Bulletin of the *Transilvania* University of Braşov Series III: Mathematics and Computer Science, Vol. 4(66), No. 1 - 2024, 73-86 https://doi.org/10.31926/but.mif.2024.4.66.1.5

PSEUDO-SPECTRUM OF NON-ARCHIMEDEAN MATRIX PENCILS

Jawad ETTAYB^{*,1}

Abstract

In this paper, we define the notions of the C-trace pseudo-spectrum, the M-determinant pseudo-spectrum and the pseudo-spectrum of non-Archimedean matrix pencils. Many results are proved about the C-trace pseudo-spectrum, the M-determinant pseudo-spectrum and the pseudo-spectrum of non-Archimedean matrix pencils. Examples are given to support our work.

2000 Mathematics Subject Classification: 47A10, 47A56, 47S10. Key words: Non-Archimedean matrix pencil, determinant, trace, spectrum.

1 Introduction and results

Throughout this paper, \mathbb{K} is a non-Archimedean (n.a) non trivially complete valued field with valuation $|\cdot|$, \mathbb{Q}_p is the field of *p*-adic numbers ($p \geq 2$ being a prime) equipped with *p*-adic valuation $|\cdot|_p$, *X* is a non-Archimedean Banach space over \mathbb{K} , $\mathcal{L}(X)$ denotes the set of all bounded linear operators on *X* and $X' = \mathcal{L}(X, \mathbb{K})$ is the dual space of *X*. For more details, we refer to [11]. We denote the completion of algebraic closure of \mathbb{Q}_p under the *p*-adic valuation $|\cdot|_p$ by \mathbb{C}_p [11]. For more details on non-Archimedean pseudo-spectrum of operator pencils or matrix pencils, we refer to [4], [5] and [6]. In this paper, we study the problem of finding the eigenvalues of the generalized eigenvalue problem

$$Ax = \lambda Bx$$

for $\lambda \in \mathbb{K}$ and $x \in \mathbb{K}^n$, $\mathcal{M}_n(\mathbb{K})$ denotes the algebra of all $n \times n$ (n.a) matrices and I is the $n \times n$ identity matrix. Let $A \in \mathcal{M}_n(\mathbb{K})$, the trace and the determinant of A are denoted by Tr(A) and $\det(A)$ respectively. For more details, we refer to [1], [2], [3], [7] and [9]. We have the following definitions.

^{1*} Corresponding author, Department of mathematics and computer science, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, Fès, Morocco, email:jawad.ettayb@usmba.ac.ma

Definition 1. [6] Let X be a non-Archimedean Banach space over \mathbb{K} . For a pair (A, B) of operators in $\mathcal{L}(X)$, the spectrum $\sigma(A, B)$ of the linear operator pencil (A, B) is defined by

$$\sigma(A,B) = \{\lambda \in \mathbb{K} : A - \lambda B \text{ is not invertible in } \mathcal{L}(X)\} \\ = \{\lambda \in \mathbb{K} : 0 \in \sigma(A - \lambda B)\}.$$

The resolvent set $\rho(A, B)$ of the linear operator pencil (A, B) is the complement of $\sigma(A, B)$ in \mathbb{K} given by

$$\rho(A,B) = \{\lambda \in \mathbb{K} : R_{\lambda}(A,B) = (A - \lambda B)^{-1} \text{ exists in } \mathcal{L}(X)\}.$$

 $R_{\lambda}(A, B)$ is called the resolvent of the linear operator pencil (A, B).

Ingleton [8] showed that:

Theorem 1. [8] Let X be a non-Archimedean Banach space over a spherically complete field \mathbb{K} . For all $x \in X \setminus \{0\}$, there is $\xi \in X'$ such that $\xi(x) = 1$ and $\|\xi\| = \|x\|^{-1}$.

Example 1. [11] \mathbb{Q}_p is spherically complete.

2 *P*-adic spectral sets of matrix pencils

We introduce the following definition.

Definition 2. [2] Let $A \in \mathcal{M}_n(\mathbb{K})$, the trace of A is

$$Tr(A) = \sum_{k=1}^{n} a_{k,k},$$

where for all $k \in \{1, \dots, n\}$, $a_{k,k} \in \mathbb{K}$ are diagonal coefficients of A.

We have the following proposition.

Proposition 1. [2] Let $A, B \in \mathcal{M}_n(\mathbb{K})$ and $\lambda \in \mathbb{K}$. Then

- (i) $Tr(A + \lambda B) = Tr(A) + \lambda Tr(B)$,
- (*ii*) Tr(AB) = Tr(BA).

Furthermore, the map $Tr : \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$ is a continuous linear functional with $|Tr(A)| \leq ||A||$.

We have the following definitions.

