
Bulletin of the Transilvania University of Braşov

Series III: Mathematics and Computer Science, Vol. 3(65), No. 2 - 2023, 201-212

https://doi.org/10.31926/but.mif.2023.3.65.2.17

THE POWER OF SYMPY FOR PROGRAMMING IN
GEOMETRY

Ernest SCHEIBER1

Dedicated to Professor Radu Păltănea on the occasion of his 70th anniversary

Abstract

For didactic purposes the capabilities of SymPy to solve synthetic geomet-
rical problems are highlighted. There is exemplified the Apollonius problem:
construct a circle tangent to other three circles. The problem is solved using
inversion and some code is provided.

2012 ACM Subject Classification: G.4, D.1.m
Key words: SymPy, programming for geometry, Apollonius problem.

1 Introduction

Teaching classical geometry takes advantages today of the computer technolo-
gies. Over the last few decades, several software programs have been developed
to facilitate the study of geometry. One notable example is Geogebra, which is
currently one of the leading interactive geometry software applications. It assists
us in proving and / or verifying relations or statements, as well as generating
high-quality geometric figures, among other capabilities.

We can also utilize SymPy, a Python package for symbolic computation.
SymPy not only offers powerful tools for symbolic calculations but also includes
classes for various geometry notions. This makes it a valuable resource for explor-
ing and studying geometry concepts.

When comparing the usage of SymPy and Geogebra, the following pros and
cons can be considered:

Pros of using SymPy :

� Geometric computations are based on symbolic computation (Computer
Algebra System), providing more precise results compared to floating point
algebra.

1Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Romania,
e-mail: scheiber@unitbv.ro

202 Ernest Scheiber

� Provides a straightforward way to manage resources efficiently.

� Allows the development of large programs, enabling complex geometric com-
putations and analyses.

� Takes advantage of the extensive capabilities and versatility of the Python
programming language.

Cons of using SymPy :

� Lack of an interactive interface compared to software like Geogebra, which
may impact the ease of use and immediate visualization of geometric objects.

� Limited facilities for directly plotting geometric objects, requiring additional
steps or tools for visualization.

� Steeper learning curve as it requires basic programming skills in Python, as
well as knowledge of SymPy itself.

The purpose of this note is didactic. Its aim is to exemplify the power of
SymPy in solving classical geometry problems, specifically the Apollonius problem
of constructing a circle tangent to three given circles. The solution will be based
on inversion with respect to a circle [1], [2], [4], [3]. The required properties of the
inversion are recalled in the Appendix.

To plot the geometric figures, we have developed a simple plotting utility based
on the matplotlib package.

2 The Apollonius problem

A problem is to find / draw circles tangent to three things. The things may
be points, (straight) lines and circles. The required circles must be tangent to the
given circles and / or lines and pass through given points. It results 10 problems:

No. The problem Abbr.

1 Circle passing through three points PPP

2 Circle tangent to three lines LLL

3 Circle passing through two points and tangent to a line PPL

4 Circle passing through a point and tangent to two lines PLL

5 Circle tangent to two lines and a circle LLC

6 Circle passing through a point and tangent to a line and a circle PLC

7 Circle tangent to a line and two circles LCC

8 Circle passing through two points and tangent to a circle PPC

9 Circle passing through a point and tangent to two circles PCC

10 Circle tangent to three circles CCC

Let be the circles C(A, rA),C(C, rC),C(E, rE). Depending on min{rA, rC , rE}
there are three cases to solve the CCC problem:

The power of SymPy for programming in geometry 203

1. rA = rC = rE ;

2. rA > rC = rE ;

3. rA, rC > rE .

The first case is simple. The circle passing through the centers of the cir-
cles is modified by adding or subtracting its radius. The result for the circles
C((0, 0), 2),C((5, 5), 2),C((3,−3), 2) are given in Fig. 1.

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Fig. 1: Case 1.

For the second case, let us suppose that the circle C(O, ρ) is a solution to
the CCC problem (see Fig. 2). Then, the circle C(O, ρ− rE) passes through the
points C and E, and it is tangent to the circle C(A, rA − rE). We have obtained
a PPC problem: finding the circle that passes through C and E and is tangent
to the circle C(A, rA − rE). If we know a solution to this problem, denoted as
C(O, r), then C(O, r + rE) will be a solution to the initial problem. This method
is known as the Viète method. It is also possible to find solutions starting with
C(A, rA + rE). That is why it is crucial to check if the PPC solution also leads to
a solution for CCC.

Solving the PPC problem by inversion

Let A(xA, yA), B(xB, yB), C(xC , yC), and D(xD, yD) be the given points. The
task is to construct a circle that passes through A and B and is tangent to the
circle C1 = C(C, |CD|). Introducing an additional point E, we assume that the
solution to the problem is the circle C0. To investigate this further, we consider
the inversions with respect to the circle C(A, |AE|), which results in the following
transformations:

� The point B and its inversion B′ = Inv(B).

204 Ernest Scheiber

10 5 0 5 10 15 20
25

20

15

10

5

0

5

10

C

E

O

Fig. 2: Reasoning in Case 2

� The circle C1 and its inversion C′
1 = Inv(C1).

� The circle C0. Since C0 passes through A, which is the center of inversion,
the transformed object is the line d = Inv(C0).

