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ON THE MERSENNE AND MERSENNE-LUCAS HYBRID
QUATERNIONS
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Abstract

In this paper, we define Mersenne, Mersenne-Lucas hybrid quaternions.
We give the Binet’s formula, the generating functions, exponential generat-
ing functions and sum formula of these quaternions. We find some relations
between Mersenne-Lucas hybrid quaternions, Jacobsthal hybrid quaternions,
Jacobsthal-Lucas hybrid quaternions and Mersenne hybrid quaternions.
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1 Introduction

Mersenne numbers are named after Marin Mersenne, who studied these num-
bers in the 17th century. Mersenne numbers are denoted by M,, and have the
form M,, = 2" —1 (A000225). The first few terms of the Mersenne sequence are

0,1,3,7,15,31,63,127,255,..., 2" — 1

PRI

The Mersenne numbers {M } > are defined by the following recurrence relation

Mn+2 = 3Mn+1 —2M,
with My = 0 and M; = 1 [1]. The Binet formula of the Mersenne numbers are

defined by the following [1]:
M, =2" —1.

Similarly, the Mersenne-Lucas numbers {m,, } ° , are defined by the following
recurrence relation

My = 3Mp_1 — 2Myy_2 (1)
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with mg = 2 and m; = 3 [11].
The Binet formula for Mersenne- Lucas numbers is defined by [11]

m, = 2" + 1.

Mersenne, Mersenne-Lucas numbers have been studied by many authors and
associated with other number sequences [1, 3, 4, 8, 11, 13, 14].
Moreover, we know well that the Jacobsthal numbers J,, are defined by the
recurrence sequence
Int2 = Jnt1+2Jp, n =0

with the initial conditions Jy = 0 and J; = 1.
Similarly, the Jacobsthal-Lucas numbers are defined by

Jnt+2 = Jnt+1 + 2Jn, n=>0

with the initial conditions jo = 2 and j; = 1.
Additionally, these exists the following relationships between Mersenne, Mersenne-
Lucas, Jacobsthal and Jacobsthal-Lucas. (see [14, 15])

0 = 3J, , if niseven
L 3Jn+2, if nis odd

i) My = Jn , Uf nis even
" Jn¥2, if nis odd
_ 3Jn, if nis even
i) Mn = { Jns if nis odd

Quaternions were first described by Irish mathematician William Rowan Hamil-
ton in 1843 and applied to mathematics in three-dimensional space [5]. Quater-
nions are generalizations of complex numbers and are not commutative.Quaternion
algebra finds its application in fields such as robotics, navigation, computer visu-
alization and animation, apart from mathematics. Quaternions are also vital to
the control systems that guide airplanes and rockets. Quaternions have generally
the following form,

g=a+1ib+ jc+ kd

where, i, j, k are basis quaternions and a, b, ¢, d are real numbers [5].
The product rule for quaternion units is shown in Table 1.

i j k
7 -1 k -9
J —k -1 1
k J —1 -1

Table 1: The multiplication of quaternion units
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Quaternions have been studied by many researchers and have been studied
with other number sequences [7, 9, 10]. Ozdemir introduced the hybrid numbers
and give some properties of these numbers. [6]. The set of hybrid numbers is

K={a+bi+cc+dh :a,bc,decR}

The product rule for hybrid units is shown in Table 2.

. 1 € h

i -1 1—-h e+
€ 1+h 0 —€
h —e—1 | € 1

Table 2: The multiplication of hybrid units

The authors studied hybrid quaternion numbers in their work in [2] and applied
it to many number sequences.

In this paper, we define Mersenne, Mersenne-Lucas hybrid quaternions and
give some properties of them. We prove some theorems about Mersenne, Mersenne-
Lucas hybrid quaternions. In addition, we find Binet formulas, generating func-
tions, exponential generating functions, sum formulas of these numbers.

2 Preliminaries

The Jacobsthal hybrid number, {JH,},7 is defined as
JHy = Jp + Jpi1i + Jpgoe + Jn+3ha n > 0,

where J,, is the nth Jacobsthal number [2].
Similarly, the Jacobsthal-Lucas hybrid number, {jH,}, is defined as

JH, = jn + jny1t + Jni2e + jnysh, n > 0,

where jy, is the nth Jacobsthal-Lucas number [2].
The Mersenne hybrid number, {MH,} ° ; is defined as

MH, = My, + Mpy1i + Mo + Myysh, n > 0,

where M,, is the nth Mersenne number [14].
Let n > 0 be integer, Mersenne-Lucas hybrid numbers {mh,,} forn =0, ... ;00
are defined as,
mhy = My + My 1%+ My 28 + My 3h

where m,, is nth Mersenne-Lucas number [8].
The Binet formulas of the Mersenne, Mersenne-Lucas hybrid numbers as fol-
lows

i) MH, =[2" (1+2i+4e+8h) — (1 +i+e+h)] (see[l4]), (2)
1) mhy, = 2" (14 2i +4e+8h) + (1 +i+ e+ h)] (see[l15]). (3)
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The sum of the {mh,},~, as follows [15].
thk:2mhn+n—2+(n—3)i+(n—5)5+(n—9)h.
k=0

