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Abstract

In this paper, we define the notions of the C-trace pseudo-spectrum, the
M -determinant pseudo-spectrum and the pseudo-spectrum of non-Archimedean
matrix pencils. Many results are proved about the C-trace pseudo-spectrum,
theM -determinant pseudo-spectrum and the pseudo-spectrum of non-Archimedean
matrix pencils. Examples are given to support our work.
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1 Introduction and results

Throughout this paper, K is a non-Archimedean (n.a) non trivially complete
valued field with valuation | · |, Qp is the field of p-adic numbers (p ≥ 2 being
a prime) equipped with p-adic valuation |.|p, X is a non-Archimedean Banach
space over K, L(X) denotes the set of all bounded linear operators on X and
X ′ = L(X,K) is the dual space of X. For more details, we refer to [11]. We
denote the completion of algebraic closure of Qp under the p-adic valuation | · |p
by Cp [11]. For more details on non-Archimedean pseudo-spectrum of operator
pencils or matrix pencils, we refer to [4], [5] and [6]. In this paper, we study the
problem of finding the eigenvalues of the generalized eigenvalue problem

Ax = λBx

for λ ∈ K and x ∈ Kn, Mn(K) denotes the algebra of all n× n (n.a) matrices and
I is the n × n identity matrix. Let A ∈ Mn(K), the trace and the determinant
of A are denoted by Tr(A) and det(A) respectively. For more details, we refer to
[1], [2], [3], [7] and [9]. We have the following definitions.
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Definition 1. [6] Let X be a non-Archimedean Banach space over K. For a pair
(A,B) of operators in L(X), the spectrum σ(A,B) of the linear operator pencil
(A,B) is defined by

σ(A,B) = {λ ∈ K : A− λB is not invertible in L(X)}
= {λ ∈ K : 0 ∈ σ(A− λB)}.

The resolvent set ρ(A,B) of the linear operator pencil (A,B) is the complement
of σ(A,B) in K given by

ρ(A,B) = {λ ∈ K : Rλ(A,B) = (A− λB)−1 exists in L(X)}.

Rλ(A,B) is called the resolvent of the linear operator pencil (A,B).

Ingleton [8] showed that:

Theorem 1. [8] Let X be a non-Archimedean Banach space over a spherically
complete field K. For all x ∈ X\{0}, there is ξ ∈ X ′ such that ξ(x) = 1 and
∥ξ∥ = ∥x∥−1.

Example 1. [11] Qp is spherically complete.

2 P -adic spectral sets of matrix pencils

We introduce the following definition.

Definition 2. [2] Let A ∈ Mn(K), the trace of A is

Tr(A) =
n∑

k=1

ak,k,

where for all k ∈ {1, · · · , n}, ak,k ∈ K are diagonal coefficients of A.

We have the following proposition.

Proposition 1. [2] Let A,B ∈ Mn(K) and λ ∈ K. Then

(i) Tr(A+ λB) = Tr(A) + λTr(B),

(ii) Tr(AB) = Tr(BA).

Furthermore, the map Tr : Mn(K) → K is a continuous linear functional with
|Tr(A)| ≤ ∥A∥.

We have the following definitions.

Definition 3. [2] Let A,B ∈ Mn(K) and ε > 0. The trace pseudo-spectrum of the
matrix pencil (A,B) of the form A − λB is denoted by Trε(A,B) and is defined
as

Trε(A,B) = σ(A,B) ∪ {λ ∈ K : |Tr(A− λB)| ≤ ε}.
The trace pseudo-resolvent of the matrix pencil of the form A− λB is denoted by
Trρε(A,B) and is defined by

Trρε(A,B) = ρ(A,B) ∩ {λ ∈ K : |Tr(A− λB)| > ε}.
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Definition 4. Let A,B,C ∈ Mn(K) and ε > 0. The C-trace pseudo-spectrum
of the matrix pencil (A,B) of the form A − λB is denoted by TrCε (A,B) and is
defined as

TrCε (A,B) = σ(A,B) ∪ {λ ∈ K : |Tr(tC(A− λB)C)| ≤ ε}.

The C-trace pseudo-resolvent of the matrix pencil of the form A− λB is denoted
by TrCρε(A,B) and is defined by

TrCρε(A,B) = ρ(A,B) ∩ {λ ∈ K : |Tr(tC(A− λB)C)| > ε}.

