ON LACUNARY Δ^{m}-STATISTICAL CONVERGENCE OF TRIPLE SEQUENCE IN INTUITIONISTIC FUZZY NORMED SPACE

Tanweer JALAL ${ }^{1}$ and Asif Hussain JAN ${ }^{* 2}$

Abstract

In this study, we define lacunary Δ^{m}-statistical convergence in the framework of intuitionistic fuzzy normed spaces (IFNS) for triple sequences. We prove several results for lacunary Δ^{m}-statistical convergence of triple sequence in IFNS. We further established lacunary Δ^{m}-statistical Cauchy sequences and provided the Cauchy convergence criterion for this novel idea of convergence.

2010 Mathematics Subject Classification: 40A35, 26E50, 40G15, 46S40.
Key words: Statistical convergence, Lacunary Δ^{m}-statistical convergence, Triple Sequence, Intuitionistic fuzzy normed space.

1 Introduction

Fast [11] was first to establish the concept of statistical convergence, which numerous authors have since investigated. Following the publication of Fridy [12, 13], active research on this subject was initiated. Several mathematicians have investigated the features of convergence and statistical convergence and applied them to a variety of fields, including approximation theory [3], finitely additive set functions [2], sequence space $[14,16]$ and statistical convergence for fuzzy numbers [1, 19].

The notion of fuzziness was provided by Zadeh [25]. A significant number of research publications built on the idea of fuzzy sets/numbers appeared in the literature and has been one of the most active area of research in many branches of sciences. Saadati and Park [20] introduced the concept of intuitionistic fuzzy

[^0]normed space. Recently, R. Antal et.al. [1] studied the concept of Δ^{m}-statistical convergence of double sequence in intuitionistic fuzzy normed space.

Numerous research on difference sequence spaces and their generalisations have been published in literature $[7,8,9,10,23,24]$. B.C.Tripathy et.al. studied a new type of generalized Difference Cesaro Sequence Spaces [23] and new type of difference sequence spaces [24]. A.Esi studied the generalized difference sequence spaces defined by Orlicz functions [7] and strongly generalized difference [$\left.V^{\lambda}, \Delta^{m}, p\right]$-summable sequence spaces defined by a sequence of moduli [8]. Later on, saveral authors studied generalized Δ^{m} Statistical Convergence in Probabilistic Normed Space [9] and generalized Strongly difference convergent sequences associated with multiplier sequences [10], respectively.

Here is an overview of the current work. We review the foundational definitions of the intuitionistic fuzzy normed space in Section 2. Section 3 presents lacunary Δ^{m}-statistical convergence in intuitionistic fuzzy normed space, where we established several results that demonstrate how generalised this convergence process is. We further established Lacunary Δ^{m}-statistical Cauchy sequences and provided the Cauchy convergence criterion for this novel idea of convergence.

2 Definitions and preliminaries

Here we mention some basic definitions of intuitionistic fuzzy normed space and other preliminaries.

Definition 1. [22] A continuous t-norm is the mapping $\otimes:[0,1] \times[0,1] \rightarrow[0,1]$ such that

1. \otimes is continuous, associative, commutative and with identity 1 ,
2. $a_{1} \otimes b_{1} \leq a_{2} \otimes b_{2}$ whenever $a_{1} \leq a_{2}$ and $b_{1} \leq b_{2}, \forall a_{1}, a_{2}, b_{1}, b_{2} \in[0,1]$.

Definition 2.[22] A continuous -conorm is the mapping $\odot:[0,1] \times[0,1] \rightarrow[0,1]$ such that

1. \odot is continuous, associative, commutative and with identity 0 ,
2. $a_{1} \odot b_{1} \leq a_{2} \odot b_{2}$ whenever $a_{1} \leq a_{2}$ and $b_{1} \leq b_{2}, \forall a_{1}, a_{2}, b_{1}, b_{2} \in[0,1]$.

Definition 3. [20] An intuitionistic fuzzy normed space (IFNS) is referred to the 5 -tuple $(X, \varphi, \vartheta, \otimes, \odot)$ with vector space X, fuzzy sets φ, ϑ on $X \times(0, \infty)$, continuous t-norm \otimes and continuous t-conorm \odot, if for each $y, z \in X$ and $s, t>0$, we have

1. $\varphi(y, t)+\vartheta(y, t) \leq 1$
2. $\varphi(y, t)>0$ and $\vartheta(y, t) \leq 1$,
3. $\varphi(y, t)=1$ and $\vartheta(y, t)=0 \Longleftrightarrow y=0$,
4. $\varphi(\alpha y, t)=\varphi\left(y, \frac{t}{|\alpha|}\right)$ for $\alpha \neq 0$,
5. $\varphi(y, s) \otimes \varphi(z, t) \leq \varphi(y+z, s+t)$ and $\vartheta(y, s) \odot \vartheta(z, t) \leq \vartheta(y+z, s+t)$,
6. $\vartheta(y, o):(0, \infty) \rightarrow[0,1]$ and $\vartheta(y, o):(0, \infty) \rightarrow[0,1]$ are continuous,
7. $\lim _{t \rightarrow \infty} \varphi(y, t)=1, \lim _{t \rightarrow 0} \varphi(y, t)=0, \lim _{t \rightarrow \infty} \vartheta(y, t)=1$ and $\lim _{t \rightarrow 0} \vartheta(y, t)=0$.

Then (φ, ϑ) is known as intuitionistic fuzzy norm.

Definition 4. [20] Let $(X,\|o\|)$ be any normed space. For every $t>0$ and $y \in X$, take $\varphi=\frac{t}{t+\|y\|}, \vartheta=\frac{\|y\|}{t+\|y\|}$. Also, $a \otimes b=a b$ and $a \odot b=\min \{a+b, 1\} \forall a, b \in[0,1]$. Then, a 5-tuple $(X, \varphi, \vartheta, \otimes, \odot)$ is an IFNS which satisfies the above mentioned conditions.

Definition 5. [20] Let $(X, \varphi, \vartheta, \otimes, \odot)$ be an IFNS with norm (φ, ϑ). A sequence $y=\left(y_{k}\right)$ in X is called convergent to some $\xi \in X$ with respect to the intuitionic fuzzy $\operatorname{norm}(\varphi, \vartheta)$ if there exists $k_{0} \in \mathbb{N}$ for each $\epsilon>0$ and $t>0$ such that $\varphi(y k-\xi, t)>1-\epsilon$ and $\vartheta(y k-\xi, t)<\epsilon$ for all $k \geq k_{0}$. It is denoted by $(\varphi, \vartheta)-$ $\lim _{k \rightarrow \infty} y_{k}=\xi$.

