Bulletin of the Transilvania University of Bragov
Series III: Mathematics and Computer Science, Vol. 3(65), No. 2 - 2023, 227-236
https://doi.org/10.31926 /but.mif.2023.3.65.2.19

ADVANCES IN CUDA FOR COMPUTATIONAL PHYSICS

Delia SPRIDON!

Communicated to:
International Conference on Mathematics and Computer Science ,
September 15-17, 2022, Brasov, Romania, 4rd Edition - MACOS 2022

Dedicated to Professor Radu Pdltanea on the occasion of his 70th anniversary

Abstract

Advances in the graphics processing unit (GPU) development led to the
opportunity for software developers to increase the execution speed for their
programs by massive parallelization of the algorithms using GPU program-
ming. NVIDIA company developed an arhitecture for parallel computing
named Compute Unified Device Architecture (CUDA) which includes a set
of CUDA instructions and the hardware for parallel computing.

Computational Physics is an interdisciplinary field which is in continuous
progress and which studies, develops and optimizes numerical algorithms
and computational techniques for their application in solving various physics
problems. Computational Physics has applicability in all sub-branches of
physics and related fields such as: biophysics, astrophysics, plasma physics,
biomechanics, fluid physics, etc. Moreover, with the evolution of technology
in the last few decades, this relatively new field has helped to quickly obtain
results in these fields, facilitating the connection between theoretical and
experimental physics.

In this paper, some of the latest researches and results obtained in com-
putational physics by using GPU computing with CUDA architecture are
reviewed.

2000 Mathematics Subject Classification: 65Y05, 68Q10.

Keywords: parallel programming, computational physics

'Faculty of Mathematics and Informatics, Transilvania University of Brasov, Romania,
e-mail: delia.cuza@unitbv.ro

228 Delia Spridon

1 Introduction

At the beginnings of ‘90, the parallel programming started to be more and
more necessary when the 3D graphics applications, especially gaming, began to
be developed [14]. The widespread GPU programming was introduced at the be-
ginnings of the 21’st century, was helped by the advances in hardware development
and led to the necessity of research activity for the programmers so that known
algorithms to be rethought in a parallel approach in order to reduce de process-
ing time in this new industry. Moreover, during the last years, the necessity of
simulating real life led to an incredible development of parallel programming .

The graphics processing units (GPUs) are electronic circuits consisting of up to
thousands of microprocessors designed especially for parallel computations. Thus,
besides their specific use for visualization and image processing, GPUs are more
and more used to increase significantly the speed up of scientific computations [19].
Taking into account that GPUs were initially designed for image processing, one
of the first other kind of application is matrix computing. Thus, special library
for matrix computations were developed by using GPUs benefits. The Compute
Unified Device Architecture (CUDA) is an arhitecture having a hardware part
(NVIDIA GPU) and a software part (a set of instructions and libraries) and that
can be used for general purpose computation on GPUs. This architecture has
many libraries as integral components, such as cuBLAS, cuSOLVER, cuRAND,
CUDA Math Library etc., designed for matrix computation and other basic algo-
rithms for solving systems of ordinary differential equations, for machine learning
and many other. Recent studies show the improvements that parallel program-
ming can bring in various fields, taking advantage of the graphics cards of personal
computers that are increasingly accessible and can be used to run various parallel
algorithms. Thus, combining high performances and low-costs, GPU program-
ming is currently used in fields such as molecular dynamics [14], medical imaging
[15], financial simulation [24], geoscience simulations [20], fast 2D interpolations
[4], graphs theory [6] etc.