Definition 3. [2] Let $A, B \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$. The trace pseudo-spectrum of the matrix pencil (A, B) of the form $A - \lambda B$ is denoted by $Tr_{\varepsilon}(A, B)$ and is defined as

 $Tr_{\varepsilon}(A,B) = \sigma(A,B) \cup \{\lambda \in \mathbb{K} : |Tr(A - \lambda B)| \le \varepsilon\}.$

The trace pseudo-resolvent of the matrix pencil of the form $A - \lambda B$ is denoted by $Tr\rho_{\varepsilon}(A, B)$ and is defined by

$$Tr\rho_{\varepsilon}(A,B) = \rho(A,B) \cap \{\lambda \in \mathbb{K} : |Tr(A - \lambda B)| > \varepsilon\}.$$

Definition 4. Let $A, B, C \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$. The C-trace pseudo-spectrum of the matrix pencil (A, B) of the form $A - \lambda B$ is denoted by $Tr_{\varepsilon}^C(A, B)$ and is defined as

$$Tr_{\varepsilon}^{C}(A,B) = \sigma(A,B) \cup \{\lambda \in \mathbb{K} : |Tr({}^{t}C(A-\lambda B)C)| \le \varepsilon\}$$

The C-trace pseudo-resolvent of the matrix pencil of the form $A - \lambda B$ is denoted by $Tr^C \rho_{\varepsilon}(A, B)$ and is defined by

$$Tr^{C}\rho_{\varepsilon}(A,B) = \rho(A,B) \cap \{\lambda \in \mathbb{K} : |Tr({}^{t}C(A-\lambda B)C)| > \varepsilon\}.$$

If C = I, the Definition 4 coincides with the Definition 3. We have the following theorem.

Theorem 2. Let $A, B \in \mathcal{M}_n(\mathbb{K})$. Then, for any $C \in \mathcal{M}_n(\mathbb{K})$, not null, we have:

- (i) If $0 < \varepsilon_1 \le \varepsilon_2$, $Tr^C_{\varepsilon_1}(A, B) \subset Tr^C_{\varepsilon_2}(A, B)$,
- (ii) If $\alpha \in \mathbb{K}$ and $\beta \in \mathbb{K} \setminus \{0\}$, then for any $\varepsilon > 0$, $Tr^{C}_{\varepsilon}(\beta A + \alpha B, B) = \beta Tr^{C}_{\frac{\varepsilon}{|\beta|}}(A, B) + \alpha$,
- (iii) For all $\lambda, \alpha \in \mathbb{K}, \varepsilon > 0$ and $Tr({}^tCC) \neq 0$,

$$Tr_{\varepsilon}^{C}(\alpha I, I) = \left\{ \lambda \in \mathbb{K} : |\lambda - \alpha| \le \frac{\varepsilon}{|Tr({}^{t}CC)|} \right\}.$$

- *Proof.* (i) It is clear from the definition of the *C*-trace pseudo-spectrum of matrix pencils.
 - (ii) Let $\alpha \in \mathbb{K}$ and $\beta \in \mathbb{K} \setminus \{0\}$, then it is easy to see that

$$\sigma(\beta A + \alpha B, B) = \alpha + \beta \sigma(A, B),$$

and

$$Tr_{\varepsilon}^{C}(\beta A + \alpha B, B) = \left\{ \lambda \in \mathbb{K} : |Tr({}^{t}C(\beta A + \alpha B - \lambda B)C)| \le \varepsilon \right\}$$
$$= \left\{ \lambda \in \mathbb{K} : |\beta| |Tr({}^{t}C(A - \frac{(\lambda - \alpha))}{\beta}B)C)| \le \varepsilon \right\}$$
$$= \left\{ \lambda \in \mathbb{K} : |Tr({}^{t}C(A - \frac{(\lambda - \alpha)}{\beta}B)C)| \le \frac{\varepsilon}{|\beta|} \right\}.$$

Hence $\lambda \in Tr^{C}_{\varepsilon}(\beta A + \alpha B, B)$ if, and only if, $\frac{\lambda - \alpha}{\beta} \in Tr^{C}_{\frac{\varepsilon}{|\beta|}}(A, B)$ i.e., $\lambda \in \beta Tr^{C}_{\frac{\varepsilon}{|\beta|}}(A, B) + \alpha$.

(iii) Let $\alpha, \lambda \in \mathbb{K}, \varepsilon > 0$ and $Tr({}^tCC) \neq 0$, then

$$|Tr({}^{t}C(\alpha I - \lambda I)C)| = |\lambda - \alpha||Tr({}^{t}CC)| \le \varepsilon.$$

Thus

$$Tr_{\varepsilon}^{C}(\alpha I, I) = \Big\{\lambda \in \mathbb{K} : |\lambda - \alpha| \le \frac{\varepsilon}{|Tr({}^{t}CC)|}\Big\}.$$

г	-	7
L		
L		

We have the following examples.

