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Abstract
The main purpose of the present paper is to study all forms of Rieman-
nien curvatures and the harmonic Killing vector fields of a tangent bundle
over an F'—Kaihlerian manifold endowed with a Berger type deformed Sasaki
metric gpg .
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1 Introduction

The first thing that comes to mind when the tangent bundle of any Riemannian
manifold is mentioned is the Sasaki metric. When the geometric properties of the
tangent bundle with the Sasaki metric are investigated, we usually encounter the
flatness of the base manifold. This is the reason why a number of researchers
proposed to deform the Sasaki metric in order to get some kind of fexibility of
its properties . In recent years Yampolsky [20], A. Gezer and all [3, 11] (resp.
Abbassi Kaddaoui [1, 2], M. Djaa [23, 12]) are introduced and studied a new
deformation on tangent bundle TM, called Berger type deformed Sasaki metric
(resp. g-natural metrics, Mus-Sasaki metric).

In this present paper we study all forms of Riemannien curvatures of the tan-
gent bundle over an F—Kaéhlerian manifold endowed with Berger type deformed
Sasaki metric gpg. First, we define the Berger type deformed Sasaki metric gpg
on a tangent bundle over an F'—K&hlerian manifold (Definition 1) and we give
the formulas describing the Levi-Civita connection of this metric ( Theorem 1).
Secondly we obtain the tensor curvature ( Theorem 2), the sectional curvature (
Theorem 3) and the scalar curvature (Theorem 4, corollary 1 and Theorem 5 ),
also we give some examples of scalar curvatures (Exemple 4.1 and Exemple 4.2).
In the last section, we give the characterization of a harmonic Killing vector fields
(Theorem 10 and Theorem 11).
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2 Preliminaries

Let M be an m—dimensional manifold. We point out here and once that all
geometric objects considered in this paper are supposed to be of class C*°.
An F—structure is a (1, 1)—tensor field F' which satisfies

F34+F=0. (1)

An almost complex structure (F? + I = 0) is an example of F—structures. Also,
note that an F'—structure is a polynomial structure with the structural polynomial
QF)=F3+F.

A polynomial structure is integrable if the Nijenhuis tensor vanishes [19]. Then,
the integrability of an F'—structure is equivalent to the vanishing of the Nijenhuis
tensor Ng:

Np(X,Y) = [FX,FY] - F[FX,Y] - F[X,FY]+ F?[X,Y].

Recall that an F'—structure on a Riemannian manifold (M, g) is called a metric
F—structure, if it satisfies

g(FX,Y)=—g(X,FY). (2)

for any vector fields X,Y on M (see [4, 5, 18]).

The manifold (M, F, g) equipped with a metric F'—structure g is called an almost
F—Hermitian manifold [17]. According to Bures and Vanzura in [7], the mani-
fold (M, F, g) is a metric polynomial manifold. We will use the terminology in [17].

The 2—covariant skew-symmetric tensor field w defined by w(X,Y) = g(FX,Y)
is the fundamental 2—form of the almost F'—Hermitian manifold (M, F, g). If the
fundamental 2—form w is closed, i.e., dw = 0, then the triple (M, F,g) will be
called an almost F'—Kahlerian manifold. Moreover, if dv = 0 and Ng = 0, the
triple (M, F, g) will be called an F'—Kahlerian manifold. In [17], Opozda proved
that dw = 0 and Np = 0 is equivalent to VF = 0, where V is the Levi-Civita
connection of g.

Let M be an m—dimensional Riemannian manifold with a Riemannian met-
ric g and TM be its tangent bundle denoted by = : TM — M. A system
of local coordinates (U,z!) in M induces on TM a system of local coordinates
(77_1 (U),zt, 2l = u’) ,i=mn+i=n+1,..,2n, where (u') is the cartesian coor-
dinates in each tangent space TpM at P € M with respect to the natural base
{% |p }, P being an arbitrary point in U whose coordinates are (x?).

Given a vector field X = X* 8?51' on M, the vertical lift V' X and the horizontal
lift X of X are given, with respect to the induced coordinates, by

xV = X'a, (3)

X" = X'9; — u'TL, X" 05, (4)
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where 0; = %, o = a?ﬂ and I’ ; .. are the coefficients of the Levi-Civita connection
V of g [21]. In particular, we have the vertical spray Vu and the horizontal spray

Hy on TM defined by
uV =1 (9;)Y = uio, ul = (9) = u'0;.

u" is also called the canonical or Liouville vector field on TM.
Let f be smooth function of M to R and X,Y,Z be any vector fields on M.