If C = I, the Definition 4 coincides with the Definition 3. We have the
following theorem.

Theorem 2. Let A,B ∈ Mn(K). Then, for any C ∈ Mn(K), not null, we have:

(i) If 0 < ε1 ≤ ε2, T r
C
ε1(A,B) ⊂ TrCε2(A,B),

(ii) If α ∈ K and β ∈ K\{0}, then for any ε > 0, T rCε (βA + αB,B) =
βTrCε

|β|
(A,B) + α,

(iii) For all λ, α ∈ K, ε > 0 and Tr(tCC) ̸= 0,

T rCε (αI, I) =
{
λ ∈ K : |λ− α| ≤ ε

|Tr(tCC)|

}
.

Proof. (i) It is clear from the definition of the C-trace pseudo-spectrum of ma-
trix pencils.

(ii) Let α ∈ K and β ∈ K\{0}, then it is easy to see that

σ(βA+ αB,B) = α+ βσ(A,B),

and

TrCε (βA+ αB,B) =
{
λ ∈ K : |Tr(tC(βA+ αB − λB)C)| ≤ ε

}
=

{
λ ∈ K : |β||Tr(tC(A− (λ− α))

β
B)C)| ≤ ε

}
=

{
λ ∈ K : |Tr(tC(A− (λ− α)

β
B)C)| ≤ ε

|β|

}
.

Hence λ ∈ TrCε (βA + αB,B) if, and only if, λ−α
β ∈ TrCε

|β|
(A,B) i.e., λ ∈

βTrCε
|β|
(A,B) + α.

(iii) Let α, λ ∈ K, ε > 0 and Tr(tCC) ̸= 0, then

|Tr(tC(αI − λI)C)| = |λ− α||Tr(tCC)| ≤ ε.

Thus
TrCε (αI, I) =

{
λ ∈ K : |λ− α| ≤ ε

|Tr(tCC)|

}
.
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We have the following examples.

Example 2. Let K = Qp and ε > 0. If

A =

(
1 1
0 1

)
, B =

(
1 0
0 2

)
and C =

(
0 1
1 0

)
.

Then

TrCε (A,B) = σ(A,B) ∪ {λ ∈ Qp : |Tr(tC(A− λB)C)|p ≤ ε}
= σ(A,B) ∪ {λ ∈ Qp : |Tr(tC(A− λB)C)|p ≤ ε}

= {1
2
, 1} ∪ {λ ∈ Qp : |2− 3λ|p ≤ ε}.

Example 3. Let α, β ∈ K = Qp be nonzero elements and ε > 0. If

A =

(
1 2
0 1

)
, B =

(
0 0
0 1

)
and C =

(
0 α
β 0

)
.

Then

TrCε (A,B) = σ(A,B) ∪ {λ ∈ Qp : |Tr(tC(A− λB)C)|p ≤ ε}
= {1} ∪ {λ ∈ Qp : |α2 + β2(1− λ)|p ≤ ε}.

Let r > 0, Bf (0, r) = {λ ∈ K : |λ| ≤ r} is the closed ball centered at zero with
radius r. We have the following theorem.

Theorem 3. Let A,B,C ∈ Mn(K) such that |Tr(tCBC)| ≠ 0 and ε > 0. Then

TrCδ (A,B) +Bf (0,
ε

|Tr(tCBC)|
) ⊆ TrCγ (A,B)

where γ = max{δ, ε}. If δ < ε, we have

TrCδ (A,B) +Bf (0,
ε

|Tr(tCBC)|
) ⊆ TrCε (A,B).

Proof. Let A,B,C ∈ Mn(K) and ε > 0. Let λ ∈ TrCδ (A,B) + Bf (0,
ε

|Tr(tCBC)|),

then there exists λ0 ∈ TrCδ (A,B) and λ1 ∈ Bf (0,
ε

|Tr(tCBC)|) such that λ = λ0+λ1,
hence

|Tr(tC(A− λ0B)C)| ≤ δ

and
|λ1||Tr(tCBC)| ≤ ε.

