
Bulletin of the Transilvania University of Braşov

Series III: Mathematics and Computer Science, Vol. 3(65), No. 2 - 2023, 213-226

https://doi.org/10.31926/but.mif.2023.3.65.2.18

A COMPREHENSIVE APPLICATION ARCHITECTURE FOR
UNLOCKING THE POTENTIAL OF STUDENT FEEDBACK

Dana SIMIAN ∗,1 and Marin-Eusebiu ŞERBAN 2

Dedicated to Professor Radu Păltănea on the occasion of his 70th anniversary

Abstract

This article proposes a novel solution aimed at streamlining the student
feedback, enabling them to assess various aspects and activities within their
institution. Different from the classical solution of collecting students feed-
back using a set of questions grouped in one or many forms, we designed
a solution capable to empower students of all age groups to enhance their
higher education experiences by openly expressing opinions about their en-
rolled faculties, providing valuable guidance to prospective college students.
Our proposal introduces a generic application architecture designed to inte-
grate the presentation of the main opportunities and offers from many uni-
versities with the student reviews on all aspects of these universities. Thus,
we avoid a number of factors that reduce the quantity and objectivity of
student feedback. Important elements in our architecture refer to reviewing
and rating system as well as the search system which facilitate the use of
the existing evaluations on different aspects of an university. We devised a
generic architecture for a client-server application, specifying a minimum set
of required functionalities. For validation, we designed and implemented a
client-server application based on the generic architecture we outlined. The
application offers several key advantages, including robust information secu-
rity measures, and diverse communication channels for authenticated users
within the platform. The application’s architecture includes an encryption
system based on multiple encryption techniques. Additionally, an algorithm
for search optimization within the platform have been developed, further en-
hancing its utility.

2000 Mathematics Subject Classification: 68U35, 68W99.
Key words: client-server application, searching algorithm, student feed-

back

1∗ Corresponding author, Lucian Blaga University of Sibiu, Romania, e-mail:
dana.simian@ulbsibiu.ro

2Faculty of Sciences, Lucian Blaga University of Sibiu, Romania, e-mail:
eusebiu.serban@ulbsibiu.ro



214 Dana Simian and Eusebiu-Marin Şerban

1 Introduction

Enhancing student feedback in higher education is a topic intensively discussed
in articles within the field of education sciences. The review [5] and the references
therein discuss strategies and tools for effectively collecting and utilizing student
feedback. Faculty evaluation presents challenges and best practices, with a par-
ticular focus on specific areas such as medical sciences [4], teaching practices [1],
and the professional development of teaching staff. Various applications within
learning management systems, including but not limited to Blackboard, Canopy
Education, Moodle, Campus Lab, and others, often incorporate features for con-
ducting course evaluations and surveys to gather student feedback on courses and
instructors. Many universities also employ their own student evaluation of teach-
ing systems or custom evaluation systems to assess faculty performance. Utilizing
student feedback is considered one of the best practices in faculty evaluation and
development, as highlighted by [13]. Obtaining feedback from a representative
and comprehensive sample of students is crucial for improving various activities
within universities. Typically, universities collect student feedback through sur-
veys and questionnaires, and this feedback is usually managed centrally at the
faculty or university level. It is primarily used to inform and improve the devel-
opment strategies of these academic institutions and is not typically made publicly
available. The objective feedback from students could also be a valuable guide for
potential candidates in choosing a university and their educational path.

An empirical study undertaken within a group of students from our university,
revealed two aspects that decrease the number of students willing to provide their
feedback: the fear that their identity may be revealed independently of their
desire and the uncertainty that their feedback will have a considerable effect.
To counteract these issues, we propose the use of a rating method of different
aspects from universities, including teaching and administrative aspects. This
rating module should be encapsulated in a more complex application, and address
as many universities as possible.

The open expression of opinions, both positive and negative, as perceived by
students, can help reduce their reluctance to share feedback. Additionally, it can
have a significant impact on prospective candidates who rely on these reviews for
insights. The use of a rating system has demonstrated its effectiveness in other
domains, such as tourism and commerce.

