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PSEUDO-SPECTRUM OF NON-ARCHIMEDEAN MATRIX
PENCILS
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Abstract

In this paper, we define the notions of the C-trace pseudo-spectrum, the
M-determinant pseudo-spectrum and the pseudo-spectrum of non-Archimedean
matrix pencils. Many results are proved about the C-trace pseudo-spectrum,
the M-determinant pseudo-spectrum and the pseudo-spectrum of non- Archimedean
matrix pencils. Examples are given to support our work.
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1 Introduction and results

Throughout this paper, K is a non-Archimedean (n.a) non trivially complete
valued field with valuation | - |, Q, is the field of p-adic numbers (p > 2 being
a prime) equipped with p-adic valuation |.|,, X is a non-Archimedean Banach
space over K, £(X) denotes the set of all bounded linear operators on X and
X' = L(X,K) is the dual space of X. For more details, we refer to [11]. We
denote the completion of algebraic closure of Q, under the p-adic valuation |- |,
by C, [11]. For more details on non-Archimedean pseudo-spectrum of operator
pencils or matrix pencils, we refer to [4], [5] and [6]. In this paper, we study the
problem of finding the eigenvalues of the generalized eigenvalue problem

Ax = \Bzx

for A € K and z € K", M,,(K) denotes the algebra of all n x n (n.a) matrices and
I is the n x n identity matrix. Let A € M, (K), the trace and the determinant
of A are denoted by Tr(A) and det(A) respectively. For more details, we refer to
[1], [2], [3], [7] and [9]. We have the following definitions.
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Definition 1. [6] Let X be a non-Archimedean Banach space over K. For a pair
(A, B) of operators in L(X), the spectrum o(A, B) of the linear operator pencil
(A, B) is defined by

o(A,B) = {AeK: A— ABisnot invertible in L(X)}
= {AeK:0€0(A—-AB)}.

The resolvent set p(A, B) of the linear operator pencil (A, B) is the complement
of 0(A, B) in K given by

p(A,B) ={N€K: Ry\(A,B) = (A—\B)" ! emists in L(X)}.
R\ (A, B) is called the resolvent of the linear operator pencil (A, B).
Ingleton [8] showed that:

Theorem 1. [8] Let X be a non-Archimedean Banach space over a spherically
complete field K. For all x € X\{0}, there is £ € X' such that {(x) = 1 and

€l = Nl
Example 1. [11] Q, is spherically complete.

2 P-adic spectral sets of matrix pencils

We introduce the following definition.

Definition 2. [2] Let A € M,,(K), the trace of A is
Tr(A) = Zalakv
k=1

where for all k € {1,--- ,n}, apr € K are diagonal coefficients of A.
We have the following proposition.
Proposition 1. [2] Let A, B € M,,(K) and X\ € K. Then
(i) Tr(A+ AB) =Tr(A) + \XT'r(B),
(ii) Tr(AB) = Tr(BA).
Furthermore, the map Tr : M, (K) — K is a continuous linear functional with
[Tr(A)] < [IA]l.
We have the following definitions.
Definition 3. [2] Let A, B € M,,(K) and € > 0. The trace pseudo-spectrum of the
matriz pencil (A, B) of the form A — AB is denoted by Tre(A, B) and is defined
" Tre(A,B) =0(A,B)U{)N € K: |Tr(A— AB)| <e}.

The trace pseudo-resolvent of the matriz pencil of the form A — AB is denoted by
Trpe(A, B) and is defined by

Trp:(A,B) =p(A,B)N{X € K: |Tr(A— AB)| > ¢}.
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Definition 4. Let A,B,C € M,(K) and € > 0. The C-trace pseudo-spectrum
of the matriz pencil (A, B) of the form A — AB is denoted by TrS (A, B) and is
defined as

Tré(A,B) = o(A,B)U{A e K: [Tr(!C(A — AB)C)| < e}.

The C-trace pseudo-resolvent of the matriz pencil of the form A — AB is denoted
by Tr¢p.(A, B) and is defined by

Tr¢p.(A, B) = p(A,B) N {\ e K: |Tr(!C(A — AB)C)| > ¢}.

If C = 1, the Definition 4 coincides with the Definition 3. We have the
following theorem.