Thus,

|Tr(tC(A− λB)C)| = |Tr(tC(A− λ0B − λ1B)C)|

≤ max
{
|Tr(tC(A− λ0B)C|, |λ1||Tr(tCBC)|

}
≤ max

{
δ, ε

}
.
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Set γ = max
{
δ, ε

}
. Then,

TrCδ (A,B) +Bf (0,
ε

|Tr(tCBC)|
) ⊆ TrCγ (A,B).

If δ < ε, then γ = ε. Consequently,

TrCδ (A,B) +Bf (0,
ε

|Tr(tCBC)|
) ⊆ TrCε (A,B).

Now we introduce the C-trace set of matrix pencils in non-Archimedean case
as follows.

Definition 5. Let A,B,C ∈ Mn(K) and ε > 0. The C-trace set of the matrix
pencil (A,B) is denoted by trCε (A,B) and is defined as

trCε (A,B) = {λ ∈ K : |Tr(tC(A− λB)C| ≤ ε}.

Remark 1.

(i) For all ε1, ε2 > 0 such that ε2 ≥ ε1, we have trCε1(A,B) ⊆ trCε2(A,B).

(ii) If C = I, we have trCε (A,B) = trε(A,B).

We have the following results.

Theorem 4. Let A,B,D ∈ Mn(K) and ε > 0. Then, for any C ∈ Mn(K), not
null, we have:

trCε (A,D) + trCε (B,D) ⊆ trCε (A+B,D).

Proof. Let λ ∈ trCε (A,D) + trCε (B,D), then there exists λ0 ∈ trCε (A,D) and
λ1 ∈ trCε (B,D) such that λ = λ0 + λ1. Then

|Tr(tC(A− λ0D)C)| ≤ ε and |Tr(tC(B − λ1D)C)| ≤ ε.

Thus,

|Tr(tC(A+B − λD)C)| = |Tr(tC(A+B − λ0D − λ1D)C)|
= |Tr(tC(A− λ0D)C) + Tr(tC(B − λ1D)C)|

≤ max
{
|Tr(tC(A− λ0D)C)|, |Tr(tC(B − λ1D)C)|

}
≤ ε.

Consequently, λ ∈ trCε (A+B,D). Hence,

trCε (A,D) + trCε (B,D) ⊆ trCε (A+B,D).

Proposition 2. Let A,B ∈ Mn(K) and ε > 0. Let λ, µ ∈ trCε (A,B) and α ∈ K
such that |α| ≤ 1. Then αλ+ (1− α)µ ∈ trCε (A,B).
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Proof. Let A,B,C ∈ Mn(K) and ε > 0. Let λ, µ ∈ trCε (A,B) and α ∈ K such
that |α| ≤ 1. Then

|Tr(tC(A− λB)C)| ≤ ε,

and

|Tr(tC(A− µB)C)| ≤ ε.

Hence

|Tr(tC(A− (αλ+ (1− α)µ)B)C)| = |Tr(tC(A− µB)C) + αTr(tC(A− λB)C)

−αTr(tC(A− µB)C)|

≤ max
{
|Tr(tC(A− µB)C)|,

|α||Tr(tC(A− λB)C)|,

|α||Tr(tC(A− µB)C)|
}

≤ ε.

Thus,

αλ+ (1− α)µ ∈ trCε (A,B).

Proposition 3. Let A,B,C ∈ Mn(K) and ε > 0 such that ∥tCAC∥ < ε. Let
λ, µ ∈ trCε (A,B). Then

λ− µ ∈ trCε (A,B).

Proof. Let A,B ∈ Mn(K) and ε > 0 such that ∥tCAC∥ < ε. Let λ, µ ∈ trCε (A,B).
By Proposition 1, we have |Tr(tCAC)| ≤ ∥tCAC∥. Then

|Tr(A− λB)| ≤ ε,

and

|Tr(A− µB)| ≤ ε.

Hence

|Tr(tC(A− (λ− µ)B)C)| = |Tr(tC(A− λB)C)

−Tr(tC(A− µB)C) + Tr(tCAC)|

≤ max
{
|Tr(tC(A− λB)C)|,

|Tr(tC(A− µB)C)|, |Tr(tCAC)|
}
,

≤ ε.

Thus,

λ− µ ∈ trCε (A,B).
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3 M-determinant pseudo-spectrum of non-Archimedean
matrix pencils

We introduce the following definition.