Definition 6. [20] Let $(X, \varphi, \vartheta, \otimes, \odot)$ be an IFNS with norm (φ, ϑ). A sequence $y=\left(y_{k}\right)$ in X is called convergent to some $\xi \in X$ with respect to the intuitionic fuzzy norm (φ, ϑ) if there exists $k_{0} \in \mathbb{N}$ for each $\epsilon>0$ and $t>0$

$$
\delta\left(\left\{k \in \mathbb{N}: \varphi\left(y_{k}-\xi, t\right) \leq 1-\epsilon \quad \text { or } \quad \vartheta\left(y_{k}-\xi, t\right) \geq \epsilon\right\}\right)=0
$$

It is denoted by $S^{\varphi, \vartheta}-\lim _{k \rightarrow \infty} y_{k}=\xi$.

A subset E of the set \mathbb{N} of natural numbers is said to have a "natural density" $\delta(E)$ if

$$
\delta(E)=\lim _{n} \frac{1}{n}|\{k \leq n: k \in E\}|
$$

where the vertical bars denote the cardinality of the enclosed set.

The number sequence $x=\left(x_{k}\right)$ is said to be statistically convergent to number l if for each $\epsilon>0$,

$$
\lim _{n} \frac{1}{n}\left|\left\{k \leq n:\left|x_{k}-l\right| \geq \epsilon\right\}\right|=0
$$

and x is said to be statistically cauchy sequence if for every $\epsilon>0$ there exists a number $N=N(\epsilon)$ such that

$$
\lim _{n} \frac{1}{n}\left|\left\{k \leq n:\left|x_{k}-x_{N}\right| \geq \epsilon\right\}\right|=0
$$

Definition 7. [20] Let $(X, \varphi, \vartheta, \otimes, \odot)$ be an IFNS with norm (φ, ϑ). A double sequence $y=\left(y_{j k}\right)$ in X is called statistically convergent to some $\xi \in X$ with respect to the intuitionic fuzzy norm (φ, ϑ) if there exists $k_{0} \in \mathbb{N}$ for each $\epsilon>0$ and $t>0$

$$
\delta\left(\left\{k \in \mathbb{N}: \varphi\left(y_{j k}-\xi, t\right) \leq 1-\epsilon \text { or } \vartheta\left(y_{j k}-\xi, t\right) \geq \epsilon\right\}\right)=0 .
$$

It is denoted by $S^{(\varphi, \vartheta)}-\lim _{k \rightarrow \infty} y_{j k}=\xi$.

The function $X: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{R}(C)$ can be used to define a triple sequence (real or complex), where \mathbb{N}, \mathbb{R} and \mathbb{C} stand for the sets of natural, real, and complex numbers, respectively. At the beginning, Sahiner et al. [21] introduced and studied the many conceptions of triple sequences and their statistical convergence. Triple sequence statistical convergence on probabilistic normed space was recently introduced by Savas and Esi [6], where as statistical convergence of triple sequences in topological groups was later introduced by Esi [5]. For further study on triple sequence spaces, we may refer to $[14,15,16,17]$.

Kizmaz [18] introduced the difference sequence space $Z(\Delta)$ as given below

$$
Z(\Delta)=\left\{y=\left(y_{k}\right):\left(\Delta y_{k}\right) \in Z\right\}
$$

for $Z=\ell_{\infty}, c, c_{0}$ i.e. spaces of all bounded, convergent and null sequences respectively, where $\Delta_{y}=\left(\Delta y_{k}\right)=\left(y_{k}-y_{k+1}\right)$. In particular, $\ell_{\infty}(\Delta), c(\Delta)$ and $c_{0}(\Delta)$ are also Banach spaces, relative to a norm induced by $\|y\|_{\Delta}=\left|y_{1}\right|+$ $\sup _{k}\left|\Delta y_{k}\right|$.

The generalized difference sequence spaces $Z\left(\Delta^{m}\right)$ was introduced by [4] as follows :

$$
Z\left(\Delta^{m}\right)=\left\{y=\left(y_{k}\right):\left(\Delta^{m} y_{k}\right) \in Z\right\}
$$

for $Z=\ell_{\infty}, c, c_{0}$ where $\Delta^{m}(y)==\left(\Delta^{m} y_{k}\right)=\left(\Delta_{m-1} y_{k}-\Delta_{m-1} y_{k+1}\right)$. So that

$$
\Delta^{m} y_{k}=\sum_{r=0}^{p}(-1)^{r}\binom{m}{r} x_{k+r} .
$$

The difference operator Δ on triple sequence $x_{m n l}$ is defined as :

$$
\begin{aligned}
& \Delta_{x_{m n l}}=x_{m n l}-x_{(m+1) n l}-x_{m(n+1) l}-x_{m n(l+1)}=x_{(m+1)(n+1) l}+x_{(m+1) n(l+1)}+ \\
& x_{m(n+1)(l+1)}-x_{(m+1)(n+1)(l+1)} .
\end{aligned}
$$

The generalized difference spaces for triple sequences can be approximated as:

$$
Z\left(\Delta^{m}\right)=\left\{y=\left(y_{j k l}\right):\left(\Delta^{m} y_{j k l}\right) \in Z\right\}
$$

for $Z=\ell_{\infty}^{3}, c^{3}, c_{0}^{3}$ where $\Delta^{m}(y)=\left(\Delta^{m} y_{j k l}\right)=\left(\Delta_{m-1} y_{j k l}-\Delta_{m-1} y_{j k,(l+1)}\right)$. So that $\Delta^{m} y_{k}=\sum_{r=0}^{p}(-1)^{r+s+u}\binom{m}{r}\binom{m}{s}\binom{m}{u} x_{j+r, k+s, l+u}$.

