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CLASS OF LINEAR AND NON-LINEAR SHIFT EQUATIONS

UNDER SHARED VALUES
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Abstract

In this paper we have considered the generalized form of Pielou Logistic
Equation and Riccati Difference equation [6] and characterize the solution
of that equation in terms of shared value problem. We have improved and
extended the result of Li-Chen in [8].
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1 Introduction and some definitions

Population dynamics is the branch of life science that studies the knowledge
concerning the sizes of populations and the factors involved for maintenance, de-
cline or expansion of the same according to the progression of time. Traditionally,
to study the dynamics of the size of a population with the help of mathematical
modeling, researchers used the continuous deterministic methods based on dif-
ferential equations. In this respect, we can recall the well-known Verhulst-Pearl
equation

x′(t) = x(t)[a− bx(t)] (a, b > 0),

which is used mainly for continuous model of growth of a population. But if the
data are available for discrete times only, then a difference rather shift equation
instead of a differential equation will be more effective. In this regard to study the
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discrete versions of some population models, the following shift equation known
as Pielou Logistic equation

y(z + 1) =
P1(z)y(z)

P2(z) + P3(z)y(z)
, (1.1)

where P1(z), P2(z) and P3(z) are non-zero polynomials, have been immensely
used by the researchers.

Now for a non-constant meromorphic function f in the open complex plane
C, we define its difference operator by ∆f = f(z+ c)−f(c), where c is a non-zero
constant. In this respect we also want to recall the important difference equa-
tion introduced by Ishizaki [6] which is the difference analogous form of Riccati
differential equation, i.e.,

∆f(z) +
f2(z) +A(z)

f(z)− 1
= 0,

where A(z) is a meromorphic function, which can also be represented as

f(z + 1) =
A(z) + f(z)

1− f(z)
. (1.2)

In view of (1.2) we can term the equation as Riccati shift equation rather than
difference equation. Ishizaki [6] characterized the solution and have been able to
find the possible form of (1.2).

Considering (1.1) and (1.2) it will be natural to find the possible structural
relationship between them and to characterize the solutions. To this end, we
introduce the following shift equation which includes both (1.1) and partially
(1.2),

A(z)w(z)w(z + 1) +B(z)w(z + 1) + C(z)w(z) = D(z), (1.3)

where A(z), B(z), C(z) and D(z) are rational functions for all z ∈ C.
So clearly if D(z) ≡ 0, we get the generalized homogeneous Riccati shift

equation

A(z)w(z)w(z + 1) +B(z)w(z + 1) + C(z)w(z) = 0. (1.4)

Also for A(z) ≡ 0 the equation (1.3) becomes

B(z)w(z + 1) + C(z)w(z) = D(z). (1.5)

In this paper we will characterize the solution of (1.3) in terms of shared
values. In this regard, Nevanlinna value distribution theory will be rendered as
an important tool. For the sake of subsequent discussion we are now going to
demonstrate the notion of value sharing in a precise way.

Throughout the paper we consider f and g as meromorphic functions defined
in the open complex plane C.
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Let a ∈ C, we denote by E(a; f), the collection of the zeros of f − a, where a
zero is counted according to its multiplicity. In addition to this, when a = ∞, the
above definition implies that we are considering the poles. In the same manner, by
E(a; f), we denote the collection of the distinct zeros or poles of f − a according
as a ∈ C or a = ∞ respectively. If E(a; f) = E(a; g) we say that f and g share
the value a CM (counting multiplicities) and if E(a; f) = E(a; g), then we say
that f and g share the value a IM (ignoring multiplicities).

Though the standard definitions and notations of the value distribution theory
are available in [1, 7, 11], we explain some definitions and notations which are used
in the paper.

The term N(r; a; f) (N(r; a; f)) denotes the counting function (reduced count-
ing function) of a-points of meromorphic function f in | z |≤ r and m(r, f) is
called the proximity function of f which is the average of the positive logarithm
of | f(z) | on the circle | z |= r. Also the term T (r, f) = N(r,∞; f) + m(r, f)
denotes the Nevanlinna characteristic function of the non-constant meromorphic
function.

Usually, S(r, f) denotes any quantity satisfying S(r, f) = o(T (r, f)) for all r
outside of a possible exceptional set of finite linear measure.

We use the notation ρ(f) to denote the order of growth of f as follows:

ρ(f) = lim sup
r→∞

log(T (r, f))

log r
.

2 Auxiliary and main results

The investigations of meromorphic functions sharing values and possible re-
lationships between them is an important feature of Nevanlinna theory. The
following is the famous Nevanlinna’s 5 IM (4 CM) theorem.