Definition 6. Let A,B,M ∈ Mn(K) such that det(M) ̸= 0 and ε > 0. The M -
determinant pseudo-spectrum of the matrix pencil (A,B) is denoted by dMε (A,B)
and is defined as

dMε (A,B) = {λ ∈ K : | det(M(A− λB))| ≤ ε}.

If B = M = I ∈ Mn(K), we have the following:

Definition 7. Let A ∈ Mn(K) and ε > 0. The determinant pseudo-spectrum
dε(A) of A is

dε(A) = {λ ∈ K : |det(A− λI)| ≤ ε}.

From the definition of the M -determinant spectrum, we have the following
remark.

Remark 2.

(i) If I = M, then the Definition 6 coincides with the Definition 6. of [2].

(ii) If M = B = I, the M -determinant pseudo-spectrum coincides with the deter-
minant pseudo-spectrum, i.e., dMε (A, I) = dε(A).

(iii) In Definition 6, if B is invertible, then for any ε > 0, σε(A,B) ⊆ dMε (A,B)
and dM0 (A,B) = σ(A,B).

(iv) For all unitary matrix C ∈ Mn(K), dM (A,B) = dM (tCAC,tCBC).

We have the following proposition.

Proposition 4. Let A,B,M ∈ Mn(K). Then

(i) For all 0 < ε1 ≤ ε2, we have dMε1 (A,B) ⊆ dMε2 (A,B),

(ii) If det(M) ̸= 0, then for any ε > 0, dMε (αI, I) = {λ ∈ K : |λ − α| ≤
( ε
| det(M)|)

1
n },

(iii) For all α, β ∈ K, ε > 0 such that β ̸= 0, dMε (αI + βA, I) = α+ βdMε
|β|n

(A, I).

Proof. Let A,B ∈ Mn(K) and ε > 0.

(i) For 0 < ε1 ≤ ε2. Let λ ∈ dMε1 (A,B), then | det(M(A − λB))| ≤ ε1 ≤ ε2.
Hence λ ∈ dMε2 (A,B).

(ii) Let α ∈ K, then |det(M(αI − λI))| = |λ− α|n| det(M)|, hence

dMε (αI, I) = {λ ∈ K : | det(M(αI − λI))| ≤ ε}
= {λ ∈ K : |λ− α|n| det(M)| ≤ ε}

= {λ ∈ K : |λ− α| ≤ (
ε

| det(M)|
)
1
n }.
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(iii) Let α, β ∈ K such that β ̸= 0, we have

dMε (αI + βA, I) = {λ ∈ K : |det(M(αI + βA− λI))| ≤ ε}
= {λ ∈ K : |det(M(βA− (λ− α)I))| ≤ ε}

= {λ ∈ K : |β|n|det(M(A− (λ− α)

β
I))| ≤ ε}

= {λ ∈ K : det(M(A− (λ− α)

β
I))| ≤ ε

|β|n
}.

Hence,

λ ∈ dMε (αI + βA, I) ⇐⇒ λ− α

β
∈ dMε

|β|n
(A, I)

⇐⇒ λ ∈ α+ βdMε
|β|n

(A, I).

We give some examples of the M -determinant pseudo-spectrum.

Example 4. Let K = Qp and ε > 0. If

A =

(
1 2
0 1

)
, B =

(
1 1
0 3

)
and M =

(
1 1
0 1

)
.

It is easy to check that

dMε (A,B) = {λ ∈ Qp : | det(M(A− λB))|p ≤ ε}
= {λ ∈ Qp : |(λ− 1)(3λ− 1)|p ≤ ε}.

Example 5. Let K = Qp with p ≥ 2 and ε > 0. If

A =

(
1 1
1 1

)
, B =

(
1 0
0 1

)
and M =

(
2 0
0 1

)
.

Then

dMε (A,B) = {λ ∈ Qp : | det(M(A− λB))|p ≤ ε}
= {λ ∈ Qp : |2λ(λ− 2)|p ≤ ε}.