Definition 8. [6] The triple sequence $\theta_{j, k, l}=\left\{\left(j_{r}, k_{s}, l_{t}\right)\right\}$ is called the triple lacunary sequence if there exist three increasing sequences of integers such that

$$
\begin{aligned}
& j_{o}=0, h_{r}=j_{r}-j_{r-1} \rightarrow \infty \text { as } r \rightarrow \infty, \\
& k_{o}=0, h_{s}=k_{s}-k_{s-1} \rightarrow \infty \text { as } s \rightarrow \infty,
\end{aligned}
$$

and

$$
I_{o}=0, h_{t}=I_{t}-I_{t-1} \rightarrow \infty \text { as } t \rightarrow \infty
$$

Let $k_{r, s, t}=j_{r} k_{s} I_{t}, h_{r, s, t}=h_{r} h_{s} h_{t}$ and $\theta_{j, k, l}$ is determined by

$$
\begin{gathered}
I_{r, s, t}=\left\{(j, k, l): j_{r-1}<j \leq j_{r}, k_{s-1}<k \leq k_{s} \text { and } I_{t-1}<I \leq I_{t}\right\} \\
q_{r}=\frac{j_{r}}{j_{r-1}}, q_{s}=\frac{k_{s}}{k_{s-1}}, q_{t}=\frac{l_{t}}{l_{t-1}} \text { and } q_{r, s, t}=q_{r} q_{s} q_{t}
\end{gathered}
$$

Let $K \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$. The number

$$
\delta_{3}^{\theta}=\lim _{r, s, t} \frac{1}{h_{r, s, t}}\left|\left\{(j, k, l) \in I_{r, s, t}:(j, k, l) \in K\right\}\right|
$$

is said to be the $\theta_{r, s, t}$-density of K, provided the limit exists.

3 Triple lacunary Δ^{m}-statistical convergence in IFNS.

In the context of intuitionistic fuzzy normed spaces for triple sequences, we define Lacunary Δ^{m}-statistical convergence and establish certain results.

Definition 9. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be a IFNS with norm (φ, ϑ) and $\theta_{j, k, l}$ be a triple lacunary sequence. A triple sequence $y=\left(y_{j k l}\right)$ in X is called lacunary Δ^{m}-statistically convergent to some $\xi \in X$ with respect to the intuitionistic fuzzy $\operatorname{norm}(\varphi, \vartheta)$ if for each $\epsilon>0$ and $t>0$

$$
\begin{equation*}
\delta_{3}^{\theta}\left(\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \varphi\left(\Delta^{m} y_{j k l}-\xi, t\right) \leq 1-\epsilon \quad \text { or } \quad \vartheta\left(\Delta^{m} y_{j k l}-\xi, t\right) \geq \epsilon\right\}\right)=0 \tag{1}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\delta_{3}^{\theta}\left(\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \varphi\left(\Delta^{m} y_{j k l}-\xi, t\right)>1-\epsilon \quad \text { or } \quad \vartheta\left(\Delta^{m} y_{j k l}-\xi, t\right)<\epsilon\right\}\right)=1 \tag{1*}
\end{equation*}
$$

In this case, we write $S_{\theta_{j, k, l}}^{\varphi, \vartheta}-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi$ or $X_{j k l} \xrightarrow{(\varphi, \vartheta)} \xi\left(S_{\theta_{j, k, l}}\right)$ and denote the set of all $S_{\theta_{j, k, l}}$-convergent triple sequences in the intuitionistic fuzzy normed space by $S_{\theta_{j, k, l}}^{(\varphi, \vartheta)}$.

Definition 10. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be a IFNS with norm (φ, ϑ) and $\theta_{j, k, l}$ be a triple lacunary sequence. A triple sequence $y=\left(y_{j k l}\right)$ in X is called lacunary Δ^{m}-statistically Cauchy with respect to the intuitionistic fuzzy norm (φ, ϑ) if there exists $j_{0}, k_{0}, l_{o} \in \mathbb{N}$ for each $\epsilon>0$ and $t>0$ such that for all $j, r \geq j_{0}, k, s \geq k_{0}$ and $l, u \geq l_{0}$, we have

$$
\begin{array}{r}
\delta_{3}^{\theta}\left(\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \varphi\left(\Delta^{m} y_{j k l}-\Delta^{m} y_{r s u}, t\right) \leq 1-\epsilon\right.\right. \text { or } \\
\left.\left.\vartheta\left(\Delta^{m} y_{j k l}-\Delta^{m} y_{r s u}, t\right) \geq \epsilon\right\}\right)=0 .
\end{array}
$$

It is denoted by $S_{j k l}^{\varphi, \vartheta}-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi$.
From (1) and $\left(1^{*}\right)$, we have the following lemma.

Lemma 1. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be an IFNS with norm (φ, ϑ) and $\theta_{j, k, l}$ be a triple lacunary sequence. Then the following statements are equivalent for triple sequence $y=\left(y_{j k l}\right)$ in X whenever $\epsilon>0$ and $t>0$,

1. $S_{\theta_{j, k, l}}^{\varphi, \vartheta}-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi$,
2. $\delta_{3}^{\theta}\left(\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \varphi\left(\Delta^{m} y_{j k l}-\xi, t\right)>1-\epsilon\right\}\right)=\delta_{3}^{\theta}(\{(j, k, l) \in \mathbb{N} \times$ $\left.\left.\mathbb{N} \times \mathbb{N}: \vartheta\left(\Delta^{m} y_{j k l}-\xi, t\right)<\epsilon\right\}\right)=1$,
3. $\delta_{3}^{\theta}\left(\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \varphi\left(\Delta^{m} y_{j k l}-\xi, t\right) \leq 1-\epsilon\right\}\right)=\delta_{3}^{\theta}(\{(j, k, l) \in \mathbb{N} \times$ $\left.\left.\mathbb{N} \times \mathbb{N}: \vartheta\left(\Delta^{m} y_{j k l}-\xi, t\right) \geq \epsilon\right\}\right)=0$,
4. $S_{\theta_{j, k, l}}-\lim _{j, k, l \rightarrow \infty} \varphi\left(\Delta^{m} y_{j k l}-\xi, t\right)=1$ and $S_{\theta_{j, k, l}}-\lim _{j, k, l \rightarrow \infty} \vartheta\left(\Delta^{m} y_{j k l}-\xi, t\right)$ $=0$.

Theorem 1. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be a IFNS with norm (φ, ϑ) and $\theta_{j, k, l}$ be a triple lacunary sequence. If $S_{\theta_{j, k, l}}^{\varphi, \vartheta}-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi$, then ξ is unique.