Theorem A. [10] Let f(z) and g(z) be two non-constant meromorphic func-
tions. If f(z) and g(z) share five values IM (four values CM, respectively) in the
extended complex plane, then f(z) ≡ g(z) (f(z) ≡ T (g(z)), where T is a Möbius
transformation, respectively).

With respect to the Nevanlinna’s 5 IM (4 CM) theorems, recently a new
section have been emerged out, where researchers mainly focused to characterize
the meromorphic solutions of several kinds of shift equations under the aegis of
sharing values.

In 2016, the first kind of such result was obtained by Cui-Chen [3]. Actually,
Cui-Chen [3] considered meromorphic solution of the shift equation (1.5) having
polynomial coefficients sharing values with a meromorphic function.

Theorem B. [3] Let f(z) be a finite order transcendental meromorphic solution
of the equation (1.5), where B(z) and C(z) are non-zero polynomials such that
B(z) + C(z) ̸≡ 0 and D(z) ≡ 0. If a meromorphic function g(z) share 0, 1, ∞
CM with f(z), then either f(z) ≡ g(z) or f(z)g(z) ≡ 1.
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In the next year, Cui-Chen [4] extended Theorem B for non-homogeneous
components and exhaustively studied the nature of the solutions as follows:

Theorem C. [4] Let f(z) be a finite order transcendental meromorphic solution
of the equation (1.5) where B(z), C(z) and D(z) are non-zero polynomials such
that B(z) + C(z) ̸≡ 0. If a meromorphic function g(z) share 0, 1, ∞ CM with
f(z), then one of the following cases holds:

(i) f(z) ≡ g(z);
(ii) f(z) + g(z) = f(z)g(z);
(iii) there exist a polynomial β(z) = az + b0 and a constant a0 satisfying

ea0 ̸= eb0 such that

f(z) =
1− eβ(z)

eβ(z)(ea0−b0 − 1)
, g(z) =

1− eβ(z)

1− eb0−a0
,

where a0 ̸= 0, b0 are constants.

In 2019, Li-Chen [8] reduced the number of sharing values from 3 to 2, provided
g(z) is a solution of (1.5) and obtained the following two theorems.

Theorem D. [8] Let f(z)and g(z) be two finite order transcendental meromorphic
solutions of equation (1.5), where D(z) ≡ 0. Suppose that f(z) and g(z) share 0,
∞ CM. Then f(z) ≡ e2k0πiz+a0g(z) for some integer k0 and constant a0. What
is more, f(z) ≡ g(z) provided that one of the following cases holds:

(i) there exist two points z1, z2 such that f(zj) = g(zj) ̸= 0 (j = 1, 2) and
z1 − z2 ̸∈ Q;

(ii) f(z)− g(z) has a zero z3 of multiplicity ≥ 2 such that f(z3) = g(z3) ̸= 0.

Theorem E. [8] Let f(z) and g(z) be two finite order transcendental meromorphic
solutions of equation (1.5), where D(z) ̸≡ 0. Suppose that f(z) and g(z) share 0,
∞ CM. Then either f(z) ≡ g(z) or

f(z) =
D(z)

2C(z)
(ea1z+a0 + 1), g(z) =

D(z)

2C(z)
(e−a1z−a0 + 1),

where a1, a0 are constants such that e−a1 = ea1 = −1 and the coefficients of (1.5)
satisfy B(z)D(z + 1) ≡ D(z)C(z + 1).

It is to be noted that recently in 2020, Li-Chen [9] investigated on meromorphic
solutions of (1.4) sharing 1 and ∞ CM. However, in this paper we will confine our
investigations for two value sharing corresponding to 0 and ∞.

Now in view of the above theorems the following questions are inevitable:

Question 2.1. What can be said about the possible relationship between a mero-
morphic function and a solution of the equation (1.3) if they share three values 0,
1 and ∞ or even two values 0 and ∞?

Question 2.2. What can be said about the possible relationship between the so-
lutions of the equations (1.4) and (1.5) if they share 0 and ∞?
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The main aim of writing this paper is to investigate the possible answer of
the above questions. To this end we present the following theorems as the main
results of the paper.

Theorem 1. Let f(z) be a finite order transcendental meromorphic solution of
equation (1.3). If a meromorphic function g(z) share 0, 1, ∞ CM with f(z) and

lim
z→∞

D(z) ̸= 0, (2.1)

lim
z→∞

A(z)±B(z)± C(z)

D(z)
̸= 1, (2.2)

then f(z) ≡ g(z).