2 About CUDA

The research for increasing execution speed and, implicitly, for reducing the
complexity of CUDA kernels is continuously growing, also due to recently ad-
vances in GPU. However, the challenge of porting the applications to CUDA is
still a technical and practical issue to be solved for programmers. In a CUDA
implementation of an algorithm, the programmer needs to take care of the data
transfer management between Central Processing Unit CPU and GPU, to ensure
an optimal GPU memory usage and to pack GPU code in separate functions.
The first step in creating a CUDA program is to design an algorithm that can
be parallelized. This involves breaking down the task into smaller sub-tasks that
can be executed independently. Moreover, a CUDA based program consists in
two kind of codes: the set of instructions that runs on CPU named host code,
and the set of intruction that runs on GPU named device code. A schema of

Advances in CUDA 229

Start application on CPU

Allocate memory and load data
to host

Allocate memory on device and
copy data from host to device

Compute kernels on GPU

Copy data from device to host

Free allocated memory from
GPU

Figure 1: CUDA program work-flow

a CUDA work-flow is presented in Figure 1. The applications start running on
CPU and the host code manages also the device code. The data that need to
be processed are loaded on host memory, the necessary memory is allocated onto
device and the data is loaded on the memory of the device using CUDA API calls
such as ”cudaMalloc()” and ” cudaMemepy()”. The device kernels are called from
host and runs on GPU taking advantage of GPU’s ability of processing intensive
tasks that can be executed on parallel. To launch a kernel, we need to specify
the number of threads and the number of blocks to be used. This is done using
the "<<<>>>" syntax in CUDA. Once the kernel has been launched, it will
execute on the GPU. Each thread will execute the same code, but with different
data. The data for each thread is accessed using the thread index, which is pro-
vided by CUDA. In order to ensure that all threads have completed their work
before moving on to the next step, the threads need tobe synchronized using the
”_syncthreads()” function. Once the kernel has completed its work, we need to
transfer the data back from the device to the host. Finally, the memory that was
allocated on the device needs to be free using ”cudaFree()”.

Overall, the workflow of a CUDA program involves designing an algorithm
that can be parallelized, allocating memory on the device, transferring data to
and from the device, launching kernels, executing the kernel code, synchronizing
threads, transferring data back to the host, and cleaning up allocated memory.

230

Delia Spridon

Figure 2: GPU memory hierarchy

The memory management plays an important role for best results with CUDA
programming. Also, it is necessary to know the memory hierarchy of GPU so this
could be use as efficient as possible. The GPU’s memory levels (global memory,
constant memory, shared memory, local memory and registers) are presented in
Figure 2 .

Global memory of the GPUs is the slowest memory to access, but there
it is the largest. This can be managed by CPU using cudaMalloc, cud-
aFree, cudaMemcpy or cudaMemset functions, and therefore it is allocated
/ deallocated or set from CPU.

Constant memory is part of the main memory of GPUs and all threads can
read the same constant memory. The values on constant memory is set by
CPU before launching kernels.

Shared memory can be accesed very fast and it is used for fast communica-
tions between threads inside a block.

Local memory is also slow being part of the main memory and it is automat-
ically used by threads when the memory for registers is no longer available.

Registers are the variables declared in kernels and they represent the fastest
accessed memory. When the memory for registers run out, the local memory
is used.

The results presented in few of the latest researches computational physics by
using CUDA programing show significanly accelerated processes when using the
GPU memory in a smart way. For example, in [22], the authors propose an ac-
celerated solver for the 2D smoothed particle hydrodynamics by using in their

Advances in CUDA 231

implementation a new caching method for CUDA shared memory. Thus, by us-
ing this method, the proposed software can be succesfully used for solving com-
plex physicsl problems in computational fluid dynamics, or any other continuum
medium simulators [16].

3 Latest results of CUDA programming for computa-
tional physics

Considering the wide variety of applications in the field of Computational
Physics, the research studies in this domain are numerous. The acceleration of
processes in computational physics is usually of great importance for obtaining
the desired results as fast as possible. GPU programming is a suitable approach
for obtaining very good execution time when a massive parallelization is possible,
as the next studies will show.

CUDA for Fourier transform
One of the most important numerical intruments used for signal processing, im-
age processing, or analysis of differential equations is the Fast Fourier Transform
(FFT). The Fourier transform is the mathematical transform that decomposes
certain functions into frequency components.
The formula for direct Fourier transform of an integrable function f :R -;C is given
by Equation 1. Equation 2 is the inverse Fourier transform.