Proof. If possible, let $S_{\theta_{j, k, l}}^{\varphi, \vartheta}-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi_{1}$ and $S_{\theta_{j, k, l}}^{\varphi, \vartheta}-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}$ $=\xi_{2}$.
For given $\epsilon \in(0,1)$ and $t>0$, take $\alpha>0$ such that $(1-\alpha) \otimes(1-\alpha)>1-\epsilon$ and $\alpha \odot \alpha<\epsilon$.

Consider

$$
\begin{aligned}
& K_{1, \varphi}(\alpha, t)=\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \varphi\left(\Delta^{m} y_{j k l}-\xi_{1}, t / 2\right) \leq 1-\alpha\right\}, \\
& K_{2, \varphi}(\alpha, t)=\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \varphi\left(\Delta^{m} y_{j k l}-\xi_{2}, t / 2\right) \leq 1-\alpha\right\}, \\
& K_{3, \vartheta}(\alpha, t)=\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \vartheta\left(\Delta^{m} y_{j k l}-\xi_{1}, t / 2\right) \geq \alpha\right\}, \\
& K_{4, \vartheta}(\alpha, t)=\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \vartheta\left(\Delta^{m} y_{j k l}-\xi_{2}, t / 2\right) \geq \alpha\right\}
\end{aligned}
$$

Using lemma 3.1, we have

$$
\begin{aligned}
& \delta_{3}^{\theta}\left(K_{1}, \varphi(\alpha, t)\right)=\delta_{3}^{\theta}\left(K_{3}, \vartheta(\alpha, t)\right)=0 . \\
& \delta_{3}^{\theta}\left(K_{2}, \varphi(\alpha, t)\right)=\delta_{3}^{\theta}\left(K_{4}, \vartheta(\alpha, t)\right)=0 .
\end{aligned}
$$

Let $K_{\varphi, \vartheta}(\alpha, t)=\left[K_{1, \varphi}(\alpha, t) \bigcup K_{2, \varphi}(\alpha, t)\right] \bigcap\left[K_{3, \vartheta}(\alpha, t) \bigcup K_{4, \vartheta}(\alpha, t)\right]$. Clearly,

$$
\delta_{3}^{\theta} K_{\varphi, \vartheta}(\alpha, t)=0 .
$$

Whenever $(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}-K_{\varphi, \vartheta}(\alpha, t)$, we have two possibilities, either $(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}-\left[K_{1, \varphi}(\alpha, t) \bigcup K_{2, \varphi}(\alpha, t)\right]$ or $(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}-\left[K_{3, \vartheta}(\alpha, t) \bigcup K_{4, \vartheta}(\alpha, t)\right]$.

First, we consider $(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}-\left[K_{1, \varphi}(\alpha, t) \bigcup K_{2, \varphi}(\alpha, t)\right]$. Then

$$
\begin{aligned}
\varphi\left(\xi_{1}-\xi_{2}, t\right) & \geq \varphi\left(\Delta^{m} y_{j k l}-\xi_{1}, t / 2\right) \otimes \varphi\left(\Delta^{m} y_{j k l}-\xi_{2}, t / 2\right) \\
& >(1-\alpha) \otimes(1-\alpha) \\
& >1-\epsilon
\end{aligned}
$$

As given $\epsilon \in(0,1)$ was arbitrary, then $\varphi\left(\xi_{1}-\xi_{2}, t\right)=1$ for all $t>0$, then $\xi_{1}=\xi_{2}$.
Similarly, if $(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}-\left[K_{3, \vartheta}(\alpha, t) \bigcup K_{4, \vartheta}(\alpha, t)\right]$

$$
\begin{aligned}
\vartheta\left(\xi_{1}-\xi_{2}, t\right) & \leq \vartheta\left(\Delta^{m} y_{j k l}-\xi_{1}, t / 2\right) \odot \vartheta\left(\Delta^{m} y_{j k l}-\xi_{2}, t / 2\right) \\
& <\alpha \odot \alpha \\
& <\epsilon
\end{aligned}
$$

Since $\epsilon \in(0,1)$ was arbitrary, then $\varphi\left(\xi_{1}, \xi_{2}, t\right)=0$ for all $t>0$, i.e., $\xi_{1}=\xi_{2}$. Therefore $S_{\theta_{j, k, l}}^{\varphi, \vartheta}-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi$ exists uniquely.

Theorem 2. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be a IFNS with norm (φ, ϑ) and $\theta_{j, k, l}$ be a triple lacunary sequence. If $(\varphi, \vartheta)-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi$, then $S_{\theta_{j, k, l}}^{\varphi, \vartheta}-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}$ $=\xi$. But converse may not be true.

Proof. Let $(\varphi, \vartheta)-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi$. Then, there exists j_{0}, k_{0} and $l_{0} \in \mathbb{N}$ for given $\epsilon>0$ and any $t>0$ such that for all $j \geq j_{0}, k \geq k_{0}$ and $l \geq l_{0}$ we have $\varphi\left(\Delta^{m} y_{j k l}-\xi, t\right)>1-\epsilon$ and $\vartheta\left(\Delta^{m} y_{j k l}-\xi, t\right)<\epsilon$.

Further, the set $A(\epsilon, t)=\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \varphi\left(\Delta^{m} y_{j k l}-\xi, t\right) \leq 1-\epsilon\right.$ or $\left.\vartheta\left(\Delta^{m} y_{j k l}-\xi, t\right) \geq \epsilon\right\}$, contains only finite number of elements. We know that natural density of any finite set is always zero. Therefore, $\delta_{3}^{\theta}(A(\epsilon, t))=0$ i.e. $S_{\theta_{j, k, l}}^{\varphi, \vartheta}-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi$.