Example 2. Let $\mathbb{K} = \mathbb{Q}_p$ and $\varepsilon > 0$. If

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} and C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Then

$$Tr_{\varepsilon}^{C}(A,B) = \sigma(A,B) \cup \{\lambda \in \mathbb{Q}_{p} : |Tr({}^{t}C(A-\lambda B)C)|_{p} \le \varepsilon\}$$

$$= \sigma(A,B) \cup \{\lambda \in \mathbb{Q}_{p} : |Tr({}^{t}C(A-\lambda B)C)|_{p} \le \varepsilon\}$$

$$= \{\frac{1}{2},1\} \cup \{\lambda \in \mathbb{Q}_{p} : |2-3\lambda|_{p} \le \varepsilon\}.$$

Example 3. Let $\alpha, \beta \in \mathbb{K} = \mathbb{Q}_p$ be nonzero elements and $\varepsilon > 0$. If

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} and C = \begin{pmatrix} 0 & \alpha \\ \beta & 0 \end{pmatrix}.$$

Then

$$Tr_{\varepsilon}^{C}(A,B) = \sigma(A,B) \cup \{\lambda \in \mathbb{Q}_{p} : |Tr({}^{t}C(A-\lambda B)C)|_{p} \le \varepsilon\}$$
$$= \{1\} \cup \{\lambda \in \mathbb{Q}_{p} : |\alpha^{2}+\beta^{2}(1-\lambda)|_{p} \le \varepsilon\}.$$

Let r > 0, $B_f(0, r) = \{\lambda \in \mathbb{K} : |\lambda| \le r\}$ is the closed ball centered at zero with radius r. We have the following theorem.

Theorem 3. Let $A, B, C \in \mathcal{M}_n(\mathbb{K})$ such that $|Tr(^tCBC)| \neq 0$ and $\varepsilon > 0$. Then

$$Tr^{C}_{\delta}(A,B) + B_{f}(0, \frac{\varepsilon}{|Tr(^{t}CBC)|}) \subseteq Tr^{C}_{\gamma}(A,B)$$

where $\gamma = \max{\{\delta, \varepsilon\}}$. If $\delta < \varepsilon$, we have

$$Tr^{C}_{\delta}(A,B) + B_{f}(0, \frac{\varepsilon}{|Tr({}^{t}CBC)|}) \subseteq Tr^{C}_{\varepsilon}(A,B).$$

Proof. Let $A, B, C \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$. Let $\lambda \in Tr^C_{\delta}(A, B) + B_f(0, \frac{\varepsilon}{|Tr({}^tCBC)|})$, then there exists $\lambda_0 \in Tr^C_{\delta}(A, B)$ and $\lambda_1 \in B_f(0, \frac{\varepsilon}{|Tr({}^tCBC)|})$ such that $\lambda = \lambda_0 + \lambda_1$, hence

$$|Tr({}^{t}C(A - \lambda_{0}B)C)| \le \delta$$

and

$$|\lambda_1||Tr(^tCBC)| \le \varepsilon.$$

Thus,

$$|Tr({}^{t}C(A - \lambda B)C)| = |Tr({}^{t}C(A - \lambda_{0}B - \lambda_{1}B)C)|$$

$$\leq \max \left\{ |Tr({}^{t}C(A - \lambda_{0}B)C|, |\lambda_{1}||Tr({}^{t}CBC)| \right\}$$

$$\leq \max \left\{ \delta, \varepsilon \right\}.$$

Set $\gamma = \max\left\{\delta, \varepsilon\right\}$. Then,

$$Tr^{C}_{\delta}(A,B) + B_{f}(0, \frac{\varepsilon}{|Tr(^{t}CBC)|}) \subseteq Tr^{C}_{\gamma}(A,B).$$

If $\delta < \varepsilon$, then $\gamma = \varepsilon$. Consequently,

$$Tr_{\delta}^{C}(A,B) + B_{f}(0, \frac{\varepsilon}{|Tr({}^{t}CBC)|}) \subseteq Tr_{\varepsilon}^{C}(A,B).$$

Now we introduce the C-trace set of matrix pencils in non-Archimedean case as follows.

Definition 5. Let $A, B, C \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$. The C-trace set of the matrix pencil (A, B) is denoted by $tr_{\varepsilon}^C(A, B)$ and is defined as

$$tr_{\varepsilon}^{C}(A,B) = \{\lambda \in \mathbb{K} : |Tr({}^{t}C(A-\lambda B)C| \le \varepsilon\}.$$

Remark 1.

(i) For all $\varepsilon_1, \varepsilon_2 > 0$ such that $\varepsilon_2 \ge \varepsilon_1$, we have $tr_{\varepsilon_1}^C(A, B) \subseteq tr_{\varepsilon_2}^C(A, B)$. (ii) If C = I, we have $tr_{\varepsilon}^C(A, B) = tr_{\varepsilon}(A, B)$.

We have the following results.

Theorem 4. Let $A, B, D \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$. Then, for any $C \in \mathcal{M}_n(\mathbb{K})$, not null, we have:

$$tr_{\varepsilon}^{C}(A,D) + tr_{\varepsilon}^{C}(B,D) \subseteq tr_{\varepsilon}^{C}(A+B,D).$$

Proof. Let $\lambda \in tr_{\varepsilon}^{C}(A, D) + tr_{\varepsilon}^{C}(B, D)$, then there exists $\lambda_{0} \in tr_{\varepsilon}^{C}(A, D)$ and $\lambda_{1} \in tr_{\varepsilon}^{C}(B, D)$ such that $\lambda = \lambda_{0} + \lambda_{1}$. Then

$$|Tr({}^{t}C(A - \lambda_{0}D)C)| \leq \varepsilon$$
 and $|Tr({}^{t}C(B - \lambda_{1}D)C)| \leq \varepsilon$.