Using a rating system based on reviews beside the classical official surveys
and questionnaires, aims to enhance the utilization of this feedback for various
purposes, including:

� Streamlining and improving the decision-making process for prospective stu-
dents when selecting a faculty.

� Increasing students’ confidence in the impact of their feedback.

� Boosting student participation in providing feedback on university activities
and processes.



Unlocking the potential of student feedback 215

We are conducting a study to identify potential features for integration into an
application aimed at enhancing student engagement in providing open feedback
on various aspects of their university experience. Additionally, we are researching
technologies suitable for implementing this application. Our findings are validated
through the development of an application based on our requirements. The first
author of this article was responsible for application implementation.

We also have implemented a solution to optimize the search of information
about faculties or universities. The search results will be generated using Leven-
shtein distances, based on the input text and a set noise level.

Our architecture is conceptually distinct from existing applications that pri-
marily support the learning process and communication between students and
teachers. While these applications offer tools for designing didactic materials,
conducting surveys, and collecting feedback, our primary objective is to provide
information about the services provided by universities (including faculty struc-
tures, study programs, activities, accommodation, etc.) and to offer an open
evaluation system for students to assess these services and public access to these
evaluations. From this perspective, our solution aligns more closely with a so-
cial platform than with traditional learning management systems. An intriguing
possibility is the integration of our proposed architecture with existing learning
management system solutions.

The rest of the article is organized as follows. The minimum requirements and
the presentation of the proposed architecture are provided in Section 2. Section 3
presents a case study for our generic solution serving as validation of the proposed
generic architecture. A customized searching algorithm is also presented in this
section. Section 4 contains conclusions and outlines future directions of study.

2 Proposed architecture

To achieve the objectives outlined in Section 1, we propose the utilization
of a client-server application. This application should enable users to conduct
searches on a wide range of topics related to universities. Searches can be made
by the name of a faculty or university and by a specific field of study, by a specific
activity, such as research, accommodation, artistic activities, practice, a specific
course, etc. Users can search within existing ratings and comments on these
topics and gain access to the official websites of universities with ratings, within
the application. The application is required to offer several key functionalities:

� Implementation of a rating system, accompanied by relevant comments that
explain the ratings, serving as the primary method for collecting open stu-
dent feedback.

� A system for approving comments related to ratings, ensuring that the pro-
vided reviews meet the standards of decency and appropriateness.

� Establishment of an environment where current students can express their
opinions regarding teaching activities and faculty infrastructure.



216 Dana Simian and Eusebiu-Marin Şerban

� Provision of information and student ratings for a substantial number of
universities.

� Creation of a communication channel for users logged into the application.

� Implementation of secure user information management to the highest pos-
sible degree.

� Customized access levels to application functionalities based on user types.

� User-friendly interface suitable for users of all ages.

These functionalities aim to enhance the quality and relevance of student feed-
back while also assisting prospective students and interested individuals in finding
credible information. The application should have at least the following modules:

� Connection and Authentication Module

� Search

� Chat

� Rating

The design of the database should take into account the normalization operation.
The normalization should be balanced with the specific needs of application. The
normalization level should assure redundancy reduction, data integrity and sim-
plified maintenance. On the other hand, over-normalization can lead to complex
queries and performance issues, so it’s essential to strike a balance between nor-
malization and denormalization based on your use case and query patterns, as we
will exemplify in Section 3.2. The connection and authentication module catego-
rizes users into two groups: students (authenticated individuals) and visitors, each
with different levels of access to application features. Visitors can only view rat-
ings and their associated comments and do not have access to chat functionality.
Authenticated users enjoy more capabilities, including integrated messaging, ad-
vanced search, access to account settings, and the ability to create reviews. The
search module offers different features for the two user roles mentioned above.
Visitors can only search for information related to a faculty or university. In con-
trast, students can search for other students within the same university or locate
chat groups. The search diagram is depicted in Figure 1. Considering that each
university has its own institutional platform (e.g., Google, Microsoft), student
authentication can occur either by directly using institutional credentials or by
creating a personal account after authentication via the institutional email ad-
dress. Only authenticated individuals (students) can submit reviews and ratings.
The rating process is associated with the university to which the student belongs.
Users can choose between anonymous and public review/rating options.

