Bulletin of the *Transilvania* University of Braşov Series III: Mathematics and Computer Science, Vol. 4(66), No. 1 - 2024, 101-116 https://doi.org/10.31926/but.mif.2024.4.66.1.7

ON LACUNARY Δ^m -STATISTICAL CONVERGENCE OF TRIPLE SEQUENCE IN INTUITIONISTIC FUZZY NORMED SPACE

Tanweer JALAL¹ and Asif Hussain JAN^{*2}

Abstract

In this study, we define lacunary Δ^m -statistical convergence in the framework of intuitionistic fuzzy normed spaces (IFNS) for triple sequences. We prove several results for lacunary Δ^m -statistical convergence of triple sequence in IFNS. We further established lacunary Δ^m -statistical Cauchy sequences and provided the Cauchy convergence criterion for this novel idea of convergence.

2010 Mathematics Subject Classification: 40A35, 26E50, 40G15, 46S40. Key words: Statistical convergence, Lacunary Δ^m -statistical convergence, Triple Sequence, Intuitionistic fuzzy normed space.

1 Introduction

Fast [11] was first to establish the concept of statistical convergence, which numerous authors have since investigated. Following the publication of Fridy [12, 13], active research on this subject was initiated. Several mathematicians have investigated the features of convergence and statistical convergence and applied them to a variety of fields, including approximation theory [3], finitely additive set functions [2], sequence space [14, 16] and statistical convergence for fuzzy numbers [1, 19].

The notion of fuzziness was provided by Zadeh [25]. A significant number of research publications built on the idea of fuzzy sets/numbers appeared in the literature and has been one of the most active area of research in many branches of sciences. Saadati and Park [20] introduced the concept of intuitionistic fuzzy

¹Department of Mathematics, National Institute of Technology, Hazratbal, Srinagar -190006, Jammu and Kashmir, India, e-mail: tjalal@nitsri.net

^{2*} Corresponding author: Asif Hussain Jan, Department of Mathematics, National Institute of Technology, Hazratbal, Srinagar -190006, Jammu and Kashmir, India, e-mail: asif_06phd20@nitsri.net

normed space. Recently, R. Antal et.al. [1] studied the concept of Δ^m -statistical convergence of double sequence in intuitionistic fuzzy normed space.

Numerous research on difference sequence spaces and their generalisations have been published in literature [7, 8, 9, 10, 23, 24]. B.C.Tripathy et.al. studied a new type of generalized Difference Cesaro Sequence Spaces [23] and new type of difference sequence spaces [24]. A.Esi studied the generalized difference sequence spaces defined by Orlicz functions [7] and strongly generalized difference $[V^{\lambda}, \Delta^m, p]$ -summable sequence spaces defined by a sequence of moduli [8]. Later on, saveral authors studied generalized Δ^m Statistical Convergence in Probabilistic Normed Space [9] and generalized Strongly difference convergent sequences associated with multiplier sequences [10], respectively.

Here is an overview of the current work. We review the foundational definitions of the intuitionistic fuzzy normed space in Section 2. Section 3 presents lacunary Δ^m -statistical convergence in intuitionistic fuzzy normed space, where we established several results that demonstrate how generalised this convergence process is. We further established Lacunary Δ^m -statistical Cauchy sequences and provided the Cauchy convergence criterion for this novel idea of convergence.

2 Definitions and preliminaries

Here we mention some basic definitions of intuitionistic fuzzy normed space and other preliminaries.

Definition 1. [22] A continuous t-norm is the mapping $\otimes : [0,1] \times [0,1] \rightarrow [0,1]$ such that

- $1. \otimes$ is continuous, associative, commutative and with identity 1,
- 2. $a_1 \otimes b_1 \leq a_2 \otimes b_2$ whenever $a_1 \leq a_2$ and $b_1 \leq b_2, \forall a_1, a_2, b_1, b_2 \in [0, 1]$.

Definition 2. [22] A continuous -conorm is the mapping $\odot : [0,1] \times [0,1] \rightarrow [0,1]$ such that

- 1. \odot is continuous, associative, commutative and with identity 0,
- 2. $a_1 \odot b_1 \leq a_2 \odot b_2$ whenever $a_1 \leq a_2$ and $b_1 \leq b_2, \forall a_1, a_2, b_1, b_2 \in [0, 1]$.

Definition 3. [20] An intuitionistic fuzzy normed space (IFNS) is referred to the 5-tuple $(X, \varphi, \vartheta, \otimes, \odot)$ with vector space X, fuzzy sets φ, ϑ on $X \times (0, \infty)$, continuous t-norm \otimes and continuous t-conorm \odot , if for each $y, z \in X$ and s, t > 0, we have

103

Then (φ, ϑ) is known as intuitionistic fuzzy norm.

Definition 4. [20] Let (X, ||o||) be any normed space. For every t > 0 and $y \in X$, take $\varphi = \frac{t}{t+||y||}$, $\vartheta = \frac{||y||}{t+||y||}$. Also, $a \otimes b = ab$ and $a \odot b = \min\{a+b,1\} \forall a, b \in [0,1]$. Then, a 5-tuple $(X, \varphi, \vartheta, \otimes, \odot)$ is an IFNS which satisfies the above mentioned conditions.

Definition 5. [20] Let $(X, \varphi, \vartheta, \otimes, \odot)$ be an IFNS with norm (φ, ϑ) . A sequence $y = (y_k)$ in X is called convergent to some $\xi \in X$ with respect to the intuitionic fuzzy norm (φ, ϑ) if there exists $k_0 \in \mathbb{N}$ for each $\epsilon > 0$ and t > 0 such that $\varphi(yk - \xi, t) > 1 - \epsilon$ and $\vartheta(yk - \xi, t) < \epsilon$ for all $k \ge k_0$. It is denoted by $(\varphi, \vartheta) - \lim_{k \to \infty} y_k = \xi$.

