defined by (4.3) is in the class TSH(α, λ, µ, q).

Proof. Let

f(z) = z −
∞∑
k=2

|ak|zk +
∞∑
k=1

|bk|zk. (4.4)

Since f ∈ TSH(α, λ, µ, q), then by Theorem 2.2, we have

∞∑
k=2

{{[k]q(1− αµ)− α(1− µ)}
1− α

}|ak|ϕ(k, λ)+

∞∑
k=1

{{[k]q(1− αµ) + α(1− µ)}
1− α

}|bk|ϕ(k, λ) ≤ 1.

From the representation of (4.3), we have

Fq(z) = z −
∞∑
k=2

[c]q
[k + c+ 1]q

|ak|zk +
∞∑
k=1

[c]q
[k + c+ 1]q

|bk|zk.

since

[k + c+ 1]q − [c]q

=
k+c∑
i=0

qi −
c−1∑
k=0

qi

=
k+c∑
i=c

qi > 0

⇒ [k + c+ 1]q > [c]q ⇒
[c]q

[k + c+ 1]q
< 1.
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Now

∞∑
k=2

[k]q(1− αµ)− α(1− µ)

1− α

[c]q
[c+ k + 1]q

|ak|ϕ(k, λ)+

∞∑
k=1

[k]q(1− αµ) + α(1− µ)

1− α

[c]q
[c+ k + 1]q

|bk|ϕ(k, λ)

≤
∞∑
k=2

[k]q(1− αµ)− α(1− µ)

1− α
|ak|ϕ(k, λ)+

∞∑
k=1

[k]q(1− αµ) + α(1− µ)

1− α
|bk|ϕ(k, λ) ≤ 1.

Therefore, by Theorem 2.2, we have Fq(z) ∈ TSH(α, λ, µ, q).
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