The sum of the {MH,} 7, as follows [14].
> MH,=2MH, - (n+ (n+1)i+ (n+3)e+ (n+7)h). (4)
k=0

By the following identities between the Mersenne hybrid number, Jacobsthal
hyrid numbers and Jacobsthal-Lucas hyrid numbers are provided [14]:

iy MH, + MH, 1 =3(JH, + JHpy1) —2(14+i+e+h), (5)
it) MH, + MH = jH, +jH, 1 —2(14+i+c+h). (6)

By the following identities between Mersenne-Lucas hybrid number, Jacob-
sthal hyrid numbers and Jacobsthal-Lucas hyrid numbers are provided [15]:

i) mhy +mhpy1 =3(JHy + JHp 1) +2(1+i+e+h),
i) mhy +mhp i1 = jH, + jH, 41 + 2+ 3i + be + 5h.

There is a relationship between Mersenne-Lucas hybrid numbers and Mersenne
hyrid numbers [15]:
mhy, =2MH 1 —3MH,,.

3 Mersenne, Mersenne-Lucas hybrid quaternion

In this section, we introduce some properties Mersenne, Mersenne-Lucas hy-
brid quaternion. We find some relations between Mersenne-Lucas hybrid quater-
nion, Jacobsthal hybrid quaternion, Jacobsthal-Lucas hybrid quaternion and
Mersenne hybrid quaternion.

Definition 1. The Mersenne hybrid quaternion is defined as follows:
MHQn = MH, + MHn+1i + MHn+2j + MHn+3k

where i, j, k are quaternion units (see Table 1) and M H,, is nth Mersenne hybrid
number [3].

The Mersenne hybrid quaternion can be written as follows:
MHQn =MQ, + MQ,11i+ MQ,1oe + MQ, 3h

where i, e, h are hybrid units(see Table 2) and M @,, is nth the Mersenne quater-
nion number [3], which is defined by

MQn =M, + iMn+1 + jMn+2 + k?MnJrSh-
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Definition 2. The Mersenne-Lucas hybrid quaternion is defined as follows:
mhqn = mhn + mthrli + mhn+2j + mhn+3k

where 1,1, k are quaternion unit and mh,, is nth the Mersenne-Lucas hybrid num-
ber [3].

The Mersenne-Lucas hybrid quaternion can be written as follows:
mhq, = Mm@y, + Mgy 10+ MGy 498 + MGy 3h

where 4, €, h are hybrid unit and mg,, is nth the Mersenne-Lucas quaternion num-

ber [3], which is defined by
mq, = My + iMpt1 + JMpt2 + kMpys
We will use the Definition 1 and Definition 2 in this study.

Theorem 1. The Binet’s formula of the Mersenne and Mersenne-Lucas hybrid
quaternion are defined by

a. MHQ, = 2" 22 — 11,
b. mhq, = 2"22 + 11,

where

2=1+2i+4j+8k, 2=1+ 2i+4e + 8h,
T=1+i+j+k l=1+i+te+h

Proof. By using Eq. (2), we have
a. MHQ, = MH,, + MH+1i+ MH, 25+ MH, 3k
= [2" (1 +2i + 4 4+ 8h) — (1 +i +e + h)]
+ 2" (14+2i+4e+8h) — (14 i+e+h)]i
+[2"2 (14 2i +4c+8h) — (L+i+e+h)]j
+ 2" (1+2i+4e+8h) — (1 +i+e+h)k
=(2"2-1D+ (2"2-1)i+ (272 1)+ (2"7°2 - 1)k
=2M2 — 142" — 154+ 274225 — 1 j 4+ 2732k — 1k
=2"2(14+2i+4j+8k)—1(1+i+j+k)
=2"22 —11.
Thus, the proof is completed.
The proof of b is done similarly to a. O

Theorem 2. The recurrence relation of the Mersenne, Mersenne-Lucas hybrid
quaternion as follows:

thn+2 = 3thn+1 - 2thn

forn > 0.
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Proof. We will use Eq. (1) for the proof. We have

mhgq,, o = mhq, o +mhq,  3i +mhq, 4j + mhq, sk
= 3mhpt1 — 2mhy, + (3mhyio — 2mhpg1) @
+ (B3mhpts — 2mhpi2) j + (3mhpia — 2mhy,43)k
= 3(mh,, 1 +mhyy2i +mhpysj +mhyyak)
— 2(mhy, + mhypy1t + mhpioj + mhpi3j)
= 3mhqp+1 — 2mhqy.