F(¢) = / f(@)e2E (1)
f(a) = / F(€)e2 d (2)

In mathematics, the Fourier transform is an operation that is applied to com-
plex functions and produces another complex function that contains the same
information as the original function, but reorganized by component frequencies.
For example, if the original function (f(x)) is a time-dependent signal, its Fourier
transform (F'(§)) decomposes the signal by frequency (&) and produces a spectrum
of it. The same effect is obtained if the initial function has as its argument the
position in a uni- or multidimensional space (x), in which case the Fourier trans-
form reveals the uni- or multidimensional spectrum of the spatial frequencies that
make the input function. The computational complexity of discrete Fourier trans-
form algorithm is of order O(N ?) and for the fast Fourier transform, it is O(N
log(N)) for a N-size signal. However, dealing in various applications with big data
FFT calculations may lead to challenges regarding the execution time or energy
consumption. For solving this issues, sparse fast Fourier transform was developed
with a sub-linear computational complexity. Nevertheless, in various applications,
depending on its size, execution time might still be a problem. Therefore, research

232 Delia Spridon

papers for accelerating the FFT by using GPU were published starting with 2003
[17, 10, 12]. A CUDA library was developed for FFT algorithm (cuFFT), re-
cent study show the possibility of increasing the speed up for it. Thus, in [21], a
massive parallel approach of sparse FFT is proposed, and the authors prove that
their algorithm performs over 10x faster than the classical cuFF'T library, and
over 28x faster than the CPU parallelization of FFT. An other research group [2]
also proposes GPU sparse FFT algorithm based on parallel optimization and the
authors mention that this algorithm ”leads enormous speedups”. Moreover, in
a very recent research [23], authors propose an hybrid MPI - CUDA implemen-
tation for nonequispaced discrete Fourier transformation using parallel threads
launched from CPU nodes for managing the thread-level parallelism in multiple
GPU devices. The authors prove that using hybrid parallelization, an increased
improvement in computational efficiency is obtained without losing the computa-
tional precision. Also, their method can balance in a dynamic way the connection
between performance and throughput capacity by modifying the number of com-
puter nodes used for parallel computations [23].

To resume, the execution time of FFT (Fast Fourier Transform) algorithms
can be greatly improved by leveraging the parallel computing capabilities of GPUs
using CUDA. The execution time of FFT on GPUs can be influenced by several
factors, including the size of the input data, the complexity of the FFT algorithm,
and the number of GPU cores used. In general, the execution time of FFT on a
GPU can be significantly faster than on a CPU. For example, for an input size of
4096 elements, the execution time of FFT on a CPU can be several milliseconds,
while on a GPU it can be completed in less than 1 millisecond. The execution
time of FFT on a GPU can also be affected by the type of FFT algorithm used.
There are several FFT algorithms available, including Cooley-Tukey, Rader, and
Bluestein. Each algorithm has its own strengths and weaknesses, and some may
be better suited for parallel execution on GPUs than others. Overall, the execu-
tion time of FFT on a GPU using CUDA can be significantly faster than on a
CPU, especially for larger input sizes. By leveraging the parallel computing ca-
pabilities of GPUs, developers can achieve significant speedups and improve the
performance of their applications.

CUDA for solving Poisson’s Equation
Poisson’s equation is an elliptic partial differential equation, a generalization of
Laplace’s equation that is very important in theoretical physics. The general
formula of Poisson is given by Equation 3, where ¢(r) is a scalar potential that
needs to be determined and f(r) is the so called source function.