Thus,

$$\begin{aligned} |Tr({}^{t}C(A+B-\lambda D)C)| &= |Tr({}^{t}C(A+B-\lambda_{0}D-\lambda_{1}D)C)| \\ &= |Tr({}^{t}C(A-\lambda_{0}D)C)+Tr({}^{t}C(B-\lambda_{1}D)C)| \\ &\leq \max\left\{|Tr({}^{t}C(A-\lambda_{0}D)C)|, |Tr({}^{t}C(B-\lambda_{1}D)C)|\right\} \\ &\leq \varepsilon. \end{aligned}$$

Consequently, $\lambda \in tr^C_{\varepsilon}(A+B,D)$. Hence,

$$tr^C_{\varepsilon}(A,D)+tr^C_{\varepsilon}(B,D)\subseteq tr^C_{\varepsilon}(A+B,D).$$

Proposition 2. Let $A, B \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$. Let $\lambda, \mu \in tr_{\varepsilon}^C(A, B)$ and $\alpha \in \mathbb{K}$ such that $|\alpha| \leq 1$. Then $\alpha \lambda + (1 - \alpha)\mu \in tr_{\varepsilon}^C(A, B)$.

Proof. Let $A, B, C \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$. Let $\lambda, \mu \in tr^C_{\varepsilon}(A, B)$ and $\alpha \in \mathbb{K}$ such that $|\alpha| \leq 1$. Then $|T_{\varepsilon}({}^tC(A - \lambda B)C)| \leq \varepsilon$

$$|Tr({}^{\iota}C(A-\lambda B)C)| \le \varepsilon,$$

and

$$|Tr({}^{t}C(A-\mu B)C)| \le \varepsilon.$$

Hence

$$\begin{aligned} |Tr({}^{t}C(A - (\alpha\lambda + (1 - \alpha)\mu)B)C)| &= |Tr({}^{t}C(A - \mu B)C) + \alpha Tr({}^{t}C(A - \lambda B)C)| \\ &- \alpha Tr({}^{t}C(A - \mu B)C)| \\ &\leq \max \left\{ |Tr({}^{t}C(A - \mu B)C)|, \\ &|\alpha||Tr({}^{t}C(A - \lambda B)C)|, \\ &|\alpha||Tr({}^{t}C(A - \mu B)C)| \right\} \\ &\leq \varepsilon. \end{aligned}$$

Thus,

$$\alpha\lambda + (1-\alpha)\mu \in tr_{\varepsilon}^{C}(A,B)$$

Proposition 3. Let $A, B, C \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$ such that $||^t CAC|| < \varepsilon$. Let $\lambda, \mu \in tr_{\varepsilon}^C(A, B)$. Then

 $\lambda - \mu \in tr_{\varepsilon}^C(A, B).$

Proof. Let $A, B \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$ such that $||^t CAC|| < \varepsilon$. Let $\lambda, \mu \in tr_{\varepsilon}^C(A, B)$. By Proposition 1, we have $|Tr({}^t CAC)| \leq ||^t CAC||$. Then

$$|Tr(A - \lambda B)| \le \varepsilon,$$

and

$$|Tr(A - \mu B)| \le \varepsilon.$$

Hence

$$\begin{aligned} Tr({}^{t}C(A-(\lambda-\mu)B)C)| &= |Tr({}^{t}C(A-\lambda B)C) \\ &-Tr({}^{t}C(A-\mu B)C) + Tr({}^{t}CAC)| \\ &\leq \max \left\{ |Tr({}^{t}C(A-\lambda B)C)|, \\ &|Tr({}^{t}C(A-\mu B)C)|, |Tr({}^{t}CAC)| \right\}, \\ &\leq \varepsilon. \end{aligned}$$

Thus,

$$\lambda - \mu \in tr_{\varepsilon}^C(A, B).$$

3 *M*-determinant pseudo-spectrum of non-Archimedean matrix pencils

We introduce the following definition.

Definition 6. Let $A, B, M \in \mathcal{M}_n(\mathbb{K})$ such that $\det(M) \neq 0$ and $\varepsilon > 0$. The *M*-determinant pseudo-spectrum of the matrix pencil (A, B) is denoted by $d_{\varepsilon}^M(A, B)$ and is defined as

$$d_{\varepsilon}^{M}(A,B) = \{\lambda \in \mathbb{K} : |\det(M(A - \lambda B))| \le \varepsilon\}.$$

If $B = M = I \in \mathcal{M}_n(\mathbb{K})$, we have the following:

Definition 7. Let $A \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$. The determinant pseudo-spectrum $d_{\varepsilon}(A)$ of A is

$$d_{\varepsilon}(A) = \{\lambda \in \mathbb{K} : |\det(A - \lambda I)| \le \varepsilon\}.$$

From the definition of the M-determinant spectrum, we have the following remark.

Remark 2.

(i) If I = M, then the Definition 6 coincides with the Definition 6. of [2].