Example 6. Let K = Cp with p ̸= 2 and ε > 0. Let a, b ∈ Cp such that a2+b2 = 1,
we consider

A =

(
a −b
b a

)
, B =

(
2 0
0 1

)
and M =

(
1 0
0 3

)
.
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It is easy to see that

dMε (A,B) = {λ ∈ Cp : | det(M(A− λB))|p ≤ ε}
= {λ ∈ Cp : |3|p|(a− λ)(a− 2λ) + b2|p ≤ ε}
= {λ ∈ Cp : |3|p|2λ2 − 3λa+ 1|p ≤ ε}.

We have the following proposition.

Proposition 5. Let M ∈ L(Qn
p ) such that det(M) ̸= 0 and ε > 0, let D ∈ L(Qn

p )
be diagonal operator such that for all i ∈ {1, · · · , n}, Dei = λiei and λi ∈ Qp.
Then

dMε (D, I) = {λ ∈ Qp : |λ− λ1| · · · |λ− λn| ≤
ε

| det(M)|
}.

Proof. Let ε > 0. Then D − λI has the form

for all i ∈ {1, · · · , n}, (D − λ)ei = (λ− λi)ei

where (ei)1≤i≤n is the canonical base of Qn
p .

Then, |det(M(D − λI))| = |λ− λ1| · · · |λ− λn||det(M)|. Hence

dMε (D, I) = {λ ∈ Qp : |det(M(D − λI))| ≤ ε}

= {λ ∈ Qp : |λ− λ1| · · · |λ− λn| ≤
ε

| det(M)|
}.

4 Non-Archimedean pseudo-spectrum of matrix pen-
cils

We begin with the following definition.

Definition 8. [5] Let A,B ∈ Mn(K) and ε > 0. The pseudo-spectrum σε(A,B)
of a matrix pencil (A,B) is defined by

σε(A,B) = σ(A,B) ∪ {λ ∈ K : ∥(A− λB)−1∥ > ε−1}.

The pseudo-resolvent ρε(A,B) of a matrix pencil (A,B) is defined by

ρε(A,B) = ρ(A,B) ∩ {λ ∈ K : ∥(A− λB)−1∥ ≤ ε−1},

by convention ∥(A− λB)−1∥ = ∞ if, and only if, λ ∈ σ(A,B).

We have the following results.

Proposition 6. Let A,B ∈ Mn(K) and ε > 0, we have

(i) σ(A,B) =
⋂
ε>0

σε(A,B).

(ii) For all ε1 and ε2 such that 0 < ε1 < ε2, σ(A,B) ⊂ σε1(A,B) ⊂ σε2(A,B).
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Proof. (i) By Definition 8, we have for all ε > 0, σ(A,B) ⊂ σε(A,B). Con-

versely, if λ ∈
⋂
ε>0

σε(A,B), then for all ε > 0, λ ∈ σε(A,B). If λ ∈ σ(A,B),

there is nothing to prove. If ∥(A− λB)−1∥ > ε−1, taking limits as ε → 0+,
we get ∥(A− λB)−1∥ = ∞. Thus λ ∈ σ(A,B).

(ii) For ε1 and ε2 such that 0 < ε1 < ε2. Let λ ∈ σε1(A,B), then ∥(A−λB)−1∥ >
ε−1
1 > ε−1

2 . Hence λ ∈ σε2(A,B).

Theorem 5. Let X be a non-Archimedean finite dimensional Banach space over
Qp such that ∥X∥ ⊆ |Qp|, let A,B ∈ L(X) and ε > 0. Then,

σε(A,B) =
⋃

C∈L(X):∥C∥<ε

σ(A+ C,B).

Proof. Let A,B ∈ L(X) and ε > 0, let λ ∈
⋃

C∈L(X):∥C∥<ε

σ(A + C,B). We argue

by contradiction. Suppose that λ ∈ ρ(A,B) and ∥(A− λB)−1∥ ≤ ε−1.
Consider the bounded linear operator D defined on X by

D =

∞∑
n=0

(A− λB)−1

(
− C(A− λB)−1

)n

.

It is easy to see that D can be written as follows

D = (A− λB)−1(I + C(A− λB)−1)−1.

Hence for all x ∈ X, D(I + C(A− λB)−1)x = (A− λB)−1x.
Let y = (A − λB)−1x, then, for all y ∈ X, D(A − λB + C)y = y. Moreover, we
have

for all x ∈ X, (A− λB + C)Dx = x.