Theorem 2. Let f(z) and g(z) be two finite order transcendental meromorphic
solutions of equation (1.3), such that A(z), B(z), C(z), D(z) are non-zero. Sup-
pose that f(z), g(z) share 0, ∞ CM. If any one of the following conditions hold:

(a) A(z)D(z) + C(z)B(z) = 0;

(b) A(z)D(z) + C(z)B(z) ̸= 0 and

(i) g(z) has infinitely many poles of multiplicity ≥ 2, or,

(ii) ρ(g) is not an integer and g(z) has atmost finitely many poles;

then f(z) ≡ g(z).

Theorem 3. Let f(z) and g(z) be two finite order transcendental meromorphic
solutions of equation (1.4). Suppose that f(z), g(z) share 0, ∞ CM. Then either
f(z) ≡ g(z) or

f(z) =
B(z)ea1z+a0 [ea1 − 1]

A(z)[1− ea1(z+1)+a0 ]
, g(z) =

B(z)[ea1 − 1]

A(z)[1− ea1(z+1)+a0 ]
,

where a0, a1(̸= 0) are constants such that e2a1 = 1 and the coefficients of (1.4)
satisfy A2(z)B2(z + 1) = A2(z + 1)C2(z).

Theorem 4. Let f(z) and g(z) be two finite order transcendental meromorphic
solutions of the equations (1.4) and (1.5) respectively. Suppose that f(z), g(z)
share 0, ∞ CM. Then if

(i) D(z) ≡ 0 and

lim
z→∞

A(z)B(z + 1)

A(z + 1)C(z)
̸= 1, (2.3)

or, (ii) D(z) ̸≡ 0 and f is of non-integer finite order,

then f(z) ≡ g(z).
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The following example shows that in Theorem 3, when the conditionA2(z)B2(z+
1) = A2(z + 1)C2(z) is not satisfied the conclusion cease to hold.

Example 2.1. Let f(z) = 1
1+eπikz and g(z) = 1

1+e−πikz , where α = eπik, k being
a constant. Now f(z) satisfy the equation (1.4) if A(z) + B(z) + C(z) = 0 and

α = −B(z)
C(z) . Also g(z) satisfy the equation (1.4) if A(z) + B(z) + C(z) = 0

and α = −C(z)
B(z) . But from α = −B(z)

C(z) = −C(z)
B(z) , we obtain A2(z)B2(z + 1) =

A2(z)C2(z + 1) ̸= A2(z + 1)C2(z).

3 Lemmas

Lemma 1. [2, 5] Let f(z) be a meromorphic function of finite order ρ(f) = ρ, ϵ
be a positive constant, η1 and η2 be two distinct complex constants. Then

m

(
r,
f(z + η1)

f(z + η2)

)
= O(rρ−1+ϵ) = o(T (r, f)).

Lemma 2. [1, 7] Let f(z) be a transcendental meromorphic solution of the equa-
tion

fnP (z, f) = Q(z, f),

where P (z, f) and Q(z, f) are polynomials in f and its derivatives with meromor-
phic coefficients, say {aλ | λ ∈ I}, such that m(r, aλ) = S(r, f) for all λ ∈ I. If
the total degree of Q(z, f) as a polynomial in f and its derivatives is ≤ n, then

m(r, P (z, f)) = S(r, f).

4 Proofs of the theorems

Proof of Theorem 1. Since f(z) is a finite order transcendental meromorphic
function and f(z), g(z) share 0, 1, ∞ CM for all z ∈ C, we have

g(z)

f(z)
= eP (z), (4.1)

g(z)− 1

f(z)− 1
= eQ(z), (4.2)

where P (z), Q(z) are polynomials such that degP (z) = n and degQ(z) = m.
If eP (z) ≡ eQ(z), then from (4.1) and (4.2) we get, f(z) ≡ g(z).
Let if possible, eP (z) ̸≡ eQ(z). Then clearly from (4.1) and (4.2), we see that

eP (z) ̸≡ 1 and eQ(z) ̸≡ 1 and thus we obtain

f(z) =
1− eQ(z)

eP (z) − eQ(z)
. (4.3)
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Also since f(z) is a meromorphic solution of (1.3), so using (4.3), we get

A(z)
1− eQ(z)

eP (z) − eQ(z)
.

1− eQ(z+1)

eP (z+1) − eQ(z+1)
+B(z)

1− eQ(z+1)

eP (z+1) − eQ(z+1)
(4.4)

+C(z)
1− eQ(z)

eP (z) − eQ(z)
= D(z).