- (ii) If M = B = I, the *M*-determinant pseudo-spectrum coincides with the determinant pseudo-spectrum, i.e., $d_{\varepsilon}^{M}(A, I) = d_{\varepsilon}(A)$.
- (iii) In Definition 6, if B is invertible, then for any $\varepsilon > 0$, $\sigma_{\varepsilon}(A, B) \subseteq d_{\varepsilon}^{M}(A, B)$ and $d_{0}^{M}(A, B) = \sigma(A, B)$.
- (iv) For all unitary matrix $C \in \mathfrak{M}_n(\mathbb{K}), d^M(A, B) = d^M({}^tCAC, {}^tCBC).$

We have the following proposition.

Proposition 4. Let $A, B, M \in \mathcal{M}_n(\mathbb{K})$. Then

- (i) For all $0 < \varepsilon_1 \le \varepsilon_2$, we have $d^M_{\varepsilon_1}(A, B) \subseteq d^M_{\varepsilon_2}(A, B)$,
- (ii) If det(M) $\neq 0$, then for any $\varepsilon > 0$, $d_{\varepsilon}^{M}(\alpha I, I) = \{\lambda \in \mathbb{K} : |\lambda \alpha| \leq (\frac{\varepsilon}{|\det(M)|})^{\frac{1}{n}}\},$

(iii) For all $\alpha, \beta \in \mathbb{K}, \varepsilon > 0$ such that $\beta \neq 0, d_{\varepsilon}^{M}(\alpha I + \beta A, I) = \alpha + \beta d_{\frac{K}{|\mathcal{A}||\mathcal{A}||\mathcal{A}||}}^{M}(A, I)$.

Proof. Let $A, B \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$.

(i) For $0 < \varepsilon_1 \leq \varepsilon_2$. Let $\lambda \in d^M_{\varepsilon_1}(A, B)$, then $|\det(M(A - \lambda B))| \leq \varepsilon_1 \leq \varepsilon_2$. Hence $\lambda \in d^M_{\varepsilon_2}(A, B)$.

(ii) Let $\alpha \in \mathbb{K}$, then $|\det(M(\alpha I - \lambda I))| = |\lambda - \alpha|^n |\det(M)|$, hence

$$d_{\varepsilon}^{M}(\alpha I, I) = \{\lambda \in \mathbb{K} : |\det(M(\alpha I - \lambda I))| \le \varepsilon\} \\ = \{\lambda \in \mathbb{K} : |\lambda - \alpha|^{n} |\det(M)| \le \varepsilon\} \\ = \{\lambda \in \mathbb{K} : |\lambda - \alpha| \le (\frac{\varepsilon}{|\det(M)|})^{\frac{1}{n}}\}.$$

(iii) Let $\alpha, \beta \in \mathbb{K}$ such that $\beta \neq 0$, we have

$$\begin{aligned} d_{\varepsilon}^{M}(\alpha I + \beta A, I) &= \{\lambda \in \mathbb{K} : |\det(M(\alpha I + \beta A - \lambda I))| \leq \varepsilon\} \\ &= \{\lambda \in \mathbb{K} : |\det(M(\beta A - (\lambda - \alpha)I))| \leq \varepsilon\} \\ &= \{\lambda \in \mathbb{K} : |\beta|^{n} |\det(M(A - \frac{(\lambda - \alpha)}{\beta}I))| \leq \varepsilon\} \\ &= \{\lambda \in \mathbb{K} : \det(M(A - \frac{(\lambda - \alpha)}{\beta}I))| \leq \frac{\varepsilon}{|\beta|^{n}}\}. \end{aligned}$$

Hence,

$$\begin{split} \lambda \in d_{\varepsilon}^{M}(\alpha I + \beta A, I) & \Longleftrightarrow \quad \frac{\lambda - \alpha}{\beta} \in d_{\frac{\varepsilon}{|\beta|^{n}}}^{M}(A, I) \\ & \Longleftrightarrow \quad \lambda \in \alpha + \beta d_{\frac{\varepsilon}{|\beta|^{n}}}^{M}(A, I). \end{split}$$

We give some examples of the M-determinant pseudo-spectrum.

Example 4. Let $\mathbb{K} = \mathbb{Q}_p$ and $\varepsilon > 0$. If

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 0 & 3 \end{pmatrix} and M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

It is easy to check that

$$d_{\varepsilon}^{M}(A,B) = \{\lambda \in \mathbb{Q}_{p} : |\det(M(A-\lambda B))|_{p} \le \varepsilon\}$$
$$= \{\lambda \in \mathbb{Q}_{p} : |(\lambda-1)(3\lambda-1)|_{p} \le \varepsilon\}.$$

Example 5. Let $\mathbb{K} = \mathbb{Q}_p$ with $p \ge 2$ and $\varepsilon > 0$. If

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} and M = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}.$$

Then

$$d_{\varepsilon}^{M}(A,B) = \{\lambda \in \mathbb{Q}_{p} : |\det(M(A-\lambda B))|_{p} \le \varepsilon\} \\ = \{\lambda \in \mathbb{Q}_{p} : |2\lambda(\lambda-2)|_{p} \le \varepsilon\}.$$