Vep(r) = f(r) 3)

For example, the Poisson equation can be used to calculate the gravitational
potential at distance r from a central point mass m, or for calculating the electro-
static potential for a known charge density distribution [11]. Moreover, Poisson
equation plays an very important role in fluid dynamics [9] or in quantum mechan-

Advances in CUDA 233

ical continuum solvation [3]. Thus, considering the importance of this eqution and
to its wide variety of applications, many researches for solving Poisson equation
by using numerical methods were published. For exemple, in 2015, Zhichen Feng
and Zheng-Mao Sheng propose a new numerical method for solving the Poisson
equation by using a physical model [8]. This proposed method has a compu-
tational complexity of O(N) in certain conditions, and it can be used for any
geometry or mesh style or in large scale parallel simulations. Other researches
propose different approaches for solving the Poisson equation in different context
[13, 1]. However, modern software requires fast solution for big computational
problems. As mention before, GPU is a solution to obtain fast result for problems
where parallel computation is possible. The steps that could be followed to solve
the Poisson equation using CUDA are presented bellow:

e Define a 3D grid of points that cover the region of interest, where each point
represents a node in the numerical solution.

e Allocate memory on the GPU for the grid points and the function values.

e Specify the boundary conditions for the problem, which will be used to set
the values of the function on the boundary of the grid.

o Initialize the function values at the interior points of the grid to an initial
guess.

e Use iterative numerical methods, such as the Jacobi or Gauss-Seidel method,
to solve for the function values at the interior points of the grid.

e Once the solution has converged, transfer the function values back from the
GPU to the host for further analysis.

e Free the memory that was allocated on the GPU.

Few researches that propose a fast solving Poisson equation method using GPU are
presented in the literature. In 2011, Decyk and Singh proposed the use of cuFF'T
library for finding the solution of 2D Poisson equation for periodic boudary con-
ditions [7].

In [5], a solver for 2D Poisson equation is proposed by using a parallelized
version of Gauss-Seider algorithm. This algorithm is a generalization of Jacobi
algorithm and the authors use CUDA to obtain a high execution speed. The speed
up for the CUDA implemented algorithm depends on the size of the problem and
the number of used threads. Thus, the speed up was up to 300 for 160000 nodes
when 200 threads where used [5] (Figure 3).

4 Conclusions and perspectives

To conclude, eventhough many of the well known algorithms used in various
applications have been already parallelized and many of them are already added

234 Delia Spridon

300 T T T T T T T

= 160 000 nodes
s— 40 000 nodes

250 10 000 nodes | -
m— 3600 nodes

O T L L 1 1 A1 1 1 -
0 20 40 60 80 100 120 140 160 180 200
Number of threads

The speedup for 3 600, 10 000, 40 000 and 160 000 nodes.

Figure 3: The speed-up for various number of nodes [5]

to CUDA library, new methods for optimization and for increasing the speedup
can still be found. Execution time is crucial in many computational physics
problems, and so, any improvement in this direction is still necessary. Hybrid
parallel algorithms (CPU-GPU) are continuously developed in order to obtain high
performance computing results with minimum costs. Therefore, cheap hardware
solutions could be use for solving execution time issues in computational science
by using strong parallelization that GPU provides.

References

[1] Adelmann, A., Arbenz, P. and Ineichen, Y., A fast parallel Poisson solver on

wrreqular domains applied to beam dynamics simulations, J. Comput. Phys.
229, (2010), 4554-4566.

[2] Artiles, O. and Saeed, F., GPU-SFFT: A GPU based parallel algorithm for
computing the Sparse Fast Fourier Transform (SFFT) of k-sparse signals,
2019 IEEE International Conference on Big Data, 2019.

[3] Chen Z., and Wei, G.-W., Differential geometry based solvation model. III.
Quantum formulation, The Journal of Chemical Physics 135 (2011) 194108.

[4] Ciupala, L., Deaconu, A., and, Spridon, D., IDW map builder and statistics
of air pollution in Brasov, Bull. Transilv. Univ. Bragov Ser. III 63 (2021),
247-256.