Theorem 2. Let A, B € M,,(K). Then, for any C € M, (K), not null, we have:
(i) If 0 < ey < ey, TrC (A, B) C Tré, (A, B),
(i) If « € K and B € K\{0}, then for any ¢ > 0, TrC(BA + aB,B) =

ﬂTT% (A, B) + a,

(iii) For all \,a € K,e > 0 and Tr(!CC) # 0,

c _ N — ol < €
Tr: (al,I) {)\GK.M a|_\T7“(tC’C)\}'

Proof. (i) It is clear from the definition of the C-trace pseudo-spectrum of ma-
trix pencils.

(ii) Let o € K and 8 € K\{0}, then it is easy to see that
U(/BA +aB, B) =a+ BU(AvB)a
and

Tr(BA+aB,B) =

—

AeK: |[Tr({C(BA + aB — AB)C)| < g}
(A—a))

SB)0) < g}
NeK: TritcA - A=Y gy < i}.

ANeK:|8)|Tr(*C(A -

I
—

Il
=

s

Hence A\ € Tr¢(BA + aB,
BTT’%(A, B) + a.

) if, and only if, )‘77“

(iii) Let a, A € K,e > 0 and Tr(!CC) # 0, then
ITr('C(al — AI)C)| = |X — a||Tr(*CC)| < e.
Thus

c _ Sy <
TrC(al, 1) = {A eK:[A—a| < \Tr(tCC)|}'
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We have the following examples.

Example 2. Let K = Q, and ¢ > 0. If
11 10 0 1
A—<0 1>’B_<O 2>andC—(1 0>.

Tr¢(A,B) = o(A,B)U{N€Q,: |Tr('C(A—AB)C)|, <e
o(A,B)U{N € Q,: |Tr(*C(A - AB)O)|, < ¢}

- {%,1}U{)\€Qp:|2—3>\|p§5}.

Then

Example 3. Let o, € K= Q) be nonzero elements and € > 0. If
1 2 0 0 0 «
A-(O 1)’B_(O 1>andC—<6 0).

Tr¢(A,B) = o(A,B)U{NeQ,: |Tr('C(A—AB)C)|, <&}
= {Bu{reQ:le®+8°1-N), <e}

Let r > 0, Bf(0,7) = {\ € K: |A\] < r} is the closed ball centered at zero with
radius r. We have the following theorem.

Then

Theorem 3. Let A, B,C € M,,(K) such that |Tr(!*CBC)| # 0 and € > 0. Then

Tr§ (A, B) + By (0 ) CTr{(A, B)

€
"|Tr(tCBC)|
where v = max{d,e}. If § < e, we have

€

Tr§ (A, B) + By(0, W) -

Tr¢(A, B).

Proof. Let A, B,C € M,(K) and € > 0. Let A € Tr§ (A, B) + B;(0, MTCH)’

then there exists \g € 77§ (A, B) and A\ € By(0, \Tr(tETC)l) such that A = Mg+ Ay,
hence
|Tr(*C(A = B)C)| <6
and
M| Tr(fCBC)| <e.
Thus,
ITr(*C(A—AB)C)| = |[Tr(*C(A— XoB — \1B)C)|
< max {|Tr(\C(A - 2B)C], |M|[Tr('CBO)|}
< el )
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Set v = max {5, 5}. Then,

9

Tr§ (A, B) + Bf(0, ———————) C TrS(A, B).
s ( ) )+ f(O, |T7"(tCBC)|> T ( )
If 6 < g, then v = . Consequently,
C £
Trg (A,B)+Bf(0,7|TT(tCBC)|) Tr¢ (A, B).

O]

Now we introduce the C-trace set of matrix pencils in non-Archimedean case
as follows.

Definition 5. Let A,B,C € M, (K) and € > 0. The C-trace set of the matric
pencil (A, B) is denoted by tr¢ (A, B) and is defined as

tr9(A,B) = {A e K: [Tr(!C(A — AB)C| < }.

Remark 1.
(i) For all 1,2 > 0 such that €3 > €1, we have trS (A, B) C tr& (A, B).
(ii) If C = I, we have tr (A, B) = tr.(A, B).

We have the following results.

Theorem 4. Let A,B,D € M,(K) and ¢ > 0. Then, for any C € M, (K), not
null, we have:
r(A, D)+ tr¢(B, D) C tr(A + B, D).