We have [21]

where fV = for.

The bracket operation of vertical and horizontal vector fields is given by the
formulas [13, 21]

[XH’YH] = [X7 Y]H - (R(X7 Y)u)va
(X yV] = (VxY), (5)
XV, YV] =0

for all vector fields X and Y on M, where R is the Riemannian curvature tensor
of g defined by
R(X,Y)=[Vx,Vy] = Vixy

Proposition 1. Let (M, g) be a Riemannian manifold and F be a (1,1)—tensor
field on M such that VF =0. Ifu= uiaii € T, M for all x € M, then we have
the followings

1. X" (g(Fu, Fu)) gz =0,

2. XH(g(Y, Fu))(zu) = 9(VxY, Fu),,

3. XV(g(Fu, Fu)(zu) = XV (|Ful?) ) = 29(FX, Fu)y,
4. XV(g(Y, Fu) gy = 9(FX,Y)a,

5. X" (f(r?) =0,

6. XV (f(r?) =2f'(r*)g(FX, Fu)g,

where r* = g(Fu, Fu) = |Ful?.
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3 The Berger type deformed Sasaki metric on the tan-
gent bundle

Definition 1. Let (M, F,g) be an almost F—Kahlerian manifold and TM be
its tangent bundle. A Berger type deformed Sasaki metric on TM is defined as
followings

gBS<XH7YH) g(va)a (6)
gBS(XvayH) gBS(XHvyv) = Oa
gps(XV, YY) = g(X,Y)+8*g(X, Fu)g(Y, Fu)

for all vector fields X, Y on M, where § is some constant. The metric is said to
be a Berger type deformed Sasaki metric.

In the particular case when F is invertible, the metric ggg coincide with the
Berger type deformed Sasaki metric over a Kéhlerian manifold. Thus the geomet-
ric results of gpg generalize the other deformed Sasaki metrics.

Lemma 1. Let (M, F,g) be an F—Kahlerian manifold. Then we have

g(FX,X) = 0, (7)
g(F2X,F?Y) = g(FX,FY), (8)
R(FX,Y) = —R(X,FY). (9)

for all vector fields X andY on M, where R is the Riemannian curvature of
the Levi-Civita connection V of g defined by

R(X,Y)=[Vx,Vy] = Vixy]

Proof. The first and second relation comes directly from (1) and (2). We will only
show the second relation. For all vector fields X,Y, Z, W, we have

JR(FX,Y)Z,W) = g(R(Z,W)FX,Y)
= 9([Vz,Vw]FX =V zmFX,Y)
(F([ vz,vw X) - F(VizwX),Y)
(F(R(Z,W)X),Y)
Z,W) X F(Y))
)Z,W).

I
S

= g(R
= —g(R(X

AA
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Lemma 2. Let (M, F,g) be an F-Kdihlerian manifold and gps be the Berger type
deformed Sasaki on TM. Then

1
g(Z,Fu) = XQBS(ZV>(FU)V)>
2

o2 FX) = gps(a" . (FX)") = S g(F X, Pugps (2", (Fu)")
= gps((FX)" - (sjg(FX, Fu)(Fu)¥,2"),

where A = 1+ 6%|Ful?, X, Z are vector fields and u € TM.
Proof. Using Definition 1, it follows that

g8s(ZV,(Fu)¥) = g(Z,Fu)+ 6°9(Z, Fu)g(Fu, Fu)
= 9(Z, Fu) + 6*|Ful’g(Z, Fu)
= (1+8|Ful*)g(Z, Fu)
Ag(Z, Fu),

gps(Z¥V (FX)V) = g(Z,FX)+6%*g(Z, Fu)g(FX, Fu)
2
= 9(ZFX)+ S g(FX, Fugus(2”, (Fu)")

Hence
2

9(Z,FX) = gps(ZV,(FX)V) — %g(FX, Fu)gps(ZY, (Fu)Y).

O

Using Definition 1, Proposition 1, Lemma 2 and Koszul formula, we obtain
the following theorem.