A communication channel between students is facilitated through chat. Au-
thenticated students can freely communicate within the application, regardless of



Unlocking the potential of student feedback 217

Figure 1: Search method for visitors and students

their university affiliation. An automated verification system for messages trans-
mitted via chat and for reviews is in place, utilizing a dedicated AI module to
detect and prevent the use of toxic language.

The information managed within the application is stored in a relational
database. We recommend the inclusion of at least the following tables:

� accounts: To store defining user fields, such as university and faculty affili-
ation, title, and institutional account verification.

� university: To store information about all universities currently accessible
within the application, including universities by region, country, or type.

� faculty: To store information about faculties within the universities, includ-
ing links to faculty websites, review counts, etc.

� rating: To store reviews and ratings associated with specific faculties.

The design of the database should take into account the normalization operation.
The normalization should be balanced with the specific needs of application. The
normalization level should assure redundancy reduction, data integrity and sim-
plified maintenance. On the other hand, over-normalization can lead to complex
queries and performance issues, so it’s essential to strike a balance between nor-
malization and denormalization based on your use case and query patterns, as we
will exemplify in Section 3.2.



218 Dana Simian and Eusebiu-Marin Şerban

The application must prioritize information security by implementing various
cryptographic methods to encrypt messages between users and responses sent from
the server to the client. Additionally, a crucial requirement for the application is
its compatibility with all currently available platforms.

3 Validation of the proposed architecture. Case study

To evaluate the feasibility of our proposed solution, we have successfully im-
plemented the suggested architecture in a moderately complex client-server envi-
ronment. The objective of this case study is to demonstrate that the minimum
specified requirements of the proposed architecture can be met using moderate
computational resources. Additionally, we aimed to gauge the interest of students
and prospective students in such applications by providing a test application. The
refinement of the proposed architecture within a broader framework also requires
practical validation and testing.

This section is dedicated to showcasing the practical implementation of the
key functionalities outlined in Section 2 within our case study application. At
present, the application exclusively manages information from Romanian univer-
sities, but it is designed to be easily expandable to incorporate data from other
universities. As previously mentioned, our system employs a client-server archi-
tecture/application.

3.1 Client-Side implementation

To evaluate the feasibility of our proposed solution, we have successfully im-
plemented the suggested architecture in a moderately complex client-server envi-
ronment. The objective of this case study is to demonstrate that the minimum
specified requirements of the proposed architecture can be met using moderate
computational resources. Additionally, we aimed to gauge the interest of students
and prospective students in such applications by providing a test application. The
refinement of the proposed architecture within a broader framework also requires
practical validation and testing. For the client-side implementation, we utilized
the Angular framework to ensure compatibility with all major web browsers. By
leveraging the ”One Page Application” technology offered by Angular, we min-
imize the time required to update elements when users navigate the page, as it
retains static elements. This approach enhances stability and speed, as described
by Kornienko in 2021 [7]. The client part of the application is structured into sev-
eral components, each of them composing the pages found within the application
and keeping various functionalities. This structure enables us to reuse variable
and class names across components without encountering conflicts. The key pages
currently available in the application include:

� Home page: Provides an overview and introduction.

� Rankings page: Ranks universities or faculties based on their ratings.



Unlocking the potential of student feedback 219

� Search page: Displays search results.

� Settings page: Allows users to manage their profiles and settings.

Our application supports login through the Google Institutional Platform, with
implementation facilitated by the angularx-social-login library. For enhanced se-
curity, users can opt for IP authorization, utilizing a validation email sent during
the account creation process. The server component has been developed and de-
ployed using Node.js and Express. This library plays a pivotal role in establishing
a robust and secure API by leveraging the algorithms specified within the appli-
cation. The API directly communicates with both the database and the server to
effectively respond to user requests.

3.2 Database Implementation

In terms of the database, we employed MySQL, resulting in a database com-
prising 23 tables, as illustrated in Figure 2, along with their interrelationships.
In addition to the tables mentioned in Section 2 (accounts, universities, faculties,
rating), we would like to highlight the following:

� secure login table: Manages IP validation if the IP validation login option
is chosen.