Let us consider

P (z) = anz
n + an−1z

n−1 + . . .+ a1z + a0 (4.5)

and

Q(z) = bmzm + bm−1z
m−1 + . . .+ b1z + b0, (4.6)

where anbm ̸= 0. Denote an = r1e
iθ1 , bm = r2e

iθ2 , where θ1, θ2 ∈ [−π, π).
Now if n > m, then there exist some θ = θ3 such that for z = reiθ3 we get

θ1 + nθ3 = 0 and

P (reiθ3 + j) = r1r
n(1 + o(1)), Q(reiθ3 + j) = o(rn),

as r → ∞, where j = 0, 1. Thus from (4.4) we obtain,

lim
r→∞

D(reiθ3) = 0.

As D(z) is a rational function, for all θ ∈ [−π, π), we can obtain

lim
r→∞

D(reiθ) = 0,

which contradicts (2.1).
Thus n ̸> m. Similarly we can deduce that n < m is not possible. Hence we

can conclude n = m.
Now we consider the following cases.
Case 1. Let θ1 = θ2.
If r1 > r2, then there exist some θ = θ4 such that for z = reiθ4 we get

θ1 + nθ4 = 0. Thus we have

anz
n = r1r

nei(θ1+nθ4) = r1r
n > bnz

n = r2r
nei(θ1+nθ4) = r2r

n

and also

P (reiθ4 + j) = r1r
n(1 + o(1)), Q(reiθ4 + j) = r2r

n(1 + o(1)),

as r → ∞, where j = 0, 1. Hence from (4.4) we obtain,

lim
r→∞

D(reiθ4) = 0.

As D(z) is a rational function, for all θ ∈ [−π, π), we can obtain

lim
r→∞

D(reiθ) = 0,
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which contradicts (2.1) and thus r1 ̸> r2.

Again when r1 < r2, there exists some θ = θ5 such that for z = reiθ5 we get
θ1 + nθ5 = 0. Thus we obtain

anz
n = r1r

nei(θ1+nθ5) = r1r
n < bnz

n = r2r
nei(θ1+nθ5) = r2r

n

and also

P (reiθ5 + j) = r1r
n(1 + o(1)), Q(reiθ5 + j) = r2r

n(1 + o(1)),

as r → ∞, where j = 0, 1. Thus from (4.4), we obtain

lim
r→∞

A(reiθ5) +B(reiθ5) + C(reiθ5)

D(reiθ5)
= 1.

As D(z) is a rational function, for all θ ∈ [−π, π), we can obtain

lim
r→∞

A(reiθ) +B(reiθ) + C(reiθ)

D(reiθ)
= 1,

which contradicts (2.2) and hence r1 ̸< r2.

Thus r1 = r2. Since, e
P (z) ̸= eQ(z), for all z = reiθ6 such that θ1+nθ6 = 0, we

obtain

eQ(reiθ6+j) = er1r
n(1+o(1)), eP (reiθ6+j) − eQ(reiθ6+j) = er1r

n(1+o(1)),

as r → ∞, where j = 0, 1. Thus from (4.4), we deduce that

lim
r→∞

A(reiθ6)−B(reiθ6)− C(reiθ6)

D(reiθ6)
= 1.

As D(z) is a rational function, for all θ ∈ [−π, π), we can obtain

lim
r→∞

A(reiθ)−B(reiθ)− C(reiθ)

D(reiθ)
= 1,

which again contradicts (2.2) and thus r1 ̸= r2.

Case 2. Let θ1 ̸= θ2. Thus if θ2 − θ1 = α, then either α > 0 or α < 0. Now
clearly there exists some θ = θ7 such that for z = reiθ7 we get θ1 + nθ7 = 0 and
so θ2 + nθ7 = α.

Hence we obtain

P (reiθ7 + j) = r1r
n(1 + o(1)), Q(reiθ7 + j) = r2r

n(cosα+ i sinα)(1 + o(1)),

as r → ∞, where j = 0, 1.
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Thus from (4.4), we deduce that

lim
r→∞

1

D(reiθ7)

[
A(reiθ7)

1− eQ(reiθ7 )

eP (reiθ7 ) − eQ(reiθ7 )
.