Definition 6. [20] Let $(X, \varphi, \vartheta, \otimes, \odot)$ be an IFNS with norm (φ, ϑ) . A sequence $y = (y_k)$ in X is called convergent to some $\xi \in X$ with respect to the intuitionic fuzzy norm (φ, ϑ) if there exists $k_0 \in \mathbb{N}$ for each $\epsilon > 0$ and t > 0

 $\delta\left(\{k \in \mathbb{N} : \varphi\left(y_k - \xi, t\right) \le 1 - \epsilon \quad or \quad \vartheta\left(y_k - \xi, t\right) \ge \epsilon\}\right) = 0.$ It is denoted by $S^{\varphi, \vartheta} - \lim_{k \to \infty} y_k = \xi.$

A subset E of the set \mathbb{N} of natural numbers is said to have a "natural density" $\delta(E)$ if

$$\delta(E) = \lim_{n} \frac{1}{n} |\{k \le n : k \in E\}|$$

where the vertical bars denote the cardinality of the enclosed set.

The number sequence $x = (x_k)$ is said to be statistically convergent to number l if for each $\epsilon > 0$,

$$\lim_{n} \frac{1}{n} |\{k \le n : |x_k - l| \ge \epsilon\}| = 0$$

and x is said to be statistically cauchy sequence if for every $\epsilon > 0$ there exists a number $N = N(\epsilon)$ such that

$$\lim_{n} \frac{1}{n} |\{k \le n : |x_k - x_N| \ge \epsilon\}| = 0.$$

Definition 7. [20] Let $(X, \varphi, \vartheta, \otimes, \odot)$ be an IFNS with norm (φ, ϑ) . A double sequence $y = (y_{jk})$ in X is called statistically convergent to some $\xi \in X$ with respect to the intuitionic fuzzy norm (φ, ϑ) if there exists $k_0 \in \mathbb{N}$ for each $\epsilon > 0$ and t > 0

$$\delta\left(\{k \in \mathbb{N} : \varphi\left(y_{jk} - \xi, t\right) \le 1 - \epsilon \text{ or } \vartheta\left(y_{jk} - \xi, t\right) \ge \epsilon\}\right) = 0.$$

It is denoted by $S^{(\varphi,\vartheta)} - \lim_{k \to \infty} y_{jk} = \xi$.

The function $X : \mathbb{N} \times \mathbb{N} \to \mathbb{R}(C)$ can be used to define a triple sequence (real or complex), where \mathbb{N}, \mathbb{R} and \mathbb{C} stand for the sets of natural, real, and complex numbers, respectively. At the beginning, Sahiner et al. [21] introduced and studied the many conceptions of triple sequences and their statistical convergence. Triple sequence statistical convergence on probabilistic normed space was recently introduced by Savas and Esi [6], where as statistical convergence of triple sequences in topological groups was later introduced by Esi [5]. For further study on triple sequence spaces, we may refer to [14, 15, 16, 17].

Kizmaz [18] introduced the difference sequence space $Z(\Delta)$ as given below

$$Z(\Delta) = \{ y = (y_k) : (\Delta y_k) \in Z \}$$

for $Z = \ell_{\infty}, c, c_0$ i.e. spaces of all bounded, convergent and null sequences respectively, where $\Delta_y = (\Delta y_k) = (y_k - y_{k+1})$. In particular, $\ell_{\infty}(\Delta), c(\Delta)$ and $c_0(\Delta)$ are also Banach spaces, relative to a norm induced by $||y||_{\Delta} = |y_1| + \sup_k |\Delta y_k|$.

The generalized difference sequence spaces $Z(\Delta^m)$ was introduced by [4] as follows :

$$Z\left(\Delta^{m}\right) = \left\{y = \left(y_{k}\right) : \left(\Delta^{m}y_{k}\right) \in Z\right\}$$

for $Z = \ell_{\infty}, c, c_0$ where $\Delta^m(y) = (\Delta^m y_k) = (\Delta_{m-1}y_k - \Delta_{m-1}y_{k+1})$. So that

$$\Delta^m y_k = \sum_{r=0}^p (-1)^r \begin{pmatrix} m \\ r \end{pmatrix} x_{k+r}.$$

105

The difference operator Δ on triple sequence x_{mnl} is defined as :

 $\Delta_{x_{mnl}} = x_{mnl} - x_{(m+1)nl} - x_{m(n+1)l} - x_{mn(l+1)} = x_{(m+1)(n+1)l} + x_{(m+1)n(l+1)} + x_{m(n+1)(l+1)} - x_{(m+1)(n+1)(l+1)}.$

The generalized difference spaces for triple sequences can be approximated as:

$$Z\left(\Delta^{m}\right) = \left\{y = \left(y_{jkl}\right) : \left(\Delta^{m}y_{jkl}\right) \in Z\right\}$$

for $Z = \ell_{\infty}^3, c^3, c_0^3$ where $\Delta^m(y) == (\Delta^m y_{jkl}) = (\Delta_{m-1} y_{jkl} - \Delta_{m-1} y_{jk,(l+1)})$. So that $\Delta^m y_k = \sum_{r=0}^p (-1)^{r+s+u} \binom{m}{r} \binom{m}{s} \binom{m}{u} x_{j+r,k+s,l+u}$.