Proof. Let A € tr&(A, D) + trf(B, D), then there exists A\g € tr¢(4, D) and
A1 € tr9 (B, D) such that \ = )\0 + A1. Then

|Tr(*C(A — X\D)C)| < eand |Tr(!C(B — \D)C)| <e.
Thus,
ITr(*C(A+ B —AD)C)| = |Tr(*C(A+ B — XD — A\ D)C)]
Tr(*C(A — A\ D)C) + Tr(!C(B — M D)C))|
max {|Tr(tC(A —AoD)C)|, [Tr(tC(B — AlD)C)\}

E.

IN A

Consequently, \ € tr (A+ B, D). Hence,
r(A, D) +tr¢(B,D) C tr’(A + B, D).
O

Proposition 2. Let A,B € M, (K) and ¢ > 0. Let \,u € tr&(A,B) and a € K
such that |a| < 1. Then aX + (1 — a)u € tr& (A, B).
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Proof. Let A,B,C € M,(K) and ¢ > 0. Let \,u € tr¢(A, B) and o € K such
that |o| < 1. Then
|Tr(*C(A - AB)C)| < ¢,

and
Tr(*C(A — uB)C)| < e.
Hence
ITr(*C(A - (aX+ (1 —a)p)B)C)| = |[Tr(*C(A— pB)C)+ oTr(*C(A — AB)C)
—aTr("C(A — uB)C)
< max{\Tr(tC(A uB)C)|,
o[ Tr("C(A = AB)C),
allTr('C(A - uB)O)|}
< e
Thus,

al+ (1 —a)uetrf(A,B).
O

Prop051t10n 3. Let A,B,C € M,(K) and ¢ > 0 such that |'!CAC| < e. Let
M€ tré(A, B). Then
A—petrf(A, B).

Proof. Let A, B € M, (K) and € > 0 such that |!\CAC|| < e. Let A\, u € tr&(A, B).
By Proposition 1, we have [Tr(!CAC)| < ||!CAC||. Then

ITr(A—AB)| <e,

and
|Tr(A—uB)| <e.
Hence
ITr(*C(A— (A —p)B)C)| = |Tr(*C(A—-AB)C)
~Tr(*C(A - uB)C)+ Tr(*CAC)|
< max {\TT(tC(A — AB)C)|,
Tr('C(A = uB)O), ITr('CAC)|
< e
Thus,

A—puetrf(A B).
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3 M-determinant pseudo-spectrum of non-Archimedean
matrix pencils

We introduce the following definition.

Definition 6. Let A, B, M € M,,(K) such that det(M) # 0 and € > 0. The M-
determinant pseudo-spectrum of the matriz pencil (A, B) is denoted by dM (A, B)
and is defined as

dM(A,B) = {\ € K:|det(M(A — AB))| < ¢e}.
If B=M =1 e M,(K), we have the following:

Definition 7. Let A € M, (K) and € > 0. The determinant pseudo-spectrum
d-(A) of A is
d:(A) ={N e K:|det(A— \)| < e}

From the definition of the M-determinant spectrum, we have the following
remark.

Remark 2.
(i) If I = M, then the Definition 6 coincides with the Definition 6. of [2].

(ii) If M = B = I, the M-determinant pseudo-spectrum coincides with the deter-
minant pseudo-spectrum, i.e., dM (A, I) = d.(A).

(i4) In Definition 6, if B is invertible, then for any ¢ > 0, 0.(A, B) C dM (A, B)
and dY (A, B) = o(A, B).

(iv) For all unitary matriz C € M, (K), d™ (A, B) = dM(!CAC,! CBC).
We have the following proposition.
Proposition 4. Let A, B, M € M, (K). Then
(i) For all 0 < ey < &3, we have d} (A, B) C d¥ (A, B),
(ii) If det(M) # 0, then for any e > 0, dM(al,I) = {A € K : |\ —a| <
(raeecamy) ™

(iii) For all o, B € K, > 0 such that B # 0, dM (ol + BA, I) = a+ﬂd]|\;[%n(‘4’ I).

Proof. Let A, B € M, (K) and ¢ > 0.