Example 6. Let $\mathbb{K} = \mathbb{C}_p$ with $p \neq 2$ and $\varepsilon > 0$. Let $a, b \in \mathbb{C}_p$ such that $a^2 + b^2 = 1$, we consider

$$A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}, B = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} and M = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}.$$

It is easy to see that

$$\begin{aligned} d_{\varepsilon}^{M}(A,B) &= \{\lambda \in \mathbb{C}_{p} : |\det(M(A - \lambda B))|_{p} \leq \varepsilon\} \\ &= \{\lambda \in \mathbb{C}_{p} : |3|_{p}|(a - \lambda)(a - 2\lambda) + b^{2}|_{p} \leq \varepsilon\} \\ &= \{\lambda \in \mathbb{C}_{p} : |3|_{p}|2\lambda^{2} - 3\lambda a + 1|_{p} \leq \varepsilon\}. \end{aligned}$$

We have the following proposition.

Proposition 5. Let $M \in \mathcal{L}(\mathbb{Q}_p^n)$ such that $\det(M) \neq 0$ and $\varepsilon > 0$, let $D \in \mathcal{L}(\mathbb{Q}_p^n)$ be diagonal operator such that for all $i \in \{1, \dots, n\}$, $De_i = \lambda_i e_i$ and $\lambda_i \in \hat{\mathbb{Q}_p}$. Then

$$d_{\varepsilon}^{M}(D,I) = \{\lambda \in \mathbb{Q}_{p} : |\lambda - \lambda_{1}| \cdots |\lambda - \lambda_{n}| \le \frac{\varepsilon}{|\det(M)|} \}.$$

Proof. Let $\varepsilon > 0$. Then $D - \lambda I$ has the form

for all
$$i \in \{1, \dots, n\}, (D - \lambda)e_i = (\lambda - \lambda_i)e_i$$

where $(e_i)_{1 \leq i \leq n}$ is the canonical base of \mathbb{Q}_p^n . Then, $|\det(M(D - \lambda I))| = |\lambda - \lambda_1| \cdots |\lambda - \lambda_n| |\det(M)|$. Hence

$$d_{\varepsilon}^{M}(D,I) = \{\lambda \in \mathbb{Q}_{p} : |\det(M(D-\lambda I))| \le \varepsilon\} \\ = \{\lambda \in \mathbb{Q}_{p} : |\lambda - \lambda_{1}| \cdots |\lambda - \lambda_{n}| \le \frac{\varepsilon}{|\det(M)|}\}.$$

Non-Archimedean pseudo-spectrum of matrix pen-4 cils

We begin with the following definition.

Definition 8. [5] Let $A, B \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$. The pseudo-spectrum $\sigma_{\varepsilon}(A, B)$ of a matrix pencil (A, B) is defined by

$$\sigma_{\varepsilon}(A,B) = \sigma(A,B) \cup \{\lambda \in \mathbb{K} : \|(A - \lambda B)^{-1}\| > \varepsilon^{-1}\}.$$

The pseudo-resolvent $\rho_{\varepsilon}(A, B)$ of a matrix pencil (A, B) is defined by

$$\rho_{\varepsilon}(A,B) = \rho(A,B) \cap \{\lambda \in \mathbb{K} : \|(A-\lambda B)^{-1}\| \le \varepsilon^{-1}\},\$$

by convention $||(A - \lambda B)^{-1}|| = \infty$ if, and only if, $\lambda \in \sigma(A, B)$.

We have the following results.

Proposition 6. Let $A, B \in \mathcal{M}_n(\mathbb{K})$ and $\varepsilon > 0$, we have

- (i) $\sigma(A,B) = \bigcap_{\varepsilon > 0} \sigma_{\varepsilon}(A,B).$
- (*ii*) For all ε_1 and ε_2 such that $0 < \varepsilon_1 < \varepsilon_2$, $\sigma(A, B) \subset \sigma_{\varepsilon_1}(A, B) \subset \sigma_{\varepsilon_2}(A, B)$.

- *Proof.* (i) By Definition 8, we have for all $\varepsilon > 0$, $\sigma(A, B) \subset \sigma_{\varepsilon}(A, B)$. Conversely, if $\lambda \in \bigcap_{\varepsilon > 0} \sigma_{\varepsilon}(A, B)$, then for all $\varepsilon > 0$, $\lambda \in \sigma_{\varepsilon}(A, B)$. If $\lambda \in \sigma(A, B)$, there is nothing to prove. If $||(A \lambda B)^{-1}|| > \varepsilon^{-1}$, taking limits as $\varepsilon \to 0^+$, we get $||(A \lambda B)^{-1}|| = \infty$. Thus $\lambda \in \sigma(A, B)$.
 - (ii) For ε_1 and ε_2 such that $0 < \varepsilon_1 < \varepsilon_2$. Let $\lambda \in \sigma_{\varepsilon_1}(A, B)$, then $||(A \lambda B)^{-1}|| > \varepsilon_1^{-1} > \varepsilon_2^{-1}$. Hence $\lambda \in \sigma_{\varepsilon_2}(A, B)$.