Definition 8. [6] The triple sequence $\theta_{j,k,l} = \{(j_r, k_s, l_t)\}$ is called the triple lacunary sequence if there exist three increasing sequences of integers such that

$$\begin{aligned} j_o &= 0, h_r = j_r - j_{r-1} \to \infty \ as \ r \to \infty, \\ k_o &= 0, h_s = k_s - k_{s-1} \to \infty \ as \ s \to \infty, \end{aligned}$$

and

$$I_o = 0, h_t = I_t - I_{t-1} \to \infty \ as \ t \to \infty$$

Let $k_{r,s,t} = j_r k_s I_t$, $h_{r,s,t} = h_r h_s h_t$ and $\theta_{j,k,l}$ is determined by

$$I_{r,s,t} = \{(j,k,l) : j_{r-1} < j \le j_r, k_{s-1} < k \le k_s \text{ and } I_{t-1} < I \le I_t\}$$
$$q_r = \frac{j_r}{j_{r-1}}, q_s = \frac{k_s}{k_{s-1}}, q_t = \frac{l_t}{l_{t-1}} \text{ and } q_{r,s,t} = q_r q_s q_t.$$

Let $K \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$. The number

$$\delta_3^{\theta} = \lim_{r,s,t} \frac{1}{h_{r,s,t}} \left| \{ (j,k,l) \in I_{r,s,t} : (j,k,l) \in K \} \right|$$

is said to be the $\theta_{r,s,t}$ -density of K, provided the limit exists.

3 Triple lacunary Δ^m -statistical convergence in IFNS.

In the context of intuitionistic fuzzy normed spaces for triple sequences, we define Lacunary Δ^m -statistical convergence and establish certain results.

Definition 9. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be a IFNS with norm (φ, ϑ) and $\theta_{j,k,l}$ be a triple lacunary sequence. A triple sequence $y = (y_{jkl})$ in X is called lacunary Δ^m -statistically convergent to some $\xi \in X$ with respect to the intuitionistic fuzzy norm (φ, ϑ) if for each $\epsilon > 0$ and t > 0

$$\delta_3^{\theta}\left(\{(j,k,l)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:\varphi\left(\Delta^m y_{jkl}-\xi,t\right)\leq 1-\epsilon\quad or\quad \vartheta\left(\Delta^m y_{jkl}-\xi,t\right)\geq\epsilon\}\right)=0$$
(1)

or equivalently

$$\delta_3^{\theta}(\{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi(\Delta^m y_{jkl} - \xi, t) > 1 - \epsilon \quad or \quad \vartheta(\Delta^m y_{jkl} - \xi, t) < \epsilon\}) = 1.$$

$$(1^*)$$

In this case, we write $S_{\theta_{j,k,l}}^{\varphi,\vartheta} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$ or $X_{jkl} \xrightarrow{(\varphi,\vartheta)} \xi\left(S_{\theta_{j,k,l}}\right)$ and denote the set of all $S_{\theta_{j,k,l}}$ -convergent triple sequences in the intuitionistic fuzzy normed space by $S_{\theta_{j,k,l}}^{(\varphi,\vartheta)}$.

Definition 10. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be a IFNS with norm (φ, ϑ) and $\theta_{j,k,l}$ be a triple lacunary sequence. A triple sequence $y = (y_{jkl})$ in X is called lacunary Δ^m -statistically Cauchy with respect to the intuitionistic fuzzy norm (φ, ϑ) if there exists $j_0, k_0, l_o \in \mathbb{N}$ for each $\epsilon > 0$ and t > 0 such that for all $j, r \geq j_0, k, s \geq k_0$ and $l, u \geq l_0$, we have

$$\delta_{3}^{\theta}\left(\left\{(j,k,l)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:\varphi\left(\Delta^{m}y_{jkl}-\Delta^{m}y_{rsu},t\right)\leq1-\epsilon\quad or\\ \vartheta\left(\Delta^{m}y_{ikl}-\Delta^{m}y_{rsu},t\right)\geq\epsilon\right\}\right)=0.$$

It is denoted by $S_{jkl}^{\varphi,\vartheta} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi.$

From (1) and (1^*) , we have the following lemma.

Lemma 1. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be an IFNS with norm (φ, ϑ) and $\theta_{j,k,l}$ be a triple lacunary sequence. Then the following statements are equivalent for triple sequence $y = (y_{jkl})$ in X whenever $\epsilon > 0$ and t > 0,

- 1. $S_{\theta_{j,k,l}}^{\varphi,\vartheta} \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi,$
- 2. $\delta_3^{\theta}\left(\{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi\left(\Delta^m y_{jkl} \xi, t\right) > 1 \epsilon\}\right) = \delta_3^{\theta}(\{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \vartheta\left(\Delta^m y_{jkl} \xi, t\right) < \epsilon\}) = 1,$
- 3. $\delta^{\theta}_{3}\left(\left\{(j,k,l)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:\varphi\left(\Delta^{m}y_{jkl}-\xi,t\right)\leq1-\epsilon\right\}\right) = \delta^{\theta}_{3}\left(\left\{(j,k,l)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}: \ \vartheta\left(\Delta^{m}y_{jkl}-\xi,t\right)\geq\epsilon\right\}\right) = 0,$
- $\begin{array}{ll} \text{4. } S_{\theta_{j,k,l}}-\lim_{j,k,l\to\infty}\varphi\left(\Delta^m y_{jkl}-\xi,t\right)=1 \ and \ S_{\theta_{j,k,l}}-\lim_{j,k,l\to\infty}\vartheta\left(\Delta^m y_{jkl}-\xi,t\right)\\ =0. \end{array}$

Theorem 1. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be a IFNS with norm (φ, ϑ) and $\theta_{j,k,l}$ be a triple lacunary sequence. If $S_{\theta_{j,k,l}}^{\varphi,\vartheta} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$, then ξ is unique.

Proof. If possible, let $S_{\theta_{j,k,l}}^{\varphi,\vartheta} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi_1$ and $S_{\theta_{j,k,l}}^{\varphi,\vartheta} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi_2$. For given $\epsilon \in (0,1)$ and t > 0, take $\alpha > 0$ such that $(1-\alpha) \otimes (1-\alpha) > 1-\epsilon$ and $\alpha \odot \alpha < \epsilon$.