� comments table: An extension of the rating table, storing comments left by
other users regarding reviews.

� distances table: Contains data on distances between cities in Romania, pri-
marily utilized for recommendations in the search section.

� chat keys table: Stores encryption keys for communication between two
users.

� data set training table: Contains training data for developing a AI recom-
mendation system.

The ”accounts” table is directly linked to the majority of the database tables and
contains valuable information for identifying users performing activities within
specific branches of the application. In the design of our database, we struck
a balance between normalization and the specific needs of the search process.
Our database is in the second normal form (2NF), ensuring that all non-key
attributes are fully functionally dependent on the entire primary key. To enhance
the efficiency of information retrieval regarding faculties and universities, we made
a deliberate deviation from the requirements of the third normal form (3NF). This
decision was driven by the recognition that Boolean searches, a key component of
our search algorithm, are not performed efficiently across multiple fields, especially
those from linked tables using foreign keys. In line with our query patterns, we
have employed a composite field that combines essential faculty and university
data (such as name, abbreviation, city, and country) for more effective searching.



220 Dana Simian and Eusebiu-Marin Şerban

Figure 2: Data base: Tables and interrelationships

3.3 Server – side implementation

In the server-side component, a substantially more intricate architectural frame-
work is employed in contrast to the client-side counterpart. This section serves as
the repository for all processes responsible for the interpretation of client requests,
functioning as a direct conduit to interface with the underlying database.

The server primarily serves as a conduit for communication with the applica-
tion’s API, encompassing an ensemble of routes, controllers, and models [6]. To
ensure the reception of requests directed towards the API, a URL mapping must
be established within the application, and this routing procedure is executed prior
to the initiation of the HTTPS server. A route is defined within the Express ap-
plication, crafted by the programmer, and is initialized through the ’use’ function,
which also configures the characteristics specific to these routes [6]. To ensure the
seamless operation of routing, it is imperative to implement the ’cors’ structure,
which resides within the ’cors’ library. This structure rigorously governs the uti-
lization of methods as stipulated by the programmer, delineates the permissible
origin of requests, and, of paramount importance, establishes a pre-defined inter-
face that guides the processing of each request. To facilitate the exchange of data
between the server and client, two values must be included within the ’Headers’
section of the request. The ’bodyParser’ library is harnessed to facilitate the pro-
cessing of requests in JSON format within the dedicated request-handling section.
Ultimately, these routes will be operationalized. The establishment of this con-
nectivity employs a router, incorporating the ’router’ function from the Express
module. This method affords the utilization of techniques for managing various
request types.



Unlocking the potential of student feedback 221

The server also provides WebSocket capabilities within its structure, aided by
the socket.io library, to manage all inputs aimed at receiving and transmitting
messages without the need for a request and without necessarily waiting for a
response.

The application not only fulfills all the functionalities outlined in Section 2
but goes further by optimizing search operations using cutting-edge technologies.
Novel contributions are present in the implementation of security measures for
information transfer and in the execution of the search functionality. These con-
tributions will be detailed in the subsequent subsections.

3.4 Security measures

In our system, robust security measures are employed to ensure the confiden-
tiality and integrity of data during transmission between the client and server.
These measures encompass various encryption and verification techniques:

Symmetric Encryption: For internal data security within the application,
symmetric encryption is employed, relying on a single encryption key. Specific
implementations of symmetric encryption include:

� Encryption of messages exchanged between users, with each user possessing
a unique encryption key.

� Encryption of server responses sent to the client.

The encryption and decryption techniques based on a single key, implemented in
crypto-js library, were used.

Asymmetric Encryption (RSA): Data transmission involves the use of
asymmetric encryption based on two RSA keys.
This method ensures that data can be securely transmitted between parties using
a pair of public and private keys.

JSON Web Tokens (JWT): Every request is encoded using JSON Web
Tokens to provide message integrity and establish a time window during which
the token remains valid. The token creation process involves the following steps:

� Segmentation of the token into two parts.

� Encryption of the first segment using asymmetric RSA encryption.

� Utilizing a server-side private key for decryption [11].