[5] Clouthier-Lopez, J., Ferndndez, R.B., and de Ledén, D.A.S.; A Parallel Imple-
mentation on CUDA for Solving 2D Poisson’s Equation, Research in Com-
puting Science, 147 (2018), no. 12, 183-191.

Advances in CUDA 235

[6]

[16]

[17]

[18]

[19]

Deaconu, A.M., and Spridon, D., Adaptation of Random binomial graphs
for testing network flow problems algorithms, Mathematics 9 (2021), Article
number 1716.

Decyk, V.K., and Singh, T.V., Adaptable Particle-in-Cell algorithms for
graphical processing units, Comput. Phys. Commun. 182 (2011), 641-648.

Feng, Z. and Sheng, Z.-M., An approach to numerically solving the Poisson
equation, Physica Scripta, 90 (2015), no. 6.

Fletcher, C.A.J., Computational Techniques for Fluid Dynamics, vol 1, 2nd
edn Springer, (Berlin, 1991.

Govindaraju, N.K. and Manocha, D., Cache-efficient numerical algorithms
using graphics hardware, Parallel Comput. 33 (2007), 663-684.

Griffiths, D.J., Introduction to Electrodynamics, Upper Saddle River, NJ:
Prentice-Hall, 1999.

Gu, L., Li, X. and Siegel, J., An empirically tuned 2d and 3d FFT library on
CUDA GPU, In: 24th ACM International Conference on Supercomputing,
New York, NY, USA, ACM, 2010, 305-314.

Guillet, T., and Teyssier, R., A simple multigrid scheme for solving the Pois-
son equation with arbitrary domain boundaries, Journal of Computational
Physics, 230, (2011), 4756-4771.

Harju, A., Siro, T. , Canova, F. F., Hakala, S., and Rantalaiho, T., Compu-
tational Physics on Graphics Processing Units, Lecture Notes in Computer
Science 7782 (2013), 3-26.

Kalaiselvi, T., Sriramakrishnan, P., and Somasundaram, K., Survey of using
GPU CUDA programming model in medical image analysis, Informatics in
Medicine Unlocked 9 (2017), 133-144.

Lind, S. J., Rogers, B. D. and Stansby, P.K., Review of smoothed particle
hydrodynamics: towards converged Lagrangian flow modelling, Proceedings
of the Royal Society A 476 (2020), no. 2241.

Moreland, K. and Angel, E., The FFT on a GPU, 2003 ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware. HWWS ’03,
Aire-la-Ville, Switzerland, Switzerland, Eurographics Association, 112-119,
2003.

Papadakis, A.P., Ioannou, A. and Almady, W., KYAMOS Software — CUDA
aware MPI Solver for Poisson equation, Journal of Multidisciplinary Engi-
neering Science and Technology, 7 (2020), no. 12, 13208-13221.

Volkov, V. , and Demmel, J., Benchmarking GPUs to Tune Dense Linear
Algebra, 2008 ACM /IEEE Conference on Supercomputing, Austin, TX, USA.

236

[20]

[21]

22]

23]

[24]

Delia Spridon

Walsh, S., Saar, M., Bailey, P., and Lilja, D., Accelerating geoscience and
engineering system simulations on graphics hardware, Computers and Geo-
sciences 35 (2009), 2353-2364.

Wang, C., Chandrasekaran S. and Chapman, B., cusFFT: A High-
performance sparse Fast Fourier Transform algorithm on GPUs, 2016 IEEE

International Parallel and Distributed Processing Symposium (IPDPS), 963-
972, 2016.

Winkler, D., Rezavand, M. , Meister, M., and Rauch, W., gpuSPHASE—A
shared memory caching implementation for 2D SPH using CUDA, Comput.
Phys. Commun. 235 (2019), 514-516.

Yang, S.C., and Wang, Y.L., A hybrid MPI-CUDA approach for nonequis-
paced discrete Fourier transformation, Comput. Phys. Commun. 258, (2021),
107513.

https://developer.nvidia.com/industries/financial-services,
https://developer.nvidia.com/industries/financial-services.