Consider

$$\begin{split} K_{1,\varphi}(\alpha,t) &= \{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi\left(\Delta^m y_{jkl} - \xi_1, t/2\right) \le 1 - \alpha\}, \\ K_{2,\varphi}(\alpha,t) &= \{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi\left(\Delta^m y_{jkl} - \xi_2, t/2\right) \le 1 - \alpha\}, \\ K_{3,\vartheta}(\alpha,t) &= \{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \vartheta\left(\Delta^m y_{jkl} - \xi_1, t/2\right) \ge \alpha\}, \\ K_{4,\vartheta}(\alpha,t) &= \{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \vartheta\left(\Delta^m y_{jkl} - \xi_2, t/2\right) \ge \alpha\}. \end{split}$$

Using lemma 3.1, we have

$$\delta_3^{\theta} \left(K_1, \varphi(\alpha, t) \right) = \delta_3^{\theta} \left(K_3, \vartheta(\alpha, t) \right) = 0.$$

$$\delta_3^{\theta} \left(K_2, \varphi(\alpha, t) \right) = \delta_3^{\theta} \left(K_4, \vartheta(\alpha, t) \right) = 0.$$

Let $K_{\varphi,\vartheta}(\alpha,t) = [K_{1,\varphi}(\alpha,t) \bigcup K_{2,\varphi}(\alpha,t)] \bigcap [K_{3,\vartheta}(\alpha,t) \bigcup K_{4,\vartheta}(\alpha,t)]$. Clearly,

$$\delta_3^{\theta} K_{\varphi,\vartheta}(\alpha,t) = 0.$$

Whenever $(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} - K_{\varphi, \vartheta}(\alpha, t)$, we have two possibilities, either $(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} - [K_{1,\varphi}(\alpha, t) \bigcup K_{2,\varphi}(\alpha, t)]$ or $(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} - [K_{3,\vartheta}(\alpha, t) \bigcup K_{4,\vartheta}(\alpha, t)]$.

First, we consider $(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} - [K_{1,\varphi}(\alpha, t) \bigcup K_{2,\varphi}(\alpha, t)]$. Then

$$\varphi\left(\xi_{1}-\xi_{2},t\right) \geq \varphi\left(\Delta^{m}y_{jkl}-\xi_{1},t/2\right) \otimes \varphi\left(\Delta^{m}y_{jkl}-\xi_{2},t/2\right)$$
$$> (1-\alpha) \otimes (1-\alpha)$$
$$> 1-\epsilon.$$

As given $\epsilon \in (0, 1)$ was arbitrary, then $\varphi(\xi_1 - \xi_2, t) = 1$ for all t > 0, then $\xi_1 = \xi_2$. Similarly, if $(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} - [K_{3,\vartheta}(\alpha, t) \bigcup K_{4,\vartheta}(\alpha, t)]$

$$\vartheta \left(\xi_1 - \xi_2, t\right) \le \vartheta \left(\Delta^m y_{jkl} - \xi_1, t/2\right) \odot \vartheta \left(\Delta^m y_{jkl} - \xi_2, t/2\right)$$

< $\alpha \odot \alpha$
< ϵ .

Since $\epsilon \in (0,1)$ was arbitrary, then $\varphi(\xi_1,\xi_2,t) = 0$ for all t > 0, i.e., $\xi_1 = \xi_2$. Therefore $S_{\theta_{j,k,l}}^{\varphi,\vartheta} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$ exists uniquely.

Theorem 2. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be a IFNS with norm (φ, ϑ) and $\theta_{j,k,l}$ be a triple lacunary sequence. If $(\varphi, \vartheta) - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$, then $S^{\varphi,\vartheta}_{\theta_{j,k,l}} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$. But converse may not be true.

Proof. Let $(\varphi, \vartheta) - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$. Then, there exists j_0, k_0 and $l_0 \in \mathbb{N}$ for given $\epsilon > 0$ and any t > 0 such that for all $j \ge j_0, k \ge k_0$ and $l \ge l_0$ we have $\varphi \left(\Delta^m y_{jkl} - \xi, t \right) > 1 - \epsilon$ and $\vartheta \left(\Delta^m y_{jkl} - \xi, t \right) < \epsilon$.

Further, the set $A(\epsilon, t) = \{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi(\Delta^m y_{jkl} - \xi, t) \leq 1 - \epsilon \text{ or } \vartheta(\Delta^m y_{jkl} - \xi, t) \geq \epsilon\}$, contains only finite number of elements. We know that natural density of any finite set is always zero. Therefore, $\delta^{\theta}_{3}(A(\epsilon, t)) = 0$ i.e. $S^{\varphi, \vartheta}_{\theta_{jkl}} - \lim_{j,k,l \to \infty} \Delta^m y_{jkl} = \xi$.

But converse is not true, this can be justified with the example.

Example Let $(\mathbb{R}, ||.||)$ be the real normed space under the usual norm. Define a $\otimes b = ab$ and $a \odot b = \min\{a + b, 1\}$ $\forall a$, $b \in [0, 1]$. Also for every t > 0 and all $y \in \mathbb{R}$, consider $\varphi(y, t) = \frac{t}{t+|y|}$ and $\vartheta(y, t) = \frac{|y|}{t+|y|}$. Then, clearly $(\mathbb{R}, \varphi, \vartheta, \otimes, \odot)$ is an IFNS. Define the sequence

$$\Delta^m x_{jkl} = \begin{cases} jkl, & \text{for } j_r - \left[\left|\sqrt{h_r}\right|\right] + 1 \le j \le j_r \\ & k_s - \left[\left|\sqrt{h_s}\right|\right] + 1 \le k \le k_s \\ & \text{and } l_t - \left[\left|\sqrt{h_t}\right|\right] + 1 \le l \le l_t \\ & \xi, & \text{otherwise.} \end{cases}$$

By given $\epsilon > 0$ and t > 0, we obtain the below set for $\xi = 0$.