1− eQ(reiθ7+1)

eP (reiθ7+1) − eQ(reiθ7+1)

+B(reiθ7)
1− eQ(reiθ7+1)

eP (reiθ7+1) − eQ(reiθ7+1)
+ C(reiθ7)

1− eQ(reiθ7 )

eP (reiθ7 ) − eQ(reiθ7 )

]
= 1

or, lim
r→∞

1

D(reiθ7)

[
A(reiθ7)

1− e(cosα+i sinα)r2rn(1+o(1))

er1rn(1+o(1)) − e(cosα+i sinα)r2rn(1+o(1))

.
1− e(cosα+i sinα)r2rn(1+o(1))

er1rn(1+o(1)) − e(cosα+i sinα)r2rn(1+o(1))

+B(reiθ7)
1− e(cosα+i sinα)r2rn(1+o(1))

er1rn(1+o(1)) − e(cosα+i sinα)r2rn(1+o(1))

+C(reiθ7)
1− e(cosα+i sinα)r2rn(1+o(1))

er1rn(1+o(1)) − e(cosα+i sinα)r2rn(1+o(1))

]
= 1.

Subcase 2.1. Let α > 0.
Subcase 2.1.1. Let cosα > 0 and sinα > 0.
Then from (4.7) we see that

lim
r→∞

1

D(reiθ7)

[
A(reiθ7)

e−r2rn(cosα+i sinα)(1+o(1)) − 1

e(r1−r2 cosα)rn(1+o(1)).e−ir2rn sinα(1+o(1)) − 1

.
e−r2rn(cosα+i sinα)(1+o(1)) − 1

e(r1−r2 cosα)rn(1+o(1)).e−ir2rn sinα(1+o(1)) − 1

+B(reiθ7)
e−r2rn(cosα+i sinα)(1+o(1)) − 1

e(r1−r2 cosα)rn(1+o(1)).e−ir2rn sinα(1+o(1)) − 1

+C(reiθ7)
e−r2rn(cosα+i sinα)(1+o(1)) − 1

e(r1−r2 cosα)rn(1+o(1)).e−ir2rn sinα(1+o(1)) − 1

]
= 1.

This limit exist only if cosα ≥ r1
r2

and then

lim
r→∞

A(reiθ7) +B(reiθ7) + C(reiθ7)

D(reiθ7)
= 1.

As D(z) is a rational function, for all θ ∈ [−π, π), we can obtain

lim
r→∞

A(reiθ) +B(reiθ) + C(reiθ)

D(reiθ)
= 1,

which contradicts (2.2).
Subcase 2.1.2. Let cosα < 0 and sinα > 0.
Then from (4.7) we observe that the limit does not exist under no situation.
Subcase 2.1.3. Let cosα < 0 and sinα < 0.
Then from (4.7) we clearly obtain

lim
r→∞

D(reiθ7) = 0.
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As D(z) is a rational function, for all θ ∈ [−π, π), we can obtain

lim
r→∞

D(reiθ) = 0,

which contradicts (2.1).

Subcase 2.1.4. Let cosα > 0 and sinα < 0.

Then from (4.7) we see that

lim
r→∞

1

D(reiθ7)

[
A(reiθ7)

e−r2rn cosα(1+o(1)) − eir2r
n sinα(1+o(1))

e(r1−r2 cosα)rn(1+o(1)) − eir2rn sinα(1+o(1))

.
e−r2rn cosα(1+o(1)) − eir2r

n sinα(1+o(1))

e(r1−r2 cosα)rn(1+o(1)) − eir2rn sinα(1+o(1))

+B(reiθ7)
e−r2rn cosα(1+o(1)) − eir2r

n sinα(1+o(1))

e(r1−r2 cosα)rn(1+o(1)) − eir2rn sinα(1+o(1))

+C(reiθ7)
e−r2rn cosα(1+o(1)) − eir2r

n sinα(1+o(1))

e(r1−r2 cosα)rn(1+o(1)) − eir2rn sinα(1+o(1))

]
= 1.

This limit exist only if cosα ≤ r1
r2

and then

lim
r→∞

D(reiθ7) = 0.

As D(z) is a rational function, for all θ ∈ [−π, π), we can obtain

lim
r→∞

D(reiθ) = 0,

which contradicts (2.1).

Subcase 2.2. Let α < 0. Then clearly cosα > 0 and sinα < 0 is the only
possibility. But from Subcase 2.1.4. above we arrive at a contradiction.

This proves the theorem.

Proof of Theorem 2. Since f(z), g(z) are finite order transcendental meromor-
phic solutions of the equation (1.3) for all z in C and share 0, ∞ CM, we have

f(z)

g(z)
= eP (z), (4.7)

where P (z) is a polynomial such that degP (z) ≤ max{ρ(f), ρ(g)}.
If eP (z) = 1, then clearly from (4.7), we obtain f(z) = g(z).