Theorem 1. Let (M, F,g) be an F—Kdhlerian manifold and gps be the Berger
type deformed Sasaki metric on TM. If V and V denote the Levi-Civita connec-
tion of (T'M,gps) and (M, g) respectively, then

1

SR Y)Y,

Y)Y + %[R(u, Y)X) + 8%g(Y, F(w) R(u, F(u) X]"

(1) VyuY? = (vx¥)7 -

(2) VyuYV

=(Vx ,
(3) VyrV¥ %[R(u XY )+529(X,F(u))R(u,F(u))Y]H,
(4) Vo VYV =82[g(Y,F(w)(FX)" + g(X, F(u))(FY)V]

5;[ (FX, Fu)g(Y, FU)+g(FY Fu)g(X, Fu)](Fu)”

)

where A = 1 + 62| Ful?.
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Lemma 3. Let (M, F,g) be an F'— Kdhlerian manifold and ggs be the Berger type
deformed Sasaki metric on TM. If V and V denote the Levi-Civita connection of
(TM,gps) and (M, g) respectively, then

Vix (Fu) = gH(R(u,Fu)X),

Viuxy(FY) = Y(VxFY)+ %H (R(u, FY)X + 0°g(FY, Fu)R(u, Fu)X)

2\ —1
A

Vg "(Fu) = M(FX)+ 6%g(X, Fu)V(F?u) — )g(FX,Fu)V(Fu),

Vv "(FY) = 6*(g(FY,Fu)V(FX) + g(X, Fu) F?Y)
4

K
= (9(FX, Fu)g(FY, Fu) — g(X, Fu)g(Y, Fu))"(Fu)
for all vector fields X,Y on M.

Definition 2. Let (M, F,g) be an F—Kdhlerian manifold and gps be the Berger
type deformed Sasaki metric on TM, K : TM — TM be a smooth bundle endo-
morphism of TM and K : TM x TM — TM be a differential map preserving the
fibers and bilinear on each them. Then the vertical and horizontal vector fields
VK, 5K, VK and "K respectively are defined on TM by respectively are defined
on TM by

VK: TM — TTM Hg . TM — TTM

(x,u) V(Kxu) (x,u) H(Kxu),

VK: TM — TTM H . TM — TTM
(x,u) V(K’x(u,Fu)) (x,u) — H(I_(x(u,Fu))

"(K(u) = u"(Kj), (10)
MK @w) = ujH( 7). (11)
"(K(u) = u'wF{"(K(0i,05)) = u'uV(K(9i, F(0s))), (12)
MK (w) = u'uwF{MK(0i,05))) = (K (i, F(0s))). (13)

Proposition 2. Let (M, F, g) be an F—Kdhlerian manifold and gps be the Berger
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type deformed Sasaki metric, then we have the following formulas:

~ 1
L Vix K = H(VXK)<u)—5V(Rz(X,Ku)u),
_ 1
2. Vux Ky = V(VXK)(U)—i—iH(Rx(u, Ku)X +6%g(Fu, Ku) Ry (u, Fu)X),

~ 1
3.Vvx 'Ky = "KX)+ §H(Rx(u, X)Ku+ 6°9(X, Fu)Ry(u, Fu)Ku),
4.V VK = Y"(KX)+ 6% (g(X, Fu)"(FKu) + g(Fu, Ku)"(FX))

4
—%(Q(FX, Fu)g(Fu, Ku) + g(X, Fu)g(Fu,FKu))V(Fu)

5. (Vi ")y = H((VXK)(U,Fu))—%V(Rx(X,K(u,Fu)u),

6. (Viry "E) gy = V((VXK)(U,Fu))+%H(R$(u,K(u,Fu))X
+(52 9(K (u, Fu), Fu) Ry (u, Fu)X),

7. (VoxK) ey = ( VK (u, Fu) + 62g(X, Fu) Ry (u, Fu)K (u, Fu))
N +H(K (X Fu)) + (K (u, FX)),
8. (Vvx"K)wuwy = +062[g(X, Fu)"(F(K(u, Fu)) + g(K(u, Fu), Fu)V(FX)]

4
—%[g(X,Fu)g(Ff((u,Fu),Fu)

+9(FX, Fu)g(K (u, Fu), Fu)]"(Fu)

+V(K (X, Fu)) + "(K(u, FX))

for any wvector field X on M, where V is the Levi-Civita connection, R is its
curvature tensor of (M, g, F).