$$K(\epsilon, t) = \{ (j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi \left(\Delta^m y_{jkl}, t \right) \le 1 - \epsilon \quad \text{or} \quad \vartheta \left(\Delta^m y_{jkl}, t \right) \ge \epsilon \}$$
$$= \left\{ (j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : |\Delta^m y_{jkl}| \ge \frac{\epsilon t}{1 - \epsilon} > 0 \right\}$$
$$= \{ (j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : |\Delta^m y_{jkl}| = jkl \}$$

$$= \left\{ (j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : |\Delta^m y_{jkl}| \ge \frac{\epsilon t}{1-\epsilon} > 0 \right\}$$
$$= \left\{ (j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : j_r - \left[\left| \sqrt{h_r} \right| \right] + 1 \le j \le j, \\ k_s - \left[\left| \sqrt{h_s} \right| \right] + 1 \le k \le k_s \\ \text{and} \qquad l_t - \left[\left| \sqrt{h_t} \right| \right] + 1 \le l \le l_t \right\}$$

and so, we get

$$\lim_{r,s,t} \frac{1}{h_r,h_s,h_t} \mid \left\{ (j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : j_r - \left[\left| \sqrt{h_r} \right| \right] + 1 \le j \le j_r$$

$$k_s - \left[\left| \sqrt{h_s} \right| \right] + 1 \le k \le k_s$$
and
$$l_t - \left[\left| \sqrt{h_t} \right| \right] + 1 \le l \le l_t \right\}$$

$$\le \lim_{r,s,t} \frac{\sqrt{h_r} \sqrt{h_s} \sqrt{h_t}}{h_r h_s h_t} = 0.$$

Hence $S_{\theta_{j,k,l}}^{\varphi,\vartheta} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = 0.$

By the above defined sequence $(\Delta^m y_{jkl})$, we get

$$\varphi\left(\Delta^{m} x_{jkl}, t\right) = \begin{cases} \frac{t}{t+|jkl|}, & \text{for } r-\left[\left|\sqrt{h_{r}}\right|\right] + 1 \leq j \leq j_{r} \\ k_{s} - \left[\left|\sqrt{h_{s}}\right|\right] + 1 \leq k \leq k_{s} \\ & \text{and } l_{t} - \left[\left|\sqrt{h_{t}}\right|\right] + 1 \leq l \leq l_{t} \\ 0, & \text{otherwise.} \end{cases}$$

i.e $\varphi(\Delta^m x_{jkl}, t) \leq 1, \quad \forall j, k, l.$

and

$$\vartheta\left(\Delta^m x_{jkl}, t\right) = \begin{cases} \frac{|jkl|}{t+|jkl|}, & \text{for } j_r - \left[\left|\sqrt{h_r}\right|\right] + 1 \le j \le j_r, \\ k_s - \left[\left|\sqrt{h_s}\right|\right] + 1 \le k \le k_s \\ & \text{and } l_t - \left[\left|\sqrt{h_t}\right|\right|\right] + 1 \le l \le l_t \\ 0, & \text{otherwise.} \end{cases}$$

$$\begin{split} &\text{i.e } \vartheta \left(\Delta^m x_{jkl}, t \right) \geq 0, \quad \forall j,k,l. \\ &\text{This shows that } (\varphi, \vartheta) - \lim_{j,k,l \to \infty} \Delta^m y_{jkl} \neq 0. \end{split}$$

Theorem 3. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be a IFNS with norm (φ, ϑ) and $\theta_{j,k,l}$ be a triple lacunary sequence. Then $S_{\theta_{j,k,l}}^{\varphi,\vartheta} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi \iff$ there exists a set $P = \{(j_a, k_b, l_c) : a, b, c = 1, 2, 3, \ldots\} \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ such that $\delta(P) = 1$ and $(\varphi, \vartheta) - \lim_{j_a, k_b, l_c \to \infty} \Delta^m y_{j_a k_b l_c} = \xi.$

109

Proof. Assume that $S_{\theta_{j,k,l}}^{\varphi,\vartheta} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$. For t > 0 and $\alpha \in \mathbb{N}$, we take $M(\alpha,t) = \{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi(\Delta^m y_{jkl} - \xi, t > 1 - 1/\alpha \text{ and } \vartheta(\Delta^m y_{jkl} - \xi, t) < 1/\alpha\},$

and

$$K(\alpha, t) = \{ (j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi \left(\Delta^m y_{jkl} - \xi, t \right) \le 1 - 1/\alpha \text{ or } \vartheta \left(\Delta^m y_{jkl} - \xi, t \right) \ge 1/\alpha \}.$$

As $S^{\varphi, \vartheta}_{\theta_{j,k,l}} - \lim_{j,k,l \to \infty} \Delta^m y_{jkl} = \xi$, then $\delta_3(K(\alpha, t)) = 0$.

Also, for any t > 0 and $\alpha \in \mathbb{N}$, evidently we get $M(\alpha, t) \supset M(\alpha + 1, t)$, and

$$\delta_3(M(\alpha, t)) = 1, \tag{3.1}$$

For $(j,k,l) \in M(\alpha,t)$, we prove $(\varphi,\vartheta) - \lim_{j_a,k_b,l_c \to \infty} \Delta^m y_{j_ak_bl_c} = \xi$.