But converse is not true, this can be justified with the example.
Example Let $(\mathbb{R},\|\|$.$) be the real normed space under the usual norm. Define a$ $\otimes b=a b$ and $a \odot b=\min \{a+b, 1\} \quad \forall a, b \in[0,1]$. Also for every $t>0$ and all $y \in \mathbb{R}$, consider $\varphi(y, t)=\frac{t}{t+|y|}$ and $\vartheta(y, t)=\frac{|y|}{t+|y|}$. Then, clearly $(\mathbb{R}, \varphi, \vartheta, \otimes, \odot)$ is an IFNS. Define the sequence

$$
\Delta^{m} x_{j k l}=\left\{\begin{array}{rrr}
j k l, & \text { for } \quad j_{r}-\left[\left|\sqrt{h_{r}}\right|\right]+1 \leq j \leq j_{r} \\
& k_{s}-\left[\left|\sqrt{h_{s}}\right|\right]+1 \leq k \leq k_{s} \\
& \text { and } \quad l_{t}-\left[\left|\sqrt{h_{t}}\right|\right]+1 \leq l \leq l_{t} \\
\xi, & & \text { otherwise. }
\end{array}\right.
$$

By given $\epsilon>0$ and $t>0$, we obtain the below set for $\xi=0$.

$$
\begin{aligned}
K(\epsilon, t) & =\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \varphi\left(\Delta^{m} y_{j k l}, t\right) \leq 1-\epsilon \quad \text { or } \quad \vartheta\left(\Delta^{m} y_{j k l}, t\right) \geq \epsilon\right\} \\
& =\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}:\left|\Delta^{m} y_{j k l}\right| \geq \frac{\epsilon t}{1-\epsilon}>0\right\} \\
& =\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}:\left|\Delta^{m} y_{j k l}\right|=j k l\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}:\left|\Delta^{m} y_{j k l}\right| \geq \frac{\epsilon t}{1-\epsilon}>0\right\} \\
& =\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: j_{r}-\left[\left|\sqrt{h_{r}}\right|\right]+1 \leq j \leq j\right. \\
& \qquad k_{s}-\left[\left|\sqrt{h_{s}}\right|\right]+1 \leq k \leq k_{s} \\
& \text { and } \left.\quad l_{t}-\left[\left|\sqrt{h_{t}}\right|\right]+1 \leq l \leq l_{t}\right\}
\end{aligned}
$$

and so, we get

$$
\begin{array}{r}
\left.\lim _{r, s, t} \frac{1}{h_{r}, h_{s}, h_{t}} \right\rvert\,\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: j_{r}-\left[\left|\sqrt{h_{r}}\right|\right]+1 \leq j \leq j_{r}\right. \\
k_{s}-\left[\left|\sqrt{h_{s}}\right|\right]+1 \leq k \leq k_{s} \\
\text { and } \left.l_{t}-\left[\left|\sqrt{h_{t}}\right|\right]+1 \leq l \leq l_{t}\right\} \\
\leq \lim _{r, s, t} \frac{\sqrt{h_{r}} \sqrt{h_{s}} \sqrt{h_{t}}}{h_{r} h_{s} h_{t}}=0
\end{array}
$$

Hence $S_{\theta_{j, k, l}}^{\varphi, \vartheta}-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=0$.
By the above defined sequence $\left(\Delta^{m} y_{j k l}\right)$, we get

$$
\varphi\left(\Delta^{m} x_{j k l}, t\right)=\left\{\begin{array}{rr}
\frac{t}{t+|j k l|}, & \text { for }_{r}-\left[\left|\sqrt{h_{r}}\right|\right]+1 \leq j \leq j_{r} \\
& k_{s}-\left[\left|\sqrt{h_{s}}\right|\right]+1 \leq k \leq k_{s} \\
& \text { and } l_{t}-\left[\left|\sqrt{h_{t}}\right|\right]+1 \leq l \leq l_{t} \\
0, & \text { otherwise }
\end{array}\right.
$$

i.e $\varphi\left(\Delta^{m} x_{j k l}, t\right) \leq 1, \quad \forall j, k, l$.
and

$$
\vartheta\left(\Delta^{m} x_{j k l}, t\right)=\left\{\begin{array}{rr}
\frac{|j k l|}{t+|j k l|}, & \text { for } j_{r}-\left[\left|\sqrt{h_{r}}\right|\right]+1 \leq j \leq j_{r} \\
& k_{s}-\left[\left|\sqrt{h_{s}}\right|\right]+1 \leq k \leq k_{s} \\
& \text { and } l_{t}-\left[\left|\sqrt{h_{t} \mid}\right|\right]+1 \leq l \leq l_{t} \\
0, & \text { otherwise }
\end{array}\right.
$$

i.e $\vartheta\left(\Delta^{m} x_{j k l}, t\right) \geq 0, \quad \forall j, k, l$.

This shows that $(\varphi, \vartheta)-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l} \neq 0$.

Theorem 3. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be a IFNS with norm (φ, ϑ) and $\theta_{j, k, l}$ be a triple lacunary sequence. Then $S_{\theta_{j, k, l}}^{\varphi, \vartheta}-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi \Longleftrightarrow$ there exists a set $P=\left\{\left(j_{a}, k_{b}, l_{c}\right): a, b, c=1,2,3, \ldots\right\} \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ such that $\delta(P)=1$ and $(\varphi, \vartheta)-\lim _{j_{a}, k_{b}, l_{c} \rightarrow \infty} \Delta^{m} y_{j_{a} k_{b} l_{c}}=\xi$.

Proof. Assume that $S_{\theta_{j, k, l}}^{\varphi, \vartheta}-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi$. For $t>0$ and $\alpha \in \mathbb{N}$, we take $M(\alpha, t)=\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \varphi\left(\Delta^{m} y_{j k l}-\xi, t>1-1 / \alpha\right.\right.$ and $\vartheta\left(\Delta^{m} y_{j k l}-\xi, t\right)<$ $1 / \alpha\}$,
and
$K(\alpha, t)=\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \varphi\left(\Delta^{m} y_{j k l}-\xi, t\right) \leq 1-1 / \alpha\right.$ or $\left.\vartheta\left(\Delta^{m} y_{j k l}-\xi, t\right) \geq 1 / \alpha\right\}$.

As $S_{\theta_{j, k, l}}^{\varphi, \vartheta}-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi$, then $\delta_{3}(K(\alpha, t))=0$.
Also, for any $t>0$ and $\alpha \in \mathbb{N}$, evidently we get $M(\alpha, t) \supset M(\alpha+1, t)$, and

$$
\begin{equation*}
\delta_{3}(M(\alpha, t))=1, \tag{3.1}
\end{equation*}
$$

For $(j, k, l) \in M(\alpha, t)$, we prove $(\varphi, \vartheta)-\lim _{j_{a}, k_{b}, l_{c} \rightarrow \infty} \Delta^{m} y_{j_{a} k_{b} l_{c}}=\xi$.
On the contrary, suppose that triple sequence $y=\left(y_{j k l}\right)$ is not Δ^{m}-convergent to ξ for all $(j, k, l) \in M(\alpha, t)$. So, there exists some $\alpha>0$ and $k_{0} \in \mathbb{N}$ such that

$$
\begin{aligned}
& \left.\varphi\left(\Delta^{m} y_{j k l}-\xi, t\right) \leq 1-\rho \text { or } \vartheta\left(\Delta^{m} y_{j k l}-\xi, t\right) \geq \rho\right\} \text { for all } j, k, l \geq k_{0} \\
& \left.\Longrightarrow \varphi\left(\Delta^{m} y_{j k l}-\xi, t\right) \geq 1-\rho \text { and } \vartheta\left(\Delta^{m} y_{j k l}-\xi, t\right) \leq \rho\right\} \text { for all } j, k, l \geq k_{0}
\end{aligned}
$$