Theorem 5. Let X be a non-Archimedean finite dimensional Banach space over \mathbb{Q}_p such that $||X|| \subseteq |\mathbb{Q}_p|$, let $A, B \in \mathcal{L}(X)$ and $\varepsilon > 0$. Then,

$$\sigma_{\varepsilon}(A,B) = \bigcup_{C \in \mathcal{L}(X) : \|C\| < \varepsilon} \sigma(A+C,B).$$

Proof. Let $A, B \in \mathcal{L}(X)$ and $\varepsilon > 0$, let $\lambda \in \bigcup_{C \in \mathcal{L}(X): ||C|| < \varepsilon} \sigma(A + C, B)$. We argue

by contradiction. Suppose that $\lambda \in \rho(A, B)$ and $||(A - \lambda B)^{-1}|| \leq \varepsilon^{-1}$. Consider the bounded linear operator D defined on X by

$$D = \sum_{n=0}^{\infty} (A - \lambda B)^{-1} \bigg(-C(A - \lambda B)^{-1} \bigg)^n.$$

It is easy to see that D can be written as follows

$$D = (A - \lambda B)^{-1} (I + C(A - \lambda B)^{-1})^{-1}.$$

Hence for all $x \in X$, $D(I + C(A - \lambda B)^{-1})x = (A - \lambda B)^{-1}x$. Let $y = (A - \lambda B)^{-1}x$, then, for all $y \in X$, $D(A - \lambda B + C)y = y$. Moreover, we have

for all
$$x \in X$$
, $(A - \lambda B + C)Dx = x$.

Hence, we conclude that $(A - \lambda B + C)$ is invertible and $D = (A - \lambda B + C)^{-1}$, which is a contradiction. Thus $\lambda \in \sigma_{\varepsilon}(A, B)$.

Conversely, let $A, B, C \in \mathcal{L}(X)$ and $\varepsilon > 0$, suppose that $\lambda \in \sigma_{\varepsilon}(A, B)$. We discuss two cases.

First case: If $\lambda \in \sigma(A, B)$, we may put C = 0.

Second case: Assume that $\lambda \in \sigma_{\varepsilon}(A, B)$ and $\lambda \notin \sigma(A, B)$. Then, there exists $y \in X \setminus \{0\}$ such that

$$\frac{\|(A - \lambda B)^{-1}y\|}{\|y\|} > \frac{1}{\varepsilon}.$$
 (1)

Since $||X|| \subseteq |\mathbb{Q}_p|$, then there exists $c \in \mathbb{Q}_p \setminus \{0\}$ such |c| = ||y||. Then, setting $z = c^{-1}y$, then ||z|| = 1. Hence, we obtain

$$\begin{aligned} \|(A - \lambda B)^{-1} z\| &= \|(A - \lambda B)^{-1} c^{-1} y\| \\ &= \frac{\|(A - \lambda B)^{-1} y\|}{|c|} \\ &= \frac{\|(A - \lambda B)^{-1} y\|}{\|y\|}. \end{aligned}$$

From (1),

$$||(A - \lambda B)^{-1}z|| > \frac{1}{\varepsilon}.$$
 (2)

By the same reasoning above, we infer that there exists $c_0 \in \mathbb{Q}_p \setminus \{0\}$ such that $|c_0| = ||(A - \lambda B)^{-1}z||$. Then, setting $z_0 = c_0^{-1}(A - \lambda B)^{-1}z$ which yields $z_0 \in \mathbb{Q}_p$ and $||z_0|| = 1$. Consequently, we have

$$\begin{aligned} \|(A - \lambda B)z_0\| &= \|(A - \lambda B)(A - \lambda B)^{-1}c_0^{-1}z\| \\ &= \frac{\|z\|}{|c_0|}. \end{aligned}$$

Using the fact that ||z|| = 1, we deduce from (2) that

$$\|(A - \lambda B)z_0\| = \|(A - \lambda B)^{-1}z\|^{-1},$$

< ε .

By Theorem 1, there exists $\phi \in X'$ such that $\phi(z_0) = 1$ and $\|\phi\| = \|z_0\|^{-1} = 1$. We consider the following linear operator given by

for all
$$y \in X$$
, $Cy = -\phi(y)(A - \lambda B)z_0$.

Clearly, C is a bounded linear operator on X, since for all $y \in X$,

$$\begin{aligned} \|Cy\| &= \|\phi(y)\| \|(A - \lambda B)z_0\| \\ &< \varepsilon \|y\|. \end{aligned}$$

Then, $||C|| < \varepsilon$. Moreover, we have $(A - \lambda B + C)z_0 = 0$. So, $(A - \lambda B + C)$ is not invertible. Consequently,

$$\lambda \in \bigcup_{C \in \mathcal{L}(X) : \|C\| < \varepsilon} \sigma(A + C, B).$$

We finish with some examples of the pseudo-spectrum of matrix pencils.