On the contrary, suppose that triple sequence $y = (y_{jkl})$ is not Δ^m -convergent to ξ for all $(j, k, l) \in M(\alpha, t)$. So, there exists some $\alpha > 0$ and $k_0 \in \mathbb{N}$ such that

$$\varphi \left(\Delta^m y_{jkl} - \xi, t \right) \le 1 - \rho \text{ or } \vartheta \left(\Delta^m y_{jkl} - \xi, t \right) \ge \rho \} \text{ for all } j, k, l \ge k_0$$

$$\Longrightarrow \varphi \left(\Delta^m y_{jkl} - \xi, t \right) \ge 1 - \rho \text{ and } \vartheta \left(\Delta^m y_{jkl} - \xi, t \right) \le \rho \} \text{ for all } j, k, l \ge k_0$$

Therefore,

 $\delta_3\left(\{(j,k,l)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:\varphi\left(\Delta^m y_{jkl}-\xi,t\right)\geq 1-\rho \text{ and } \vartheta\left(\Delta^m y_{jkl}-\xi,t\right)\leq\rho\}\}\right)\\=0$

i.e. $\delta_3(M(\rho, t)) = 0$. Since $\rho > 1/\alpha$, then $\delta_3(M(\alpha, t)) = 0$ as $M(\alpha, t) \subset M(\rho, t)$, which is a contradiction to (3.1). This shows that there exists a set $M(\alpha, t)$ for which $\delta_3(M(\alpha, t)) = 1$ and the triple sequence $y = (y_{jkl})$ is statistically Δ^m convergent to ξ .

Conversely, suppose there exists a subset

 $P = \{(j_a, k_b, l_c) : a, b, c = 1, 2, 3, ...\} \subseteq \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ with $\delta_3(P) = 1$ and $(\varphi, \vartheta) - \lim_{j_a, k_b, l_c \to \infty} \Delta^m y_{j_a k_b l_c} = \xi$. i.e. for given $\rho > 0$ and any t > 0 we have $N_0 \in \mathbb{N}$, which gives

$$\varphi\left(\Delta^m y_{jkl} - \xi, t\right) > 1 - \rho$$

and

$$\vartheta \left(\Delta^m y_{jkl} - \xi, t \right) < \rho \text{ for all } j, k, l \ge N_0.$$

Now, let

$$K(\rho, t) = \{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi(\Delta^m y_{jkl} - \xi, t) \le 1 - \rho \text{ or } \vartheta(\Delta^m y_{jkl} - \xi, t) \ge \rho\}.$$

Then,

$$\begin{split} K(\rho,t) &\subseteq \mathbb{N} - \{ \left(j_{N_0+1}, k_{N_0+1}, l_{N_0+1} \right), \ldots \} \text{. As } \delta_3(P) = 1 \Longrightarrow \delta_3(K(\alpha,t)) \leq 0. \\ \text{Hence, } S^{\varphi,\vartheta}_{\theta_{j,k,l}} - \lim_{j,k,l \to \infty} \Delta^m y_{jkl} = \xi. \end{split}$$

Theorem 4. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be a IFNS with norm (φ, ϑ) and $\theta_{j,k,l}$ be a triple lacunary sequence. Let $y = (y_{jkl})$ be any triple sequence. Then $S_{\theta_{j,k,l}}^{\varphi,\vartheta} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi \iff$ there is a triple sequence $x = (x_{jkl})$ such that $(\varphi, \vartheta) - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$ and $\delta_3\left(\{(j,k,l)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:\Delta^m y_{jkl}=\Delta^m x_{jkl}\}\right) = 1$ Proof. Assume that $S_{\theta_{j,k,l}}^{\varphi,\vartheta} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$. By Theorem (3.3), we set

 $P = \{(j_a, k_b, l_c) : a, b, c = 1, 2, 3, \ldots\} \subseteq \mathbb{N} \times \mathbb{N} \times \mathbb{N} \text{ with } \delta_3(P) = 1 \text{ and } (\varphi, \vartheta) - \lim_{j,k,l \to \infty} \Delta^m y_{j_a k_b l_c} = \xi.$

Consider the sequence

$$\Delta^m x_{jkl} = \begin{cases} \Delta^m y_{jkl}, & (j,k,l) \in P\\ \xi, & \text{otherwise,} \end{cases}$$

which gives the required result.

Conversely, consider $x = (x_{jkl})$ and $z = (z_{jkl})$ in X with the property (φ, ϑ) lim_{j,k,l \to \infty} $\Delta^m y_{jkl} = \xi$ and $\delta_3 (\{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \Delta^m y_{jkl} = \Delta^m x_{jkl}\}) = 1$. Then for each $\epsilon > 0$ and t > 0, $\{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi (\Delta^m y_{jkl} - \xi, t) \leq 1 - \epsilon$ or $\vartheta (\Delta^m y_{jkl} - \xi, t) \geq \epsilon\} \subseteq A \cup B$, where

 $A = \{ (j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi \left(\Delta^m y_{jkl} - \xi, t \right) \le 1 - \epsilon \text{ or } \vartheta \left(\Delta^m y_{jkl} - \xi, t \right) \ge \epsilon \}; \\ B = \{ (j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \left(\Delta^m y_{jkl} \neq \Delta^m x_{jkl} \right) \}.$

Since $(\varphi, \vartheta) - \lim_{j,k,l\to\infty} \Delta^m y_{j_ak_bl_c} = \xi$ then the set A contains at most finitely many terms. Also $\delta_3(B) = 0$ as $\delta_3(B^c) = 1$ where

$$B^{c} = \{(j,k,l)\mathbb{N} \times \mathbb{N} \times \mathbb{N} : \Delta^{m} y_{jkl} = \Delta^{m} x_{jkl} \}.$$

Therefore

$$\delta_{3} \{ (j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi \left(\Delta^{m} y_{jkl} - \xi, t \right) \leq 1 - \epsilon \text{ or } \vartheta \left(\Delta^{m} y_{jkl} - \xi, t \right) \geq \epsilon \}.$$
We get $S_{\theta_{j,k,l}}^{\varphi,\vartheta} - \lim_{j,k,l \to \infty} \Delta^{m} y_{jkl} = \xi.$

Theorem 5. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be a IFNS with norm (φ, ϑ) and $\theta_{j,k,l}$ be a triple lacunary sequence. Let $y = (y_{jkl})$ be any triple sequence. Then $S_{\theta_{j,k,l}}^{\varphi,\vartheta} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi \iff$ there exists two triple sequence $z = (z_{jkl})$ and $x = (x_{jkl})$ in X such that $\Delta^m y_{jkl} = \Delta^m z_{jkl} + \Delta^m x_{jkl}$ for all $(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ where $(\varphi, \vartheta) - \lim_{j,k,l\to\infty} \Delta^m y_{jakblc} = \xi$ and $S_{\theta_{j,k,l}}^{\varphi,\vartheta} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$.