Let eP (z) ̸= 1, then eP (z+1) ̸= 1.

If eP (z) = 1, then clearly from (4.7), we obtain f(z) = g(z).

Let eP (z) ̸= 1, then eP (z+1) ̸= 1.

So from (1.3) and (4.7), we get

A(z)eP (z)g(z).eP (z+1)g(z + 1) +B(z)eP (z+1)g(z + 1)

+C(z)eP (z)g(z) = D(z). (4.8)
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Also since g(z) is a solution of (1.3), so

A(z)g(z)g(z + 1) +B(z)g(z + 1) + C(z)g(z) = D(z). (4.9)

From (4.8) and (4.9), we obtain

A(z)C(z)eP (z)

{
eP (z+1) − 1

}
g2(z) +

[
A(z)D(z)

{
1− eP (z+1)+P (z)

}
+B(z)C(z)

{
eP (z+1) − eP (z)

}]
g(z) +B(z)D(z)

[
1− eP (z+1)

]
= 0. (4.10)

Now in equation (1.3) as A(z), B(z), C(z), D(z) are non-zero rational functions
and f(z), g(z) are transcendental meromorphic functions so we consider the fol-
lowing cases.

Case 1. Let A(z)D(z)+C(z)B(z) = 0, i.e., A(z)
B(z) = −C(z)

D(z) = α(z), where α(z)

is a rational function. Then (4.10) becomes

(α(z)g(z) + 1)(α(z)eP (z)g(z) + 1)(1− eP (z+1)) = 0.

Since g(z) is a transcendental function so g(z) ̸= − 1
α(z) . Thus

g(z) = −e−P (z)

α(z)
. (4.11)

Let us consider

P (z) = anz
n + an−1z

n−1 + . . .+ a1z + a0,

where an( ̸= 0), . . . , a1, a0 are constants and n is an integer.
Then clearly

ρ(eP (z+1)−P (z)) = n− 1. (4.12)

Now combining (4.9) and (4.11), we get

e−P (z+1) =
D(z)

B(z)
α(z + 1).

Clearly, we see that

n = ρ(e−P (z+1)) = ρ

(
D(z)

B(z)
α(z + 1)

)
= 0,

which is a contradiction.
Case 2. Let A(z)D(z) + C(z)B(z) ̸= 0, i.e., A(z)

B(z) = α(z) and C(z)
D(z) = β(z),

where α(z), β(z) are rational functions. Then (4.10) becomes

g2(z) = E(z)g(z) + F (z), (4.13)
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where E(z) = β(z)eP (z+1)−α(z)eP (z)+P (z+1)+α(z)−β(z)eP (z)

α(z)β(z)eP (z)(1−eP (z+1))
and F (z) = − 1

α(z)β(z)eP (z) .

Subcase 2.1. Let g(z) has infinitely many poles of multiplicity ≥ 2. Now we
consider the following subcases.

Subcase 2.1.1. Let P (z) is a constant. Then, E(z) and F (z) are rational
functions and hence have at most finitely many poles. Now if z1 is a pole of g(z)
with multiplicity k1 ≥ 2 such that E(z1) ̸= ∞ and F (z1) ̸= ∞, then z1 is a pole
of g2(z) with multiplicity 2k1 and a pole of E(z)g(z) + F (z) with multiplicity k1,
which is not possible by (4.13).

Subcase 2.1.2. Let P (z) is a non-constant polynomial such that degP (z) =
n ≥ 1.

Now as g(z) has infinitely many poles of multiplicity ≥ 2, so from (4.13) we
see that the multiplicity of the zeros of 1− eP (z+1) cannot be less than 2. Thus it
is clear from

(1− eP (z+1))′ = P ′(z + 1)eP (z+1),

that 1− eP (z+1) has at most n zeros of multiplicity ≥ 2. Thus E(z) is a meromor-
phic functions which have atmost finitely many poles of multiplicity ≥ 2. Now if
z2 is pole of g(z) with multiplicity k2 ≥ 2 such that z2 is not a pole of E(z) of
multiplicity ≥ 2, then z2 is a pole of E(z)g(z) + F (z) with multiplicity at most
k2. But from (4.13) and k2 < 2k2, it is not possible.

Subcase 2.2. Let ρ(g) is not an integer and g(z) has atmost finitely many
poles. Since degP (z) ≤ ρ(g), hence we have degP (z) < ρ(g).

Now if g(z) has at most finitely many poles of multiplicity ≥ 2, then from
Subcase 2.1.2. the result is obvious.