Hence, we conclude that (A − λB + C) is invertible and D = (A − λB + C)−1,
which is a contradiction. Thus λ ∈ σε(A,B).
Conversely, let A,B,C ∈ L(X) and ε > 0, suppose that λ ∈ σε(A,B). We discuss
two cases.

First case: If λ ∈ σ(A,B), we may put C = 0.

Second case: Assume that λ ∈ σε(A,B) and λ ̸∈ σ(A,B). Then, there exists y ∈ X\{0}
such that

∥(A− λB)−1y∥
∥y∥

>
1

ε
. (1)

Since ∥X∥ ⊆ |Qp|, then there exists c ∈ Qp\{0} such |c| = ∥y∥. Then, setting
z = c−1y, then ∥z∥ = 1. Hence, we obtain
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∥(A− λB)−1z∥ = ∥(A− λB)−1c−1y∥

=
∥(A− λB)−1y∥

|c|

=
∥(A− λB)−1y∥

∥y∥
.

From (1),

∥(A− λB)−1z∥ >
1

ε
. (2)

By the same reasoning above, we infer that there exists c0 ∈ Qp\{0} such
that |c0| = ∥(A−λB)−1z∥. Then, setting z0 = c−1

0 (A−λB)−1z which yields
z0 ∈ Qp and ∥z0∥ = 1. Consequently, we have

∥(A− λB)z0∥ = ∥(A− λB)(A− λB)−1c−1
0 z∥

=
∥z∥
|c0|

.

Using the fact that ∥z∥ = 1, we deduce from (2) that

∥(A− λB)z0∥ = ∥(A− λB)−1z∥−1,

< ε.

By Theorem 1, there exists ϕ ∈ X ′ such that ϕ(z0) = 1 and ∥ϕ∥ = ∥z0∥−1 = 1.
We consider the following linear operator given by

for all y ∈ X, Cy = −ϕ(y)(A− λB)z0.

Clearly, C is a bounded linear operator on X, since for all y ∈ X,

∥Cy∥ = ∥ϕ(y)∥∥(A− λB)z0∥,
< ε∥y∥.

Then, ∥C∥ < ε. Moreover, we have (A− λB +C)z0 = 0. So, (A− λB +C) is not
invertible. Consequently,

λ ∈
⋃

C∈L(X):∥C∥<ε

σ(A+ C,B).

We finish with some examples of the pseudo-spectrum of matrix pencils.
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Example 7. Let K = Qp and ε > 0. If

A =

(
λ1 1
0 λ2

)
and B =

(
1 −1
0 1

)
,

where λ1, λ2 ∈ Qp\{0}. Then

σε(A,B) = σ(A,B) ∪ {λ ∈ Qp : ∥(A− λB)−1∥ >
1

ε
}

= {λ1, λ2} ∪ {λ ∈ Qp : ∥(A− λB)−1∥ >
1

ε
},

where ∥(A− λB)−1∥ = max{ 1
|λ1−λ|p ,

|λ+1|p
|(λ1−λ)(λ2−λ)|p ,

1
|λ2−λ|p }.

Example 8. Let K = Qp and ε > 0. If

A =

(
λ1 0
0 λ2

)
and B =

(
1 0
0 1

)
where λ1, λ2 ∈ Qp. Then it is easy to see that

σε(A,B) = σ(A,B) ∪ {λ ∈ Qp : ∥(A− λB)−1∥ >
1

ε
}

= {λ1, λ2} ∪ {λ ∈ Qp : max{ 1

|λ1 − λ|p
,

1

|λ2 − λ|p
} >

1

ε
}.

Example 9. Let K = Qp and ε > 0. If

A =

(
1 1
1 1

)
and B =

(
1 1
0 1

)
where λ1, λ2 ∈ Qp. Then it is easy to check that

σε(A,B) = σ(A,B) ∪ {λ ∈ Qp : ∥(A− λB)−1∥ >
1

ε
}

= {0, 1} ∪ {λ ∈ Qp : max{ 1

|λ|p
,

1

|λ(1− λ)|p
} >

1

ε
}.

Example 10. Let K = Qp and ε > 0. If

A =

(
3 0
1 0

)
and B =

(
1 0
2 0

)
.

Then one can see that

σε(A,B) = σ(A,B)

= Qp.
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