Therefore,
$\delta_{3}\left(\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \varphi\left(\Delta^{m} y_{j k l}-\xi, t\right) \geq 1-\rho\right.\right.$ and $\left.\left.\left.\vartheta\left(\Delta^{m} y_{j k l}-\xi, t\right) \leq \rho\right\}\right\}\right)$ $=0$
i.e. $\delta_{3}(M(\rho, t))=0$. Since $\rho>1 / \alpha$, then $\delta_{3}(M(\alpha, t))=0$ as $M(\alpha, t) \subset M(\rho, t)$, which is a contradiction to (3.1). This shows that there exists a set $M(\alpha, t)$ for which $\delta_{3}(M(\alpha, t))=1$ and the triple sequence $y=\left(y_{j k l}\right)$ is statistically $\Delta^{m_{-}}$ convergent to ξ.

Converesely, suppose there exists a subset
$P=\left\{\left(j_{a}, k_{b}, l_{c}\right): a, b, c=1,2,3, \ldots\right\} \subseteq \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ with $\delta_{3}(P)=1$
and $(\varphi, \vartheta)-\lim _{j_{a}, k_{b}, l_{c} \rightarrow \infty} \Delta^{m} y_{j_{a} k_{b} l_{c}}=\xi$. i.e. for given $\rho>0$ and any $t>0$ we have $N_{0} \in \mathbb{N}$, which gives

$$
\varphi\left(\Delta^{m} y_{j k l}-\xi, t\right)>1-\rho
$$

and

$$
\vartheta\left(\Delta^{m} y_{j k l}-\xi, t\right)<\rho \text { for all } j, k, l \geq N_{0} .
$$

Now, let

$$
\begin{aligned}
& K(\rho, t) \\
= & \left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \varphi\left(\Delta^{m} y_{j k l}-\xi, t\right) \leq 1-\rho \text { or } \vartheta\left(\Delta^{m} y_{j k l}-\xi, t\right) \geq \rho\right\} .
\end{aligned}
$$

Then,
$K(\rho, t) \subseteq \mathbb{N}-\left\{\left(j_{N_{0}+1}, k_{N_{0}+1}, l_{N_{0}+1}\right), \ldots\right\} . \operatorname{As} \delta_{3}(P)=1 \Longrightarrow \delta_{3}(K(\alpha, t)) \leq 0$.
Hence, $S_{\theta_{j, k, l}}^{\varphi, \vartheta}-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi$.

Theorem 4. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be a IFNS with norm (φ, ϑ) and $\theta_{j, k, l}$ be a triple lacunary sequence. Let $y=\left(y_{j k l}\right)$ be any triple sequence. Then $S_{\theta_{j, k, l}}^{\varphi, \vartheta}-$ $\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi \Longleftrightarrow$ there is a triple sequence $x=\left(x_{j k l}\right)$ such that $(\varphi, \vartheta)-$ $\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi$ and $\delta_{3}\left(\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \Delta^{m} y_{j k l}=\Delta^{m} x_{j k l}\right\}\right)=1$

Proof. Assume that $S_{\theta_{j, k, l}}^{\varphi, \vartheta}-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi$. By Theorem (3.3), we set $P=\left\{\left(j_{a}, k_{b}, l_{c}\right): a, b, c=1,2,3, \ldots\right\} \subseteq \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ with $\delta_{3}(P)=1$ and $(\varphi, \vartheta)-$ $\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j_{a} k_{b} l_{c}}=\xi$.

Consider the sequence

$$
\Delta^{m} x_{j k l}=\left\{\begin{array}{lc}
\Delta^{m} y_{j k l}, & (j, k, l) \in P \\
\xi, & \text { otherwise }
\end{array}\right.
$$

which gives the required result.
Converesely, consider $x=\left(x_{j k l}\right)$ and $z=\left(z_{j k l}\right)$ in X with the property $(\varphi, \vartheta)-$ $\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi$ and $\delta_{3}\left(\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \Delta^{m} y j k l=\Delta^{m} x_{j k l}\right\}\right)=1$. Then for each $\epsilon>0$ and $t>0,\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \varphi\left(\Delta^{m} y_{j k l}-\xi, t\right) \leq 1-\epsilon\right.$ or $\left.\vartheta\left(\Delta^{m} y_{j k l}-\xi, t\right) \geq \epsilon\right\} \subseteq A \cup B$, where
$A=\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \varphi\left(\Delta^{m} y_{j k l}-\xi, t\right) \leq 1-\epsilon\right.$ or $\left.\vartheta\left(\Delta^{m} y_{j k l}-\xi, t\right) \geq \epsilon\right\} ;$ $B=\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}:\left(\Delta^{m} y_{j k l} \neq \Delta^{m} x_{j k l}\right)\right\}$.

Since $(\varphi, \vartheta)-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j_{a} k_{b} l_{c}}=\xi$ then the set A contains at most finitely many terms. Also $\delta_{3}(B)=0$ as $\delta_{3}\left(B^{c}\right)=1$ where

$$
B^{c}=\left\{(j, k, l) \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \Delta^{m} y_{j k l}=\Delta^{m} x_{j k l}\right\} .
$$

Therefore
$\delta_{3}\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \varphi\left(\Delta^{m} y_{j k l}-\xi, t\right) \leq 1-\epsilon\right.$ or $\left.\vartheta\left(\Delta^{m} y_{j k l}-\xi, t\right) \geq \epsilon\right\}$. We get $S_{\theta_{j, k, l}}^{\varphi, \vartheta}-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi$.