The node-forge library is used for RSA encryption and decryption Tokens must
possess a valid signature to reach the server; otherwise, they are rejected as a
security measure against potential SQL injection attempts.

Client-Side Token Functionality: We designed and implemented a func-
tion for creating tokens on the client side. The principle of implementation is
describe below:

� This function accepts content and token validity duration as parameters and
generates a valid signature using a programmer-defined key.



222 Dana Simian and Eusebiu-Marin Şerban

� The header and content of the message are encoded in base64 using the
CryptoJS library.

� The encoded content’s first 10 characters are incorporated into the token.

� The token generation process results in two values: one representing the
encoded header and content, and the other representing the previously en-
crypted token.

3.5 Searching algorithm

We have developed a specific searching algorithm that strikes a balance be-
tween simplicity and efficiency. Text manipulation techniques, as detailed in [3],
were employed within this algorithm. The following section outlines the system-
atic approach we undertook to arrive at our final solution. The original algorithm
was designed as an extension of the active search mechanism introduced in Fig-
ure 3. This method enabled precise phrase searches within specific fields, taking
advantage of MySQL’s ability to interpret queries in natural language.

Figure 3: Active search using a key sentence

While this solution seemed ideal at first and was incorporated into the ap-
plication’s framework, it faced challenges in seamlessly integrating with foreign
keys. One alternative to overwhelm this difficulty involved implementing the Lev-
enshtein distance algorithm, which required the examination of fields and the
interpretation of their contents as numerical representations [9]. For example,
when the table contains a field with value ”Lucian Blaga,” and a user conducted
a search for ”L. Blaga,” the algorithm yielded a distance metric of 6. This metric
represented the count of character modifications required to yield the desired out-
come, which, in this instance, entailed 5 insertions and 1 deletion. This method
had the advantage of making predictions, but does not consider the context, so it
lacked the precision necessary to produce accurate results. For instance, a search
of a word that does not align with the context of the information in our database,
e.g. a search for ’dog’ might return totally altered results. To overcome these
challenges, we returned to our original approach and designed an algorithm that
constructs, starting with the search text, a filter for complex database queries.
This filter is based on Levenshtein distance and fuzzy search techniques. Instead
of searching across multiple fields in various tables, we search in a composite field
containing comprehensive information about faculties and universities, including
name, location, abbreviation, and country. The search text is firstly Latinized
and then split into distinct words. Our algorithm also includes a word predic-
tion component. Predictions are made using a predefined comparison dataset,
encompassing all distinct words within the searching range (information about



Unlocking the potential of student feedback 223

universities and faculties) from our dataset. We created this dataset using the
minisearch library. To simulate the search context, we use a list of forbidden or
”stop” words. ”Stop” words are short prepositions or parts of words that should
not appear in the context of the search filter we want to generate. We’ve intro-
duced a text correction mechanism, incorporating fuzzy search and Levenshtein
distance, to account for word nuances such as singular or plural forms and to
correct the incomplete or erroneous search texts. The output of the algorithm
is a complex filter used to generate queries in our database. The steps of the
algorithm are described in Algorithm 1.

Algorithm 1 - Generating a Filter for a Search Query

INPUT: Search text
Stop Word List //in our case StopWordList=[’si’, ’de’, ’din’, ’la’]
Comparation search dataset
Noise level
Composite field from data base

STEP 1: Latinizing the search text
STEP 2: Spliting the search text in distinct words using blanks and punctuation

marks as delimiters
STEP 3: Generating search filter

Initializing a blank filter F
FOR each word in splited text

//Predicting correct word in the context of search
L= Generate List of Predicted words using Levenshtein distance and
Comparation dataset
// L(1) is the predictor with the best accuracy
IF L <> empty

IF L(1) not in StopWordList
//L(1) in StopWordList means that the words from L does
not align with the context of search

F=F+L(1)
// ”+” symbolizes concatenating a conjunctive condition
to the filter

END IF
ELSE
// there is a mistake in Search text. A correction will be sought
//Predicting correct suggestion in the context of search

L= Generate List of Suggested words using Levenshtein distance,
the noise level and Comparation dataset
IF L <> empty

F=F+L(1)
ELSE

F=∅
END IF



224 Dana Simian and Eusebiu-Marin Şerban

END IF
END FOR

RETURN F

STEP 4: Generating a search query in the database
Apply filter F against the composite field.