(i) For 0 < e1 < £9. Let A € d (A, B), then |det(M(A — AB))| < &1 < es.
Hence A € dX (A, B).

(ii) Let a € K, then | det(M (ol — NI))| = |\ — «|™| det(M )], hence
dM(al, 1) = {NeK:|det(M(al — \))| < ¢}
= {AeK:|A—a|"|det(M)| <e}

= {AeK:|A—a|g(|det5W)%}.
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(iii) Let «, 8 € K such that 8 # 0, we have

dM(al + BA,T) = {NeK:|
= {AeK:|

= {(AeK:det(M(A—

Hence,

NedM(al +BAT) —

det(M(al + A — X]))| < &}
det(M(BA — (A —a)I))| < e}

(AEK: |5"| det(M(A — “ga)fm <o
A—a) e
o)<
A—«
3 edfl‘jaln(A,I)

= Aea+pdY% (AI).

€
18]

We give some examples of the M-determinant pseudo-spectrum.

Example 4. Let K = Q, and ¢ > 0. If

12 11
AZ(O 1>’B:<0 3

It is easy to check that

Joasi=(3 )

dM(A,B) = {AeQ,:|det(M(A—AB)), <<}
= {AeQy:|(A-1)BA=1)|, <e}.

Example 5. Let K = Q, with p > 2 and ¢ > 0. If

11 10
A_<1 1>’B_<o 1

Then

)war=(3 )

dM(A,B) = {Ae€Q,:|det(M(A—AB))|, <e}
= {AeQp:[2\(A—-2)[p, <e}.

Example 6. Let K = C, withp # 2 and e
we consider

> 0. Let a,b € C,, such that a®*+b* = 1,

a —b 2 0 1 0
A_<b a),3_<0 1) andM_<0 3).
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It is easy to see that

dM(A,B) = {N€C,:|det(M(A—AB))|, <¢}
= {AeCy: Bllla—N(a—2\) + b, <e}
= (A€ Cp:|3|p12)% —3xa + 1|, < ¢}
We have the following proposition.

Proposition 5. Let M € £(Q)) such that det(M) # 0 and e > 0, let D € £L(Q})
be diagonal operator such that for all i € {1,--- ,n}, De; = \ie; and \; € Q.
Then .
d¥(D,T) = {\ A= M) A=A € = )
5( ) ) { GQP | 1| | |_|det(M)]}
Proof. Let € > 0. Then D — AI has the form
foralli e {1,---,n}, (D—MNei=(A—X\)e;

where (e;)1<i<n is the canonical base of Qp-
Then, |det(M (D — XI))| = |A = A1] -+ |A — Ay|| det(M)|. Hence

dM(D, 1) = {NeQ,:|det(M(D — \I))| < ¢}

IS
= {A A=A < 1
{ E@p | 1| | ’— |d6t(M)‘}

O

4 Non-Archimedean pseudo-spectrum of matrix pen-
cils
We begin with the following definition.

Definition 8. [5/ Let A, B € M,,(K) and ¢ > 0. The pseudo-spectrum o-(A, B)
of a matriz pencil (A, B) is defined by

0:(A,B) =c(A,B)U{NEK: [|(A=AB) Y| > '}
The pseudo-resolvent pe(A, B) of a matrixz pencil (A, B) is defined by
p-(A,B) = (A, B)N{A € K: [(A—AB) Y[ <},
by convention ||[(A — AB)™!|| = oo if, and only if, A € o(A, B).
We have the following results.

Proposition 6. Let A, B € M,,(K) and € > 0, we have

(i) 0(A,B) = () 0-(A, B).

e>0

(ii) For all 1 and €3 such that 0 < g1 < €2, 0(A, B) C 0,(A, B) C 0.,(A, B).
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Proof. (i) By Definition 8, we have for all ¢ > 0, o(A, B) C 0.(A, B). Con-
versely, if \ € ﬂ 0:(A, B), then for alle > 0, A € 0.(A, B). If A € 0(4, B),

e>0
there is nothing to prove. If |(A — AB)™Y|| > 7!, taking limits as ¢ — 07,

we get [|(A — AB)7!|| = co. Thus A € o(4, B).