4 The Riemannian curvatures of Berger type deformed
Sasaki metric

We shall calculate the Riemannian curvature tensor R of TM with the Berger
type deformed Sasaki metric ggg. The Riemannian curvature tensor is character-
ized by the formula

R(X,Y)Z=VV3Z—VsV
for all vector fields X , }7, Z onTM.

Theorem 2. Let (M, F,g) be an F—Kahlerian manifold and (T M, gps) its tan-
gent bundle equipped with the Berger type deformed Sasaki metric. Then, we have
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the following formulas:

RUX, By = 522 (R(X,Y)u, Fu)*(R(u, Fu)Z) + %H(R(U,R(X, Y)u)Z)
2
+5Zg(R(X, Z)u, Fu)d(R(u, Fu)Y) + %H(R(u, R(X,Z)u)Y)
52
4

HHRY)Z) + YV ZR)(X Y ), (14)

g(R(Y, Z)u, Fu)*(R(u, Fu)X) — iH(R(u, R(Y,Z)u)X)

RIX W)z = +‘fg(y, Fu)?(2R(u, FZ)X — R(u, Fu)R(u, Z)X)

+Tg(Z, Fu)?(2R(FY,u)X — R(u,Y)R(u, Fu)X)
4
_ZQ(Y’ Fu)g(Z, Fu)?(R(u, Fu)R(u, Fu)X)

1H(R(u, Y)R(u, Z)X)

MRV, 2)X) - |

2
2
—ig(Z FY) (R(u, Fu)X), (15)

RVX,'V)Z = 69(Z,Fu)(g(X, Fu)VF%Y — g(Y, Fu) F?X)
+6%(g(YV, FZ)Y(FX)—g(X,FZ)"(FY))—25%g(X, FY)"(FZ)
6
~9(Z, Fu)(9(FX, Fu)g(Y, Fu)—g(X, Fu)g(FY, Fu)) F*u
6
(f\ 9(FZ,Fu)(g(FX, Fu)g(Y, Fu) — g(X, Fu)g(FY, Fu))
;( X,Fu)g(FY,FZ) — g(Y,Fu)g(FX,FZ))
—4( X,FZ)g(FY,Fu) — g(Y, FZ)g(FX, Fu))
4
+%9(FZ, Fu)g(X, FY)) V(Fu) (16)
for all vector fields X,Y,Z on Myy,.

Proof. In the proof, we used the Theorem 1 and Lemma 3, Proposition 2. O

Now, we consider the sectional curvature K on (T'M, gps) for P is given by

gBS(R(X, Y)Y, Y)
98s(X, X)gps(Y,Y) — gps(X,Y)?’

where P = P()Z' , }7) denotes the plane spanned by {)Z , }7}, for all linearly inde-
pendent vector fields X , Y on TM.

K(X,)Y) =

(17)
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Let K(7X,7Y), K(*X,VY) and K(VX,"VY) denote the sectional curvature of
the plane spanned by {HX, HY}, {HX, VY} and {VX, VY} on (T'M,gps) respec-
tively, where X,Y are orthonormal vector fields on M.

Proposition 3. Let (M, F,g) be an F—Kdhlerian manifold and (T M, gps) its
tangent bundle equipped with the Berger type deformed Sasaki metric. Then we
have the followings:

i) g5 (R("X, Y)Y, Mx) - = g(R(X,Y)YyX)—ZHR(X,Y)UHz

2
_%Q(R(X’ Y)U, FU)Q,

B ~ 1 o4
i) gps(R(UX,VYV)VY, HX) = ZHR(u,Y)XII2+ZQ(K1‘”%6)2HR(%FU)XH2

2
+%g(Y, Fu)g(R(u, Fu) X, R(u,Y)X),

iii) gps(R(VX, VY)Y, VX) (g FX,Fu)g(Y, Fu)—g(X, Fu)g(FY, Fu))?
+54 (g

64
—362

(
(X, Fu)?|[FY||* + g(Y, Fu)*| FX|?)
g(X, Fu)g(Y, Fu)g(FX,FY)
g(X,FY)2.

From the Proposition 3 and the formula (17), we obtain the following result.