An example of generating a database search query appling F is given below:

SELECT f.id AS fId, f.name AS fName, f.description AS fDesc, f.image AS
fImg, f.website AS fweb, f.reviews AS fReviews, f.rating AS fRating, f.url AS
fURL, u.id AS uId, u.name AS uName, u.academy AS Academy, u.private AS
uPriva te, u.rating AS uRating, u.reviews AS uReviews, u.url AS uURL, c.id
AS cId, c.county AS Name, c.region AS Code, ct.id AS ctId, ct.name AS ct-
Name, ct.countryCode AS ctCode FROM faculty f INNER JOIN university u
ON f.university = u.id INNER JOIN counties c ON c.id = u.city INNER
JOIN countries ct ON ct.id = c.country WHERE MATCH(f.description)
AGAINST (” ? ” IN Boolean mode)

A result of search is illustrated in Figure 4.



Unlocking the potential of student feedback 225

Figure 4: Example of search results with an incomplet input search text

4 Conclusions and further directions of study

In this research article, we suggest using a client-server architecture to gather
student feedback about various aspects of a university in a less formal way. Instead
of relying on questionnaires or surveys, we propose using open reviews and a
rating system. Our solution makes use of multiple communication channels. To
validate our proposal, we’ve implemented a client-server application based on this
architectural design, and we provide comprehensive implementation details in this
article. We’ve also developed an algorithm to improve search functionality within
the application. The application’s powerful search feature ensures that ratings and
comments are easily accessible, making it a valuable tool for prospective students
seeking recommendations. As future directions of study, we intend to assess how
effective this architectural approach is in improving the quality of student feedback
and instilling greater confidence in students about the importance of their feedback
contributions.



226 Dana Simian and Eusebiu-Marin Şerban

References

[1] Asgar, A., Satyanarayana, R., An evaluation of faculty development pro-
gramme on the design and development of self-learning materials for open
distance learning, Asian Association of Open Universties Journal 16 (2021),
no. 1.

[2] Dujeepa, S., Yeo, P. and Tan, H., Obtaining impactful feedback from students:
a continuous quality improvement approach to enhance the quality of students’
feedback, South East Asian Journal of Medical Education, 8, (2014), 2-9.

[3] Enge, E., Spencer, S. and Stricchiola, J.C., The art of SEO: mastering search
engine optimization, O’Reilly Media, 2015.

[4] Fernandez, N. and Audétat, M.C., Faculty development program evaluation:
a need to embrace complexity, Adv. Med. Educ. Pract. 10 (2019), 191–199.

[5] Haughney, K., Wakeman, S. and Hart, L., Quality of feedback in higher edu-
cation: a review of literature, Educ. Sci., 10, (2020), no. 3.

[6] Holmes, S., Getting MEAN with Mongo, Express, Angular and Node, Man-
ning, 2019.

[7] Kornienko, D.V., Mishina, S.V. and Melnikov, M.O. he Single page appli-
cation architecture when developing secure Web services, Journal of Physics:
Conference Series, 2091, (2021).

[8] Lombardi, A., WebSocket: lightweight client-server communications,
O’Reilly Media, Inc, USA, 2015.

[9] Miller, F.P., Vandome, A.F. and McBrewster, J., Levenshtein distance, VDM
Publishing, 2009.

[10] Murray, N., Coury, F., Lerner, A. and Taborda, C.,The complete book on
Angular 5, Create Space Independent Publishing Platform, 2018.

[11] Paar, C. and Pelzl, J., Understanding cryptography, Springer-Verlag, Berlin
Heidelberg, 2010.

[12] Shwartz, B., Zaitsev, P. and Tkachenko, V., High performance MySQL,
O’Reilly Media, 2012.

[13] Yu, S.O., Using students’ feedback to evaluate teachers’ effectiveness, Journal
for Educators, Teachers and Trainers, 7, (2016), no. 1, 182 – 192.