Example 7. Let $\mathbb{K} = \mathbb{Q}_p$ and $\varepsilon > 0$. If

$$A = \begin{pmatrix} \lambda_1 & 1\\ 0 & \lambda_2 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & -1\\ 0 & 1 \end{pmatrix},$$

where $\lambda_1, \lambda_2 \in \mathbb{Q}_p \setminus \{0\}$. Then

$$\sigma_{\varepsilon}(A,B) = \sigma(A,B) \cup \{\lambda \in \mathbb{Q}_p : \|(A-\lambda B)^{-1}\| > \frac{1}{\varepsilon}\}$$

= $\{\lambda_1,\lambda_2\} \cup \{\lambda \in \mathbb{Q}_p : \|(A-\lambda B)^{-1}\| > \frac{1}{\varepsilon}\},$

where $||(A - \lambda B)^{-1}|| = \max\{\frac{1}{|\lambda_1 - \lambda|_p}, \frac{|\lambda + 1|_p}{|(\lambda_1 - \lambda)(\lambda_2 - \lambda)|_p}, \frac{1}{|\lambda_2 - \lambda|_p}\}.$

Example 8. Let $\mathbb{K} = \mathbb{Q}_p$ and $\varepsilon > 0$. If

$$A = \begin{pmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$

where $\lambda_1, \lambda_2 \in \mathbb{Q}_p$. Then it is easy to see that

$$\sigma_{\varepsilon}(A,B) = \sigma(A,B) \cup \{\lambda \in \mathbb{Q}_p : \|(A-\lambda B)^{-1}\| > \frac{1}{\varepsilon}\}$$

= $\{\lambda_1,\lambda_2\} \cup \{\lambda \in \mathbb{Q}_p : \max\{\frac{1}{|\lambda_1-\lambda|_p}, \frac{1}{|\lambda_2-\lambda|_p}\} > \frac{1}{\varepsilon}\}.$

Example 9. Let $\mathbb{K} = \mathbb{Q}_p$ and $\varepsilon > 0$. If

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

where $\lambda_1, \lambda_2 \in \mathbb{Q}_p$. Then it is easy to check that

$$\sigma_{\varepsilon}(A,B) = \sigma(A,B) \cup \{\lambda \in \mathbb{Q}_p : \|(A-\lambda B)^{-1}\| > \frac{1}{\varepsilon}\}$$

= $\{0,1\} \cup \{\lambda \in \mathbb{Q}_p : \max\{\frac{1}{|\lambda|_p}, \frac{1}{|\lambda(1-\lambda)|_p}\} > \frac{1}{\varepsilon}\}.$

Example 10. Let $\mathbb{K} = \mathbb{Q}_p$ and $\varepsilon > 0$. If

$$A = \begin{pmatrix} 3 & 0 \\ 1 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}.$$

Then one can see that

$$\sigma_{\varepsilon}(A, B) = \sigma(A, B)$$
$$= \mathbb{Q}_p.$$

Acknowledgement. The author would like to thank the editor and the anonymous referee for their valuable efforts, comments and suggestions which improved the quality of this paper.

References

- Ammar, A., Jeribi, A. and Mahfoudhi, K., A new spectral approach in the matrix algebra: C-Determinant Pseudospectrum, Russian Math. 65 (2021), no. 7, 1-7.
- [2] Blali, A., El Amrani, A. and Ettayb, J., Some spectral sets of linear operator pencils on non-Archimedean Banach spaces, Bull. Transilv. Univ. Braşov, Ser. III, Math. Comput. Sci. 2(64) (2022), no. 1, 41-56.
- [3] Dorsselaer, J.L.M. van, Pseudospectra for matrix pencils and stability of equilibria, BIT (1997), 833-845.
- [4] El Amrani, A., Ettayb, J. and Blali, A., On pencil of bounded linear operators on non-Archimedean Banach spaces, Bol. Soc. Paran. Mat. 42 (2024), 1-10.
- [5] El Amrani, A., Ettayb, J. and Blali, A., Pseudospectrum and condition pseudospectrum of non-archimedean matrices, Journal of Prime Research in Mathematics, 18 (2022), no. 1, 75-82.
- [6] Ettayb, J., Pseudospectrum and essential pseudospectrum of bounded linear operator pencils on non-Archimedean Banach spaces, submitted.
- [7] Horn, R.A. and Johnson, C.R., *Topics in matrix analysis*, Cambridge University Press, 1991.
- [8] Ingleton, A.W., The Hahn-Banach theorem for non-Archimedean valued fields, Proc. Cambridge Philos. Soc. 48 (1952), 41-45.
- Krishna Kumar, G., Determinant spectrum: a generalization of eigenvalues, Funct. Anal. Approx. Comput. 10 (2018), no.2, 1-12.
- [10] Möller, M. and Pivovarchik, V., Spectral theory of operator pencils, Hermite-Biehler functions, and their applications, Birkhäuser, 2015.
- [11] Rooij, A.C.M. van, Non-Archimedean functional analysis. Monographs and Textbooks in Pure and Applied Math., 51 Marcel Dekker, Inc., New York, 1978.
- [12] Trefethen, L.N. and Embree, M., Spectra and pseudospectra: The behavior of nonnormal matrices and operators, Princeton University Press, Princeton, 2005.

Jawad Ettayb