Theorem 3. Let (M, F,g) be an F—Kahlerian manifold and (T M, gps) its tan-
gent bundle equipped with the Berger type deformed Sasaki metric. Then the
sectional curvature K satisfy the following equations:
r (Hy 3 ) 30° 2
(1) K,("X,7Y) = Kx(X,Y)—ZHRm(X,Y)uH - Tgx(R(X,Y)u,Fu) )
1 (54
1+ 829, (Y, Fu)’ \ 4
2

+2 0. (Y, Fu)g. (R(u, Fu)X, R(u,¥)X)

1
1R, V)X )

(2) K,("x,"Y) = 9o(Ys Fu)?|| Ry (u, Fu) X |2

1
14 6%(g2(X, Fu)? + go(Y, Fu)?) (

+64 (92 (X, Fu)?|[Y 1 + g2 (Y, Fu)?|| X[?)
6

_% (92 (FX, Fu)go (Y, Fu) — g2(X, Fu)ga(FY, Fu))?

—25%g(X, Fu)g(Y, Fu)g(FX,FY)).

(3) K,("X,'Y) = — 36%g,(X, FY)?

where p = (z,u) € TM and K denotes the sectional curvature of (M, F,g).
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Remark 1. Let p = (z,u) € TM such as u € T,M\{0} and {e;},_1-- be an

i=1,m
Fu
——— if Fu # 0 (resp.
[Ful

orthonormal basis of the vector space T, M, such that e; =

e] = U if Fu=0), then
[

1
{Ei = He@', Epp1= 7‘/(61)’ Emqij = V(ej)}i—

resp.

is an orthonormal basis of T,(TM).

Lemma 4. Let (M, F, g) be an F—Kdhlerian manifold and (T'M, gps) its tangent
bundle equipped with the Berger type deformed Sasaki metric, p = (z,u) € TM

and (Eq) .15 be anorthonormal basis of T),(TM) defined by (18), then the sec-
tional curvatures K satisfy the following equations:
Kp(Ei, Ej) = Kalei ej) = fl1Boles ep)ull” — —=ga(Rles, e5)u, Fu)®,
Ky(Ei, Bpy1) = im (u, Fu)e;|?
p iy Lm—+1 - 4(}\_1) x W, |l
~ 1
Kp(Ei7Em+l) = ZHRJ»‘(U7 el)eiH27
~ 2N —1) A2+ A +1) 2
K(Em+t, B, = ———Fell— —57— " (9(Few, Fu))”,
(Eme+t, Emi1) v 1Fee2 N0 1) (9:(Feq, Fu))
Kp(Burt, But) = —38%gu(er, Fer)?

fori,j=1,m and t,l =2,m, where K is a sectional curvature of (M, F,g).
Proof. The results comes directly from Theorem 3 and Remark 1. O

We now consider the scalar curvature o of (T'M, gps), with standard calcula-
tions we have the following result.

Theorem 4. Let (M, F,g) be an F—Kahlerian manifold and (T M, gps) its tan-
gent bundle equipped with the Berger type deformed Sasaki metric. If o (resp., o)
denote the scalar curvature of (M, F,g) (resp., (TM,gps)), then we have

~ 1 — 52
Op = Oz Z IR(es, ej)ull* — ZZ | R(u, Ju)e;||?
i=1

i,j=1
2N +2)

m 2
- > |IFe + %()ﬁ — 2\ —2),
=2

where p = (x,u) € TM and (e;)
(18).

is an orthonormal basis of T,M defined by

i=1m
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Proof. From the definition of scalar curvature, we have

m m m
op = Z K(E;,E;) +2 Z K(E;, By j) + Z Ermvis Emyj)
i,j=1 i,7=1 4,j=1
i#] i#j
m
S R(BuE) +2Y KBt 42 3. R(EuBns)
i,j=1 =1 i=1,j=2
i#]
m " m
+2ZK(Em+za m+1 Z m+za m+j)'
— -
' i
Using Lemma 4, we have
S 362
5 = O (Klenes) = SIR(en eull® — 21 g(Rier, ), Fu)?)
i,j=1
i#i
m 52\
—l—Z( HRu Fu)e| )
=1
1 m m
+5 > IR, ej)eil* =362 gles, Fej)?
i=1,j=2 i\j=2
1#]
52(\ 5 NP HA+T) 2
22 (PO irel - S gtre ).
In order to simplify this last expression, we use
M m m
D glei Fej)” = > gle, Fej)* =Y gler, Fey)’ 25: [Feql|” -
i,j=2 i=1,j=2 =1
i#] 7]
m n
Zg(F@i,FU)g - Zg<F€i7Fu)2 = HFUH2a
i i=1
m m
Y IR e)ell® = D I R(eies)ull.
i,j=1 i,j=1
From the last equation (see, also [14, 24]), we get
op = —72 |R(ei, e; u||2——ZHRu Fu)e;]|?