(ii) For e1 and &3 such that 0 < &1 < &3. Let A € 0., (4, B), then ||[(A—AB)~ || >
e;' > eyt Hence \ € 0.,(A, B).
O

Theorem 5. Let X be a non-Archimedean finite dimensional Banach space over
Qp such that | X|| C |Qp|, let A,B € L(X) and € > 0. Then,

0-(A,B) = U o(A+C,B).
Cel(X):|Cll<e

Proof. Let A,B € L(X) and € > 0, let A € U o(A+ C,B). We argue
Cel(X):||Cll<e

by contradiction. Suppose that A € p(A4, B) and ||(A — AB)~!|| <e7 L.

Consider the bounded linear operator D defined on X by

D= i(A —AB)! ( — CO(A - AB)1>n.
n=0

It is easy to see that D can be written as follows
D=(A-\B)YI+C(A-AB)"H™L.

Hence for all z € X, D(I + C(A— AB) )z = (A - \B) 2.
Let y = (A — AB) !z, then, for all y € X, D(A — AB + C)y = y. Moreover, we
have

for allz € X, (A—AB+C)Dx = =x.

Hence, we conclude that (A — AB + C) is invertible and D = (4 — AB + C)},
which is a contradiction. Thus A € o.(A4, B).

Conversely, let A, B,C € £L(X) and € > 0, suppose that A € o.(A4, B). We discuss
two cases.

First case: If A € 0(A, B), we may put C' = 0.

Second case: Assume that A\ € 0.(A, B) and A ¢ o(A, B). Then, there exists y € X\{0}

such that )
A—AB)” 1
I(A-AB)"y| 1 "
[y €

Since ||X || C |Qp|, then there exists ¢ € Q,\{0} such |c| = ||y||. Then, setting
z = ¢ 'y, then ||z|| = 1. Hence, we obtain
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(A= AB) 2l = (A= AB) ey
(4~ AB) 1y
e
A B
[P
From (1),
(4~ AB) 2] > 1. &)

By the same reasoning above, we infer that there exists ¢p € Q,\{0} such
that |co| = ||(A—AB)~'z|. Then, setting 2o = c; ' (A — AB)~'z which yields
29 € Qp and |[|zg]| = 1. Consequently, we have

I(A=AB)zol = [I(A=AB)(A—AB) "¢ 2|

II=l

lcol
Using the fact that ||z|| = 1, we deduce from (2) that

I(A=AB)zl = (A= B)"2| 7,
<E.

By Theorem 1, there exists ¢ € X’ such that ¢(z9) = 1 and ||¢|| = ||20]| 7% = 1.
We consider the following linear operator given by

forally € X, Cy = —o¢(y)(A — AB)z.

Clearly, C is a bounded linear operator on X, since for all y € X,

ICyll = Nle)III(A = AB)zol|,
< ellyll-

Then, ||C|| < e. Moreover, we have (A —AB+ C)zy = 0. So, (A —AB+ () is not
invertible. Consequently,

A€ U o(A+C,B).
Cel(X):||Cll<e

We finish with some examples of the pseudo-spectrum of matrix pencils.
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Example 7. Let K= Q, and € > 0. If
(M1 (1 -1
A_<0 /\2> cmdB—(O 1),
where A1, A2 € Q\{0}. Then
1
0:(A,B) = o(AB)U{AEQ,:[[(A-AB)7| > o)

= DU e (A-AB) > ),

_ . 1 [A+1] 1
where [[(A = AB) ™| = max{ ;x50 o= n e e

Example 8. Let K= Q, and ¢ > 0. If

(A O (1 0
A—(O )\2> cmdB-(O 1>
where A\, A2 € Qp. Then it is easy to see that

0:(4,B) = o(AB)U{AeQ,: (A~ AB) > 1)

: L)
A=Al [A2 = Alp e’

= {2} U{XeQ,: max{

Example 9. Let K= Q, and € > 0. If

1 1 1 1
A—<1 1) andB-(O 1)
where A1, A2 € Qp,. Then it is easy to check that

0:(AB) = o(AB)UEQ,: (4~ AB)| > 1)

— {0,1}U{AEQ,: max{’;’p, M} > %}.

Example 10. Let K = Q, and ¢ > 0. If
3 0 10
A_<1 O> andB—<2 0).

o:(A,B) = o(A,B)
= Qp-
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Then one can see that
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