Theorem 5. Let $(X, \varphi, \vartheta, \otimes, \odot)$ be a IFNS with norm (φ, ϑ) and $\theta_{j, k, l}$ be a triple lacunary sequence. Let $y=\left(y_{j k l}\right)$ be any triple sequence. Then $S_{\theta_{j, k, l}}^{\varphi, \vartheta}-$ $\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi \Longleftrightarrow$ there exists two triple sequence $z=\left(z_{j k l}\right)$ and $x=$ $\left(x_{j k l}\right)$ in X such that $\Delta^{m} y_{j k l}=\Delta^{m} z_{j k l}+\Delta^{m} x_{j k l}$ for all $(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ where $(\varphi, \vartheta)-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j_{a} k_{b} l_{c}}=\xi$ and $S_{\theta_{j, k, l}}^{\varphi, \vartheta}-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi$.

Proof. Assume that $S_{\theta_{j, k, l}^{\varphi}, \vartheta}-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi$. By Theorem (3.3), we set $P=\left\{\left(j_{a}, k_{b}, l_{c}\right): a, b, c=1,2,3, \ldots\right\} \subseteq \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ wit $\delta_{3}(P)=1$ and $(\varphi, \vartheta)-$ $\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j a} k_{b} l_{c}=\xi$.

Consider two triple sequences $z=\left(z_{j k l}\right)$ and $x=\left(x_{j k l}\right)$, then

$$
\Delta^{m} z_{j k l}= \begin{cases}\Delta^{m} y_{j k l}, & (j, k, l) \in P \\ \xi, & \text { otherwise }\end{cases}
$$

and

$$
\Delta^{m} x_{j k l}= \begin{cases}0, & (j, k, l) \in P \\ \Delta^{m} y_{j k l}-\xi, & \text { otherwise }\end{cases}
$$

which gives the required result.
Converesely, consider $x=\left(x_{j k l}\right)$ and $z=\left(z_{j k l}\right)$ in X with $\Delta^{m} y_{j k l}=\Delta^{m} z_{j k l}+$ $\Delta^{m} x_{j k l}$ for all $(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ where $(\varphi, \vartheta)-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi$ and $S_{\theta_{j, k, l}}^{\varphi, \vartheta}-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi$. Then we get result using Theorem (3.4) and Theorem (3.5).

Theorem 6. A triple sequence $y=\left(y_{j k l}\right)$ in IFNS $(X, \varphi, \vartheta, \otimes, \odot)$ is lacurnary Δ^{m} - statistically convergent with respect to (φ, ϑ) if and only if it is lacunary Δ^{m}-statistically Cauchy with respect to (φ, ϑ).

Proof. Let $S_{\theta_{j, k, l}}^{\varphi, \vartheta}-\lim _{j, k, l \rightarrow \infty} \Delta^{m} y_{j k l}=\xi$. Then, for each $\epsilon>0$ and $t>0$, take $\alpha>0$ such that $(1-\alpha) \otimes(1-\alpha)>1-\epsilon$ and $\alpha \odot \alpha<\epsilon$.

Let $K(\alpha, t)=\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \varphi\left(\Delta^{m} y_{j k l}-\xi, t / 2\right) \leq 1-\alpha\right.$ or $\left.\vartheta\left(\Delta^{m} y_{j k l}-\xi, t / 2\right) \geq \alpha\right\}$. Therefore $\delta_{3}(K(\alpha, t))=0$ and $\delta_{3}\left([K(\alpha, t)]^{c}\right)=1$.

Let $M(\epsilon, t)=\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \varphi\left(\Delta^{m} y_{j k l}-\Delta^{m} y_{r s u}, t\right) \leq 1-\epsilon\right.$ or $\vartheta\left(\Delta^{m} y_{j k l}-\right.$ $\left.\left.\Delta^{m} y_{r s u}, t\right) \geq \epsilon\right\}$.

Now, we prove $M(\epsilon, t)=K(\epsilon, t)$, for this if $(j, k, l) \in M(\epsilon, t)=K(\epsilon, t)$. Then we get $\varphi\left(\Delta_{p} y_{j k l}-\xi, t / 2\right) \leq 1-\alpha$ or $\left.\vartheta\left(\Delta^{m} y_{j k l}-\xi, t / 2\right) \geq \alpha\right\}$.

Also

$$
\begin{aligned}
1-\epsilon \geq \varphi\left(\Delta^{m} y_{j k l}-\Delta^{m} y_{r s u}, t\right) & \geq \varphi\left(\Delta^{m} y_{j k l}-\xi, t / 2\right) \otimes \vartheta\left(\Delta^{m} y_{j k l}-\xi, t / 2\right) \\
& >(1-\alpha) \otimes(1-\alpha) \\
& >1-\epsilon
\end{aligned}
$$

and

$$
\begin{aligned}
\epsilon \geq \vartheta\left(\Delta_{p} y_{j k l}-\Delta_{p} y_{r s u}, t\right) & \leq \vartheta\left(\Delta_{p} y_{j k l}-\xi, t / 2\right) \odot \varphi\left(\Delta_{p} y_{j k l}-\xi, t / 2\right) \\
& <\alpha \odot \alpha \\
& <\epsilon
\end{aligned}
$$

which is not possible. Therefore $M(\epsilon, t) \subset K(\alpha, t)$ and $\delta_{3}(M(\epsilon, t))=0$ i.e. $y=$ $\left(y_{j k l}\right)$ is Δ^{m}-statistically convergent with respect to (φ, ϑ).

Coversely, assume that $y=\left(y_{j k l}\right)$ is Δ^{m}-statiscally Cauchy with respect to (φ, ϑ) but not Δ^{m}-statiscally convergent with respect to (φ, ϑ). Thus for $\epsilon>0$ and $t>0, \delta_{3}(M(\epsilon, t))=0$, where
$M(\epsilon, t)=\left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \varphi\left(\Delta^{m} y_{j k l}-\Delta^{m} y_{j_{0} k_{0} l_{0}}, t\right) \leq 1-\epsilon \quad\right.$ or $\quad \vartheta\left(\Delta^{m} y_{j k l}-\right.$ $\left.\left.\Delta^{m} y_{j_{0} k_{0} l_{0}}, t\right) \geq \epsilon\right\}$.
Take $\alpha>0$ such that $(1-\alpha) \otimes(1-\alpha)>1-\epsilon$ and $\alpha \odot \alpha<\epsilon$. Also, $\delta_{3}(K(\alpha, t))=0$, where

$$
\begin{aligned}
& K(\alpha, t) \\
= & \left\{(j, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}: \varphi\left(\Delta^{m} y_{j k l}-\xi, t / 2\right) \geq 1-\epsilon \text { or } \vartheta\left(\Delta^{m} y_{j k l}-\xi, t / 2\right)<\epsilon\right\}
\end{aligned}
$$