,j=1

2\ +2) 202N+ A +1
STOED S e (302 - AR,

=2
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From Theorem 4, we deduce the following corollary

Corollary 1. Let (M, F, g) be a locally flat F— Kdhlerian manifold and (T M, ggs)
its tangent bundle equipped with the Berger type deformed Sasaki metric. If o
denote the scalar curvature of (T M, gpg), then we have

N 2\ +2) «— K
G, = —fZHFe,»HQ—FF(A?—Q)\—Q),
1=2

where p = (z,u) € TM and X\ = 1 + 62||Ful?.

Theorem 5. Let (M, F, g) be an F— Kdhlerian manifold of constant sectional cur-
vature k and (T'M, gpg) its tangent bundle equipped with the Berger type deformed
Sasaki metric. The scalar curvature o of (T'M, gps) is given by

N k2
op = m(m—l)k—?(m—i-)\—Q)Hqu
82\ +2) & 52
ORI S e 1 200 - 2x ), (20)
1=2

where p = (x,u) € TM and X\ = 1+ §%||Ful|?.

Proof. Using the property of constant sectional curvature, for X,Y, 7 € T'(T'M),
we have

R(X,Y)Z =k(g(Y,Z)X — g(X,Z)Y)
then

m m
> IR(enep)ull® = kY llgles, w)ei — gles, u)es)?
ij=1 ij=1
1#] 1#]

m

= k2 Zg(ejau)2 —l—g(ei,u)Q
= 2k*(m — 1)|lul® (21)

and

YR Fuyeil* = k) llg(es, Fuyu — g(ei,u) Ful’?
i=1 i=1

m

= Y (gle Fu)[[ul]® + gles, u)?|| Ful®)
i=1
= 2k )| Pl (22)
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Substituting formulas (21) and (22) in Theorem 4 , we obtain formula (20).

Theorem 6. Let (M, F,g) be an F—Kdhlerian manifold of constant sectional
curvature k and (T'M, gps) its tangent bundle equipped with the Berger type de-
formed Sasaki metric. If F is invertible then the dimension of M is even (m = 2q)
and the scalar curvature o of (T M, gps) is given by

2
5y = mlm =Dk~ (m+ A~ 2’
_iz[(m_g)(A2+2A)+4A+2], (23)

where p = (x,u) € TM and X\ =1+ §%|Jul?.

Proof. Using formula (1), if F is invertible then F? = —I. So F is an almost
complex structure and from formula (8), we obtain

|Fu| = |u|, Yue TM.
Applying the Theorem 5 the Theorem 6 follows. O

Remark 2. (M, F,g) be an F—Kdhlerian manifold of constant sectional cur-
vature k. If F' is invertible then we have

1. If k<0 then o, <0 for allp € TM.

2. If k #0 then o, <0 for all p € TM ifandonlyifm<1+%.

0 -1 0
Example 4.1. Let M =R3, F=| 1 0 0 | and g = dz? + dy? + d2>.
0 0 O

(R3, F, g) is an F—Kdhlerian manifold such as we have

g(X, Y) = X1+ XY, + X3Ys,
g(FX, FY) = X171+ XoY5,
g(FX,Y) = _XQYI—‘FXl}/Q:—g(X,FY).

for all vector fields X = X101 + X202 + X303 and Y = Y101 + Yo09 + Y305.

(R3, F, g) is a flat F'—Kdhlerian manifold, then we have

N (N +2 2N —2x -2
5y = 2O ey 4 e ) + (CE A
(A +2) N 52(\2 - 21— 2)
A A2
C28°(2A + 1)

o <0
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We conclude that tangent bundle (TR3, gpg) equipped with the Berger type
deformed Sasaki metric has negative scalar curvature.