Proof. Assume that $S_{\theta_{j,k,l}^{\varphi},\vartheta} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$. By Theorem (3.3), we set $P = \{(j_a, k_b, l_c) : a, b, c = 1, 2, 3, \ldots\} \subseteq \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ wit $\delta_3(P) = 1$ and $(\varphi, \vartheta) - \lim_{j,k,l\to\infty} \Delta^m y_{ja} k_b l_c = \xi$.

Consider two triple sequences $z = (z_{jkl})$ and $x = (x_{jkl})$, then

$$\Delta^m z_{jkl} = \begin{cases} \Delta^m y_{jkl}, & (j,k,l) \in P\\ \xi, & \text{otherwise.} \end{cases}$$

and

$$\Delta^m x_{jkl} = \begin{cases} 0, & (j,k,l) \in P\\ \Delta^m y_{jkl} - \xi, & \text{otherwise,} \end{cases}$$

which gives the required result.

Conversely, consider $x = (x_{jkl})$ and $z = (z_{jkl})$ in X with $\Delta^m y_{jkl} = \Delta^m z_{jkl} + \Delta^m x_{jkl}$ for all $(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ where $(\varphi, \vartheta) - \lim_{j,k,l \to \infty} \Delta^m y_{jkl} = \xi$ and $S^{\varphi,\vartheta}_{\theta_{j,k,l}} - \lim_{j,k,l \to \infty} \Delta^m y_{jkl} = \xi$. Then we get result using Theorem (3.4) and Theorem (3.5).

Theorem 6. A triple sequence $y = (y_{jkl})$ in IFNS $(X, \varphi, \vartheta, \otimes, \odot)$ is lacurary Δ^m_{-} statistically convergent with respect to (φ, ϑ) if and only if it is lacunary Δ^m -statistically Cauchy with respect to (φ, ϑ) .

Proof. Let $S_{\theta_{j,k,l}}^{\varphi,\vartheta} - \lim_{j,k,l\to\infty} \Delta^m y_{jkl} = \xi$. Then, for each $\epsilon > 0$ and t > 0, take $\alpha > 0$ such that $(1-\alpha) \otimes (1-\alpha) > 1-\epsilon$ and $\alpha \odot \alpha < \epsilon$.

Let $K(\alpha, t) = \{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi(\Delta^m y_{jkl} - \xi, t/2) \leq 1 - \alpha \text{ or } \vartheta(\Delta^m y_{jkl} - \xi, t/2) \geq \alpha \}.$ Therefore $\delta_3(K(\alpha, t)) = 0$ and $\delta_3([K(\alpha, t)]^c) = 1.$

Let $M(\epsilon, t) = \{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi \left(\Delta^m y_{jkl} - \Delta^m y_{rsu}, t \right) \leq 1 - \epsilon \text{ or } \vartheta \left(\Delta^m y_{jkl} - \Delta^m y_{rsu}, t \right) \geq \epsilon \}.$

Now, we prove $M(\epsilon, t) = K(\epsilon, t)$, for this if $(j, k, l) \in M(\epsilon, t) = K(\epsilon, t)$. Then we get $\varphi(\Delta_p y_{jkl} - \xi, t/2) \leq 1 - \alpha$ or $\vartheta(\Delta^m y_{jkl} - \xi, t/2) \geq \alpha$.

On lacunary Δ^m -statistical convergence of triple sequence in IFNS

$$1 - \epsilon \ge \varphi \left(\Delta^m y_{jkl} - \Delta^m y_{rsu}, t \right) \ge \varphi \left(\Delta^m y_{jkl} - \xi, t/2 \right) \otimes \vartheta \left(\Delta^m y_{jkl} - \xi, t/2 \right)$$
$$> (1 - \alpha) \otimes (1 - \alpha)$$
$$> 1 - \epsilon$$

and

$$\begin{split} \epsilon \geq \vartheta \left(\Delta_p y_{jkl} - \Delta_p y_{rsu}, t \right) &\leq \vartheta \left(\Delta_p y_{jkl} - \xi, t/2 \right) \odot \varphi \left(\Delta_p y_{jkl} - \xi, t/2 \right) \\ &< \alpha \odot \alpha \\ &< \epsilon. \end{split}$$

which is not possible. Therefore $M(\epsilon, t) \subset K(\alpha, t)$ and $\delta_3(M(\epsilon, t)) = 0$ i.e. $y = (y_{jkl})$ is Δ^m -statistically convergent with respect to (φ, ϑ) .

Coversely, assume that $y = (y_{jkl})$ is Δ^m -statiscally Cauchy with respect to (φ, ϑ) but not Δ^m -statiscally convergent with respect to (φ, ϑ) . Thus for $\epsilon > 0$ and t > 0, $\delta_3(M(\epsilon, t)) = 0$, where

$$\begin{split} M(\epsilon,t) &= \{(j,k,l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi(\Delta^m y_{jkl} - \Delta^m y_{j_0k_0l_0}, t) \leq 1 - \epsilon \quad \text{or} \quad \vartheta(\Delta^m y_{jkl} - \Delta^m y_{j_0k_0l_0}, t) \geq \epsilon \}. \\ \text{Take } \alpha > 0 \text{ such that } (1-\alpha) \otimes (1-\alpha) > 1 - \epsilon \text{ and } \alpha \odot \alpha < \epsilon. \text{ Also, } \delta_3(K(\alpha,t)) = 0. \end{split}$$

where

$$K(\alpha, t) = \{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \varphi(\Delta^m y_{jkl} - \xi, t/2) \ge 1 - \epsilon \text{ or } \vartheta(\Delta^m y_{jkl} - \xi, t/2) < \epsilon\}.$$