Thus, the proof is completed.
O

Theorem 3. The generating functions of the Mersenne, Mersenne-Lucas hybrid
quaternion are

n=0

1 — 3z — 222 ’
> mhqq + x(mhgq, — 3mhg)
b. hq,x" = .
T;]m n 1 — 3z — 22

Proof. a. Suppose that the generating function of the Mersenne hybrid quaternion
sequence has the form

oo
G(z)= > MHQna"=MHQy+MHQz + MHQy2* + -+ MHQua" + ...
n=0
Then, we have
—32G () = MHQo3x — MHQ 32> — MHQ323 — - — MHQ,3z" " — ...
222G (z) = MHQo2z> + MHQ 22> + MHQy22* + - + MHQ, 222 + ...
It follows that
G(z) (1 -3z —22%) = MHQy +z (MHQ, — 3MHQo)
+2*(MHQy — 3MHQ; +2MHQy)
+ 22 (MHQ3 — 3MHQ +2MHQ,) .
If necessary calculations are taken, the desired will be achieved:

 MHQo+x(MHQ; —3MHQ))
- 1 — 3z — 222

G ()

Thus, the proof is completed. The proof for b is done similarly. O
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Theorem 4. The exponential generating functions of the Mersenne, Mersenne-
Lucas hybrid quaternions are given by

a iMHQ ﬁ—(f e’ —11)¢"
) "nl - ’

2
n=0
> n
b thqn = (75 ex—i—fi)ex
n=0
Proof.
> z™ -, "
n
a ZMHQHH_Z(Q 22 —11) —
n=0 n=0
o oo
o) &
_2 nZ—O n! l n=0 n!
:2§ eQw _lf ex
=(22€"—11)¢"

Thus, the proof is completed.
The proof for b is done similarly. O

Theorem 5. The sum of the Mersenne, Mersenne-Lucas hybrid quaternions are
given by

a. Y MHQy=2MHQ, —n— Ai— Bj - Ck,
k=0

b. thqn = 2mhgy, + (n —2) + A% + B*j + C*k,

k=0
where
IL.n=n+Mn+1)i+n+3)e+(n+7)h,
22.n=n+Mn-1)i+(n—-3)e+(n—-"T)h,
8. A=(n+1)+MHy, B=(n+2)+MHy+MH,
C=(n+3)MHo+ MH; + MH>,

4, AF = (n—l)—mho, B*:(’I’L—Q)—mho—mhl,
C* = (n —3) — mhy — mhy — mhao.

Proof. Let us write

a. Y MHQp=MHQo+MHQy+ MHQy+ -+ MHQ,.
k=0
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So, we deduce

S MHQ), = (MHo+ MHyi+ MHyj + MHsk) + (MH, + MHyi
k=0
+ MQ,,3k)
=(MHo+MH| + -+ MH,)+ (MH{ + -+ MH, )i

From Eq. (4), we have

> MHQy=[2MH, — (n+(n+1)i+ (n+3)e+ (n+7)h)
k=0
+2MHp1—(n+1+(n+2)i+(n+4)e+ (n+8)h) — MHyli
+2MHpy2—(n+24+(n+3)i+(n+5)e+(n+9)h)— MHy— MH,]j
+2MHpy3—(n+34+(n+4)i+(n+6)e+ (n+10)h) — MHy — M H;
—MH,]k
=2(MH,+ MH,1i+ MHy 2j + MHy, 3k) —n+ (—(n+1)i — MHg)

+(—(n+2)— MHy— MH,)j+ (—(n+3) — MHo — MH; — MHy)k

— OMHQ, —n— Ai — Bj — Ck.

Thus, the proof is completed.
Similarly, the proof of b is can be done. O

Theorem 6. The following equation is provided:
MHQp41 =2MHQ, +11.

Proof. From Theorem 1. a, we have

Thus, the proof is completed.

Theorem 7. The following equations are provided:

if n even, MHQn + MHQp1 =3 (JHQ, + JHQ, ;) —2 11,
if n odd, MHQy + MHQus1 = jHQ, + jHQ,,y —2 11,

if n even, mhq,, + mhq, , =3 (JHQ, + JHQ, 1) +2 11,
if n odd, mhgq, +mhq, , =jHQ, +jHQ, ., —211

& O &0
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Proof. a. if n is even , by using Eq.(5), we have

MHQ, + MHQp1 = MHy, + MHypi1i + MHy o + MH sk
FMHypp1 + MHyp i+ MHpypaj + MHyppak
=@B(JHpn+JHp41)—2 1)+ (JHps1+ JHypq2) =21 )i
+(B(JHpy2o+JHpq3)—21)j
+B(JHpy3+ JHpya) —21 )k
= 3JHQ, +3JHQ, . —21(1+i+j+k)
=3(JHQ, +JHQ, ;) —211.

Thus, the proof is completed.
The other options of the theorem can be shown similarly. O

4 Conclusion

In this work, we are discussed the Mersenne and Mersenne-Lucas hybrid
quaternions and their properties. We obtained the Binet’s formula, the generating
functions, exponential generating functions and sum formulas of these numbers.
Additionally, we find some relations between Mersenne-Lucas hybrid quaternion,
Jacobsthal hybrid quaternion, Jacobsthal-Lucas hybrid quaternion and Mersenne
hybrid quaternion.
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