0 -1 0 O

3 1 0 0 O 9 9 9

Example 4.2. Let M =R°, F = 00 0 1 and g = dz* + dy” + dz*.
0 0 -1 0

(R, F, g) is a flat F—Kdhlerian manifold such as we have

2

N 5
%:—Kﬂﬂ+ﬁA+m<0

5 Harmonic vector field.

In the section, we will study some harmonicity problems on the tangent bundle
equipped with the Berger type deformed Sasaki metric. Given a smooth map
¢+ (M™, g) — (N" h) between two Riemannian manifolds, then the second
fundamental form of ¢ is defined by

(Vdg)(X,Y) = Vidp(Y) — dp(VxY).

Here V is the Riemannian connection on M and V¢ is the pull-back connection
on the pull-back bundle ¢~ 'T N, and

7(¢) = tracegVdeo

is the tension field of ¢.
The energy functional of ¢ is defined by

such that K is any compact of M, where

e(p) = %tracegh(dgb, do)

is the energy density of ¢.
A map is called harmonic if it is a critical point of the energy functional FE.

d
For any smooth variation {¢;}ier of ¢ with ¢9 = ¢ and V = %qﬁt . e have
t=

;E%mﬂz—émﬂmvw@

Then ¢ is harmonic if and only if 7(¢) = 0. We refer to [8, 9, 10, 15] for back-
ground on harmonic maps.
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Lemma 5. [6/ A Killing vector field ¢ on a Riemannian manifold (M, g) satisfies
the following equations

Viv¢ = VxVy(— Vo (=-R((X)Y, (24)
9(Vx(,X) = 0, (26)

for all XY € H(M).
If @ denote the Ricci operator, then we have
9(Q(X),Y) = Ric(X,Y), (27)
for all X, Y € H(M), where Ric is the Ricci tensor (see [6]).

Lemma 6. If ¢ is a Killing vector field on a Riemannian manifold (M,g), then

we have
TryVi( = -Q() (28)
Proof. From Lemma 5 (24), we obtain
TTgQ(VQC, X) = _TTQQ(R(Ca *)*7 X)
—Ric(¢, X)
= —9(Q(¢), X)
for all X € H(M). Which proves the relationship (28).
O
Lemma 7. Let (M, g) be an Einstein manifold. Then we have
Ric(X,Y) = pg(X,Y),
Scal = mp (29)
QX) = pX (30)

for all X, Y € H(M), where u is a some constant, Q) is the Ricci operator and
Scal is the scalar curvature.

Proof. We have
1) Scal =3", Ric(E;, E;) => 0 nwg(Ei, E;) =m p

2) 9(Q(X),Y)=Ric(X,Y)=pg(X,Y) for all Y € H(M), then
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Let (Mo, g) be a real space form M?¥(c), that is mean, the curvature tensor
is expressed as

R(X,Y)Z =cg(Y,Z2)X — g(X, 2)Y] (31)

Lemma 8. If (M, g) is a real space form, then (May,g) is an FEinstein manifold
such that

wo= (m_l)ca
Scal = m(m—1)c

Proof. Let (E;)i=1,.,m be an orthonormal frame. From formula (31), we get

Rie(X,Y) = ig(R(X,Ei)Ei,Y)
=1

= ¢ [9(g(E)E)X,Y) - g(g(X,E)E;,Y)]
i—1
cfm g(X,Y) = g(X,Y)]

= ¢(m—-1)9(X,Y)

Using Lemma 7, we obtain g = (m — 1)c and Scal = mu = m(m — 1)c.

Lemma 9. [16/Let (M, g) be a Riemannian manifold . If X,Y are vector fields
and (z,u) € TM such that X, = u, then we have

d X (Yz) = Y ) + (Vv X)(,

(z,u)’

Theorem 7. Let (M, F,g) be an F—Kdhlerian manifold and ggs be the Berger
type deformed Sasaki metric on TM. If ¢ : (M,g,F) — (T'M,gps) is a vector
field on M, then the tension field of & is given by

T = Tro[R(EV.E) » +0%9(Va, FOR(E, Fe) |
T, [V2€ + 20%9(V 6, FOF(V.)