Now

$$\varphi\left(\Delta^{m} y_{jkl} - \Delta^{m} y_{j_0k_0l_0}, t\right) \ge \varphi\left(\Delta^{m} y_{jkl} - \xi, t/2\right) \otimes \vartheta\left(\Delta^{m} y_{j_0k_0l_0} - \xi, t/2\right)$$
$$> (1 - \alpha) \otimes (1 - \alpha)$$
$$> 1 - \epsilon$$

and

$$\begin{split} \vartheta \left(\Delta^m y_{jkl} - \Delta^m y_{j_0k_0l_0}, t \right) &\leq \vartheta \left(\Delta^m y_{jkl} - \xi, t/2 \right) \odot \varphi \left(\Delta^m y_{j_0k_0l_0} - \xi, t/2 \right) \\ &< \alpha \odot \alpha \\ &< \epsilon. \end{split}$$

Therefore, $\delta_3([M(\epsilon, t)]^c) = 0$ i.e. $\delta_3(M(\epsilon, t)) = 1$, which is a contradiction as $y = (y_{jkl})$ is Δ^m -statistically cauchy. Hence, $y = (y_{jkl})$ is Δ^m -statiscally convergent with respect to (φ, ϑ) .

4 Conclusion.

In this paper we defined Lacunary Δ^m -statistical convergence on intuitionistic fuzzy normed space and established certain results. The findings are more widespread than the equivalent normed spaces since every ordinary norm implies an intuitionistic fuzzy norm.

5 Declaration

Conflicts of interests: There is no conflict of interest.

Availability of data and materials: This paper has no associated data.

References

- Antal, R., Kumar, V. and Hazarika, B., On Δ^m-statistical convergence double sequences in intuionistic fuzzy normed spaces, Proyectiones Journal of Mathematics 41 (2022), no. 3, 697-713.
- [2] Connor, J. and Kline, J., On statistical limit points and the consistency of statistical convergence, J. Math. Anal. Appl. 197 (1996), no. 2, 392-399.
- [3] Duman, O., Khan, M.K. and Orhan, C., A-statistical convergence of approximating operators, Math. Inequal. Appl. 6 (2003), 689-700.
- [4] Et, M. and Colak, R., On some generalized difference difference sequence spaces, Soochow J. of Math. 24 (1995), no. 4, 377-386.
- [5] Esi, A., Statistical convergence of triple sequences in topological groups, An. Univ. Craiova Ser. Math. Inform. 40 (2013), no. 1, 29-33.
- [6] Esi, A. and Savas, E., On lacunary statistically convergent triple sequences in probabilistic normed space, Appl. Math. Inf. Sci. 5 (2015), 2529-2535.
- [7] Esi, A., Generalized difference sequence spaces defined by Orlicz functions, General Mathematics 17 (2009), no. 2, 53-66.
- [8] Esi, A., Strongly generalized difference $[V^{\lambda}, \Delta^m, p]$ -summable sequence spaces defined by a sequence of moduli, Nihonkai Math. J. **20** (2009), no. 2, 99-108.
- [9] Esi, A. and Ozdemir, K., Generalized Δ^m -statistical convergence in probabilistic normed space, J. Comput. Anal. Appl. **13** (2011), no. 5, 923-932.
- [10] Esi, A. and Tripathy, B.C., Generalized strongly difference convergent sequences associated with multiplier sequences, Math. Slovaca 57 (2007), no. 4, 339-348.
- [11] Fast, H., Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.

- [12] Fridy, J.A. and Khan, M.K., Tauberian theorems via statistical convergence, J. Math. Anal. Appl. 228 (1998), no. 1, 73-95.
- [13] Fridy, J.A. and Orhan, C., Lacunary statistical summability, J. Math. Anal. Appl. 173 (1993), no. 2, 497-504.
- [14] Jalal, T. and Malik, I.A., *I-convergent triple sequence spaces over n-normed space*, Asia Pacific Journal of Mathematics 5 (2018), no. 2, 233-242.
- [15] Jalal, T. and Malik, I.A., Some new triple sequence spaces over n-normed space, Proyectiones (Antofagasta) 37 (2018), no. 3, 547-564.
- [16] Jalal, T. and Malik, I.A., I -Convergence of triple difference sequence spaces over n normed space, Tbilisi Mathematical Journal 11 (2018), no. 4, 93-102.
- [17] Jalal, T. and Malik, I.A., Topological and algebraic properties of triple nnormed spaces, Proceedings of the Fifth International Conference on Mathematics and Computing, Springer, Singapore, 187-196, 2021.
- [18] Kizmaz, H., On certain sequence vspaces, Canad. Math. Bull. 24 (1981), no. 2, 169-176.
- [19] Mursaleen, M. and Mohiuddine, S.A., Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos Solitons Fractals 41 (2009), no. 5, 2414-2421.
- [20] Saadati, R. and Park, J.H., On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals 27 (2006), no. 2, 331-344.
- [21] Sahiner, A., Gurdal, M. and Duden, F.K., Triple sequences and their statistical convergence, Türkiye klinikleri psikiyatri dergisi, 8 (2007), no. 2, 49-55.
- [22] Schweizer, B. and Sklar, A., Statistical metric spaces, Pacific J. Math. 10 (1960), no. 1, 313-334.
- [23] Tripathy, B.C., Esi, A. and Tripathy, B., On a new type of generalized difference cesaro sequence spaces, Soochow Journal of Mathematics 31 (2005), no. 3, 333-340.
- [24] Tripathy, B.C. and Esi, A., A new type difference sequence spaces, International Journal of Science and Technology 1 (2006), no. 1, 11-14.
- [25] Zadeh, L.A., *Fuzzy sets*, Information and Control, 8 (1965), no. 3, 338-353.