Now let g(z) has at most finitely many simple poles. We have,

m(r, g) = T (r, g)−N(r, g) = T (r, g) + S(r, g). (4.14)

Again, since degP (z) < ρ(g), we observe that

m(r, E) ≤ T (r, E) = S(r, g), m(r, F ) ≤ T (r, F ) = S(r, g). (4.15)

Applying Lemma 2 to (4.13), we get

m(r, g) = S(r, g),

which contradicts (4.14).

This proves the theorem.

Proof of Theorem 3. Since f(z) and g(z) are finite order transcendental mero-
morphic solutions of the equation (1.4) for all z in C, the equation (4.7) still
holds.

If eP (z) = 1, then clearly from (4.7), we obtain f(z) = g(z).

Let eP (z) ̸= 1, then eP (z+1) ̸= 1.
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Now in the similar way as in the proof of Theorem 2, considering equation
(1.4) we obtain equation (4.10) with D(z) = 0, i.e.,

A(z)C(z)eP (z)

[
eP (z+1) − 1

]
g2(z) +B(z)C(z)

{
eP (z+1) − eP (z)

}
g(z) = 0,

or,

g(z) =
B(z)[eP (z+1)−P (z) − 1]

A(z)[1− eP (z+1)]
. (4.16)

Also from equation (1.4), we have

A(z)g(z)g(z + 1) +B(z)g(z + 1) + C(z)g(z) = 0. (4.17)

Combining (4.16) and (4.17), we get

A(z)B(z + 1)eP (z+1)h(z + 1)[e−P (z) − 1] (4.18)

+A(z + 1)C(z)h(z)[1− eP (z+2)] = 0,

where

h(z) = eP (z+1)−P (z) − 1.

Let us consider

P (z) = anz
n + an−1z

n−1 + . . .+ a1z + a0, (4.19)

where an( ̸= 0), . . . , a1, a0 are constants and n is an integer. Since g(z) is tran-
scendental, so from (4.18), we have degP (z) ≥ 1.

We claim that degP (z) = 1. So if possible, degP (z) ≥ 2. Then clearly

deg[P (z + 2)− P (z + 1)] = deg[P (z + 1)− P (z)] = n− 1. (4.20)

Thus ρ(eP (z+1)−P (z)) = n− 1. Now

T (r, h) = T (eP (z+1)−P (z) − 1) = T (eP (z+1)−P (z)) +O(log r),

which yields

ρ(h) = n− 1. (4.21)

Now from (4.18), we obtain{
A(z)B(z + 1)h(z + 1) +A(z + 1)C(z)h(z)eP (z+2)−P (z+1)

}
eP (z+1)

= A(z)B(z + 1)eP (z+1)−P (z)h(z + 1) +A(z + 1)C(z)h(z).

If possible, suppose A(z)B(z + 1)eP (z+1)−P (z)h(z + 1) +A(z + 1)C(z)h(z) ̸= 0.
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Then from (4.20) and (4.21), we deduce

n = ρ

({
A(z)B(z + 1)h(z + 1) +A(z + 1)C(z)h(z)eP (z+2)−P (z+1)

}
eP (z+1)

)
= ρ

(
A(z)B(z + 1)eP (z+1)−P (z)h(z + 1) +A(z + 1)C(z)h(z)

)
≤ n− 1,

which is a contradiction.
Thus A(z)B(z + 1)eP (z+1)−P (z)h(z + 1) + A(z + 1)C(z)h(z) = 0 and thus we

obtain

T (r, eP (z+1)−P (z)) = m(r, eP (z+1)−P (z)) = m

(
r,− A(z + 1)C(z)h(z)

A(z)B(z + 1)h(z + 1)

)
.(4.22)

Now from Lemma 1 we see that for ϵ > 0,

m

(
r,

h(z)

h(z + 1)

)
= O(rρ(h)−1+ϵ) = O(rn−2+ϵ) = o(rn−1). (4.23)

Hence from (4.22) and (4.23), we deduce

T (r, eP (z+1)−P (z)) ≤ o(rn−1) +O(log r),

which again contradicts ρ(eP (z+1)−P (z)) = n− 1 ≥ 1.
So clearly degP (z) = 1 and hence from (4.19), we obtain P (z) = a1z + a0,

where a1 ̸= 0. Now from (4.16), we obtain

g(z) =
B(z)[ea1 − 1]

A(z)[1− ea1(z+1)+a0 ]
. (4.24)

Hence from (4.17) and (4.24), we have

(ea1 − 1)

[
ea1z

{
A(z)B(z + 1)ea1+a0 +A(z + 1)C(z)e2a1+a0

}
−
{
A(z)B(z + 1)ea1 +A(z + 1)C(z)

}]
= 0,

which implies either

ea1 = 1, (4.25)

or

ea1z
{
A(z)B(z + 1)ea1+a0 +A(z + 1)C(z)e2a1+a0

}
(4.26)

−
{
A(z)B(z + 1)ea1 +A(z + 1)C(z)

}
= 0.