29t

O g(F(V.6), FE)g(V.& FEFE]

Proof. Let {E;}?*, be a local orthonormal frame on M. From Lemma 9 and



On the tangent bundles over F—Kéahlerian manifolds 69

Theorem 1, at x € M, we have

Vag(E) A8 (Ei) = Vign (v, v (B + (V&)

= VpnE!' +Vpn(VE)" + Vg, ovEl + Vv, ov(VEE"
= (VeE)"+ (V59"

43[R V&) Fi 4 89(V &, Fu)R(u, Fu) ;)"
—|—% [R(u, V&) E; + 629(VE,E, Fu)R(u, Fu)E;]

+20%[9(V €, Fu)F(VE,€)]"
4
2 G (V5,), Pu)g(V &, Fu) Fu)”
= (VaE)" + (V5" + [Ru, VEE;
+8%9(V €, Fu)R(u, Fu)E;)" +262[g(V €, Fu)F(V,€)]"
264

- [9F(VE8), Fu)g(Vi & Fu)Pul.

H

where u = ;. So

Ve, (Ei) — d&(VE, Ey)
= Vagp)dE(E) — (Vg E)" - (vaiEié-)V
= —(Vugu8)" + (V58" + [R(u, VEOE;
+6%9(V €, Fu)R(u, Fu) E;] 7
+20%[g(V g, &, Fu)F(VE,€)) v

4
_% [9<F(VEZ£)7 Fu)g(szé’ FU)FU]V

The Theorem 7 gives the following theorem.

Theorem 8. Let (M, F,g) be an F—Kdhlerian manifold and gps be the Berger
type deformed Sasaki metric on TM. The map § : (M, F,g) — (T'M,gps) is
harmonic if and only if

1) Trg
2) Try
Proposition 4. Let (M, F, g) be an F—Kdhlerian manifold and gps be the Berger

type deformed Sasaki metric on TM. & : (M, F,qg) — (T'M,gps) is an isometric
immersion if and only if V& = 0.

2 G(F(V.E), FE)g(Vil, FE)FE — V2 — 20%9(V.&, FE)F(V.E)| =0
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Proof. Let X,Y be vector fields. From Lemma 9 we have

9Bs(d§(X),dé(Y))
= gps(X" +(Vx&)V, Y + (Vy)")
= gps(X"T,Y") + g5s((Vx&)Y, (VyE)")
= 9(X,Y) +g(VxE VyE) 4+ 8°g(VxE, Fu)g(Vyé, Fu),

from which it follows that
9Bs(d§(X),ds(Y)) = g(X,Y).
Therefore, £ is an isometric immersion if and only if
9(Vx€ VvE) + 6%9(VxE, Fu)g(VyE, Fu) =0,
which is equivalent to V& = 0. O

As a direct consequence of Theorem 8 and Proposition 4, we obtain the fol-
lowing theorem.

Theorem 9. Let (M, F,g) be an F—Kdhlerian manifold and gps be the Berger
type deformed Sasaki metric on TM. If§ : (M, F,qg) — (T'M,gps) is isometric
immersion, then & s totally geodesic. Furthermore, £ is harmonic.

Theorem 10. Let (M, F,g) be an F—Kdhlerian manifold and gps be the Berger
type deformed Sasaki metric on TM. If € : (M, F,g9) — (T'M,gps) is a Killing
vector field, then £ is harmonic if and only if

1) TTQR(€7 v*g)* = 62R(€7 F&)vafv
2)  —TrgR(&, %)% = 26°Vy e FE.

Proof. Using formula (25), we obtain

Treg(F(Vi&), FEg(Vi& FE) = Trog(VeeF(€),*)9(V ek, *)
= Treg(VreF (§), (Ve x)*)
= 9(VreF(€), Vrel)
= 9(F(VFe), Vre)

= 0.
Treg(V.& FOOF(ViE) = —Treg(Vped, ) F(Vi)
= _TTQF(VQ(VF&:*)*Q
= —F(Vvpeb)

= —R(§ FEVFre.
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By substituting the results below in formulas (1) and (2) of Theorem 8, The-
orem 10 follows.

From Theorem 10 and Lemma 8, we get the following theorem

Theorem 11. Let (M, F,g) be an F—Kdhlerian manifold and gps be the Berger
type deformed Sasaki metric on TM. If (M,g) is a space form (M,c) and § :

(M,F,g) — (TM,gps) is a harmonic Killing vector field,, then £ is an eigenvec-
(1-m)c
262

tor of A¢(X) = Vv pee " X with respect to eigenvalue q =
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