Now

$$
\begin{aligned}
\varphi\left(\Delta^{m} y_{j k l}-\Delta^{m} y_{j_{0} k_{0} l_{0}}, t\right) & \geq \varphi\left(\Delta^{m} y_{j k l}-\xi, t / 2\right) \otimes \vartheta\left(\Delta^{m} y_{j_{0} k_{0} l_{0}}-\xi, t / 2\right) \\
& >(1-\alpha) \otimes(1-\alpha) \\
& >1-\epsilon
\end{aligned}
$$

and

$$
\begin{aligned}
\vartheta\left(\Delta^{m} y_{j k l}-\Delta^{m} y_{j_{0} k_{0} l_{0}}, t\right) & \leq \vartheta\left(\Delta^{m} y_{j k l}-\xi, t / 2\right) \odot \varphi\left(\Delta^{m} y_{j_{0} k_{0} l_{0}}-\xi, t / 2\right) \\
& <\alpha \odot \alpha \\
& <\epsilon
\end{aligned}
$$

Therefore, $\delta_{3}\left([M(\epsilon, t)]^{c}\right)=0$ i.e. $\delta_{3}(M(\epsilon, t))=1$, which is a contradiction as $y=$ $\left(y_{j k l}\right)$ is Δ^{m}-statistically cauchy. Hence, $y=\left(y_{j k l}\right)$ is Δ^{m}-statiscally convergent with respect to (φ, ϑ).

4 Conclusion.

In this paper we defined Lacunary Δ^{m}-statistical convergence on intuitionistic fuzzy normed space and established certain results. The findings are more widespread than the equivalent normed spaces since every ordinary norm implies an intuitionistic fuzzy norm.

5 Declaration

Conflicts of interests: There is no conflict of interest.
Availibility of data and materials: This paper has no associated data.

References

[1] Antal, R., Kumar, V. and Hazarika, B., On Δ^{m}-statistical convergence double sequences in intuionistic fuzzy normed spaces, Proyecciones Journal of Mathematics 41 (2022), no. 3, 697-713.
[2] Connor, J. and Kline, J., On statistical limit points and the consistency of statistical convergence, J. Math. Anal. Appl. 197 (1996), no. 2, 392-399.
[3] Duman, O., Khan, M.K. and Orhan, C., A-statistical convergence of approximating operators, Math. Inequal. Appl. 6 (2003), 689-700.
[4] Et, M. and Colak, R., On some generalized difference difference sequence spaces, Soochow J. of Math. 24 (1995), no. 4, 377-386.
[5] Esi, A., Statistical convergence of triple sequences in topological groups, An. Univ. Craiova Ser. Math. Inform. 40 (2013), no. 1, 29-33.
[6] Esi, A. and Savas, E., On lacunary statistically convergent triple sequences in probabilistic normed space, Appl. Math. Inf. Sci. 5 (2015), 2529-2535.
[7] Esi, A., Generalized difference sequence spaces defined by Orlicz functions, General Mathematics 17 (2009), no. 2, 53-66.
[8] Esi, A., Strongly generalized difference $\left[V^{\lambda}, \Delta^{m}, p\right]$-summable sequence spaces defined by a sequence of moduli, Nihonkai Math. J. 20 (2009), no. 2, 99-108.
[9] Esi, A. and Ozdemir, K., Generalized Δ^{m}-statistical convergence in probabilistic normed space, J. Comput. Anal. Appl. 13 (2011), no. 5, 923-932.
[10] Esi, A. and Tripathy, B.C., Generalized strongly difference convergent sequences associated with multiplier sequences, Math. Slovaca 57 (2007), no. 4, 339-348 .
[11] Fast, H., Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
[12] Fridy, J.A. and Khan, M.K., Tauberian theorems via statistical convergence, J. Math. Anal. Appl. 228 (1998), no. 1, 73-95.
[13] Fridy, J.A. and Orhan, C., Lacunary statistical summability, J. Math. Anal. Appl. 173 (1993), no. 2, 497-504.
[14] Jalal, T. and Malik, I.A., I-convergent triple sequence spaces over n-normed space, Asia Pacific Journal of Mathematics 5 (2018), no. 2, 233-242.
[15] Jalal, T. and Malik, I.A., Some new triple sequence spaces over n-normed space, Proyecciones (Antofagasta) 37 (2018), no. 3, 547-564.
[16] Jalal, T. and Malik, I.A., I -Convergence of triple difference sequence spaces over n normed space, Tbilisi Mathematical Journal 11 (2018), no. 4, 93-102.
[17] Jalal, T. and Malik, I.A., Topological and algebraic properties of triple nnormed spaces, Proceedings of the Fifth International Conference on Mathematics and Computing, Springer, Singapore, 187-196, 2021.
[18] Kizmaz, H., On certain sequence vspaces, Canad. Math. Bull. 24 (1981), no. 2, 169-176.
[19] Mursaleen, M. and Mohiuddine, S.A., Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos Solitons Fractals 41 (2009), no. 5, 2414-2421.
[20] Saadati, R. and Park, J.H., On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals 27 (2006), no. 2, 331-344.
[21] Sahiner, A., Gurdal, M. and Duden,F.K., Triple sequences and their statistical convergence, Türkiye klinikleri psikiyatri dergisi, 8 (2007), no. 2, 49-55.
[22] Schweizer, B. and Sklar, A., Statistical metric spaces, Pacifc J. Math. 10 (1960), no. 1, 313-334.
[23] Tripathy, B.C., Esi, A. and Tripathy, B., On a new type of generalized difference cesaro sequence spaces, Soochow Journal of Mathematics 31 (2005), no. 3, 333-340.
[24] Tripathy, B.C. and Esi, A., A new type difference sequence spaces, International Journal of Science and Technology 1 (2006), no. 1, 11-14.
[25] Zadeh, L.A., Fuzzy sets, Information and Control, 8 (1965), no. 3, 338-353.

[^0]: ${ }^{1}$ Department of Mathematics, National Institute of Technology, Hazratbal, Srinagar -190006, Jammu and Kashmir, India, e-mail: tjalal@nitsri.net

 2* Corresponding author: Asif Hussain Jan, Department of Mathematics, National Institute of Technology, Hazratbal, Srinagar -190006, Jammu and Kashmir, India, e-mail: asif_06phd20@nitsri.net