Comparing the orders of both sides of the equation (4.26), we observe that

A(z)B(z + 1)ea1+a0 +A(z + 1)C(z)e2a1+a0 = 0 (4.27)



Characterization of solutions 31

and hence using (4.27) in (4.26), we get

A(z)B(z + 1)ea1 +A(z + 1)C(z) = 0. (4.28)

So from (4.27) and (4.28), we deduce that

e2a1 = 1.

Therefore, from (4.7) and (4.24), we obtain

f(z) =
B(z)ea1z+a0 [ea1 − 1]

A(z)[1− ea1(z+1)+a0 ]
,

where e2a1 = 1.
Also from (4.27) and (4.28), we obtain the relation A2(z)B2(z + 1) = A2(z +

1)C2(z) holds. This proves the theorem.

Proof of Theorem 4. Since f(z) and g(z) are finite order transcendental mero-
morphic solutions of the equations (1.4) and (1.5) respectively for all z in C and
share 0, ∞ CM, the equation (4.7) in this case still holds. Here B(z)C(z) ̸≡ 0
implies (1.5) admits transcendental meromorphic solution.

Case 1. Let eP (z) = 1. Then clearly from (4.7), we have f(z) ≡ g(z).
Case 2. Let eP (z) ̸= 1.
Subcase 2.1. Let D(z) ≡ 0. Then from (1.4) and (4.7), we get

A(z)eP (z)g(z).eP (z+1)g(z + 1) +B(z)eP (z+1)g(z + 1) + C(z)eP (z)g(z) = 0.(4.29)

Again from (1.5), we have

B(z)g(z + 1) + C(z)g(z) = 0. (4.30)

By (4.29) and (4.30) we obtain

g(z) =
B(z)

A(z)
{e−P (z+1) − e−P (z)}. (4.31)

Combining (4.30) and (4.31), we get

A(z)B(z + 1)

A(z + 1)C(z)
=

e−P (z) − e−P (z+1)

e−P (z+2) − e−P (z+1)
=

eP (z+1)−P (z) − 1

eP (z+1)−P (z+2) − 1
. (4.32)

Let us consider

P (z) = anz
n + an−1z

n−1 + . . .+ a1z + a0,

where an ̸= 0. Denote an−1 = r1e
iθ1 , where θ1 ∈ [−π, π).

So there exist some θ = θ2 such that for z = reiθ2 , we get θ1 + (n− 1)θ2 = 0.
Thus we have

an−1z
n−1 = r1r

n−1ei(θ1+(n−1)θ2) = r1r
n−1. (4.33)
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Hence from (4.32) and (4.33), we obtain

lim
r→∞

A(reiθ2)B(reiθ2 + 1)

A(reiθ2 + 1)C(reiθ2)
= lim

r→∞

er1r
n−1(1+o(1)) − 1

er1rn−1(1+o(1)) − 1
= 1. (4.34)

As A(z)B(z+1)
A(z+1)C(z) is a rational function so for all θ ∈ [−π, π), from (4.34), we obtain

lim
r→∞

A(reiθ)B(reiθ + 1)

A(reiθ + 1)C(reiθ)
= 1,

which contradicts (2.3).

Subcase 2.2. Let D(z) ̸≡ 0. Then from (1.5), we have

B(z)g(z + 1) + C(z)g(z) = D(z). (4.35)

Also as f is of non-integer finite order, so P (z) is a constant and let us consider
eP (z) = k. Thus the equation (4.29) becomes

kA(z)g(z)g(z + 1) +B(z)g(z + 1) + C(z)g(z) = 0. (4.36)

Substituting the value of g(z + 1) from (4.35) in (4.36), we get

kA(z)C(z)g2(z)− kA(z)D(z)g(z)−B(z)D(z) = 0. (4.37)

Thus from (4.37) we deduce that

g(z) =
D(z)

2C(z)
±

√
k2A2(z)D2(z)− 4kA(z)B(z)C(z)D(z)

2kA(z)C(z)
,

which is a contradiction as g(z) is transcendental meromorphic function.

This proves the theorem.
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