It can be noted that d has a single common point with the circle C′
1 and that

B′ ∈ d. The point at infinity is the common point between the inversions of A
and of the circle C0. It results that

1. The line d is a tangent from B′ to the circle C′
1, and consequently

2. C0, the required circle, is the inversion of the line d.

The corresponding Python code is

import sympy as smp

def invPPC(xA,yA,xB,yB,xC,yC,xD,yD):
A = smp.Point(xA,yA)
B = smp.Point(xB,yB)
C = smp.Point(xC,yC)
D = smp.Point(xD,yD)
E = smp.Point(xD+1,yD+1)
c = smp.Circle(C,C.distance(D))
B1 = inv(A,E,B)
e = invC(A,E,C,D)

rez = []
if type(e) == smp.Circle:

t = e.tangent_lines(B1)
if t! = []:

T10 = smp.intersection(e,t[0]);T1 = T10[0]

The power of SymPy for programming in geometry 205

T20 = smp.intersection(e,t[1]);T2 = T20[0]
f = invL(A,E,B1,T2)
g = invL(A,E,B1,T1)
rez.append(f)
rez.append(g)

elif type(e) == smp.Line2D:
g = e.parallel_line(B1)
f = invL(A,E,g.p1,g.p2)
rez.append(f)

return rez

For the circles C((0, 0), 4),C((10, 1), 2),C((−5,−2), 2) the solutions are given
in Fig. 3.

20 10 0 10 20
20

15

10

5

0

5

10

15

20

20 10 0 10 20
20

15

10

5

0

5

10

15

20

Fig. 3: Case 2.

With the Viète method the third case is reduced to a PCC problem.

Solving the PCC problem by inversion

Using similar notations, the circles are C1 = C(A, |AB|) and C2 = C(C, |CD|)
and E is the point. There is required to construct a circle passing through E and
being tangent to the circles C1, C2. With an additional point F and supposing
that the solution of the problem is the circle C0 there is considered the inversions
with respect to the circle C(E, |EF |) of

� The circles C1,C2 : C′
1 = Inv(C1),C

′
2 = Inv(C2);

It is possible that one or both of the circles C1, C2 to pass through E case
in which its inversion is a line.

206 Ernest Scheiber

� The circle C0. Because C0 passes through E, the center of inversion, the
result is the line d = Inv(C0).

It can be noted that d has a single common point with the circles C′
1 and C′

2. The
point at infinity is the common point between the inversions of E and of the circle
C0. It results that

1. If C′
1, C′

2 are circles then d is a common tangent of these circles.

If C1 is a line (by example) then d is a tangent to C2 parallel to C1.

2. Consequently C0, the required circle, is the inversion of the line d.

We used the code

import sympy as smp

def invPCC(xA,yA,xB,yB,xC,yC,xD,yD,xE,yE):
A = smp.Point(xA,yA)
B = smp.Point(xB,yB)
C = smp.Point(xC,yC)
D = smp.Point(xD,yD)
E = smp.Point(xE,yE)
F = smp.Point(xE+1,yE+1)

c = smp.Circle(A,A.distance(B))
d = smp.Circle(C,C.distance(D))
e = invC(E,F,A,B)
f = invC(E,F,C,D)

if type(e) == smp.Line2D and (type(f) == smp.Line2D
or type(f) == smp.Segment2D):

if e.slope == f.slope:
print(’There exists an infinity number of solutions’)
s0=c.tangent_lines(E)

print(’There exists an infinity number of solutions’)
else:

print(’The problem does not have solution’)
s0=[]

t = []

if (type(e) == smp.Line2D or type(e) == smp.Segment2D)
and type(f) == smp.Circle:

t = parallelTangents(f,e)[0]

if type(e) == smp.Circle and (type(f) == smp.Line2D
or type(f) == smp.Segment2D):

t = parallelTangents(e,f)[0]

if type(e) == smp.Circle and type(f) == smp.Circle:
M = e.center
P = smp.Point2D(M.x+e.radius,M.y)
N = f.center
Q = smp.Point2D(N.x+f.radius,N.y)
t = tang(M,P,N,Q);

rez = []
for i in range(len(t)):

h = t[i]
P = smp.Point2D(smp.N(h.p1.x),smp.N(h.p1.y))

The power of SymPy for programming in geometry 207

Q = smp.Point2D(smp.N(h.p2.x),smp.N(h.p2.y))
s = invL(E,F,P,Q)
rez.append(s)

if t == [] and len(s0) > 0:
rez.append(s0[0])

return rez

In the code provided, the function tang calculates all the common tangents of
the circles C(A, |AB|) and C(C, |CD|), while the function parallelTangents calcu-
lates the tangents to the circle C(A, |AB|) that are parallel to the line CD. The
second Appendix contains the code of the function tang.

The solutions of the CCC problem for the circles C((−3, 2),
√
13),C((4, 6), 2

√
2),

C((0,−2), 1) are given in Fig. 4.

20 0 20
20

10

0

10

20

20 0 20
20

10

0

10

20

20 0 20
20

10

0

10

20

20 0 20
20

10

0

10

20

Fig. 4: Case 3.

3 Final remarks
SymPy is a powerful tool for synthetic and analytic geometry. It allows the realization of geometric

constructions, proofs, and problem solving.

208 Ernest Scheiber

When the final purpose is to plot some geometric figures, at some level of computation we turn to
floating point arithmetic. The effect was a drastic reduction of the computation time.

To make the results reproducible we provide the full code at https://github.com/e-scheiber/
sympy_geometry.git.

A Inversions in circles
If C(A,R) is circle with center in the point A and R is its radius the points (C,D) is an inversive

pair if

1. the points are on the same ray with the starting point A;

2. |AC| · |AD| = R2 (|AC| and |AD| represent the distance between the endpoints of each segment).

The point A is named the center of inversion.
The SymPy function to compute the inverse of the point C with respect to the circle C(A,R), where

R = AB, is

def inv(A,B,C):
R = A.distance(B)
d = A.distance(C)
return A+(R/d)**2*(C-A)

We recall the following properties [2]:

Theorem 1. If (C,D) is an inversive pair with respect to the circle C(A,R) then
any circle passing through the points C and D is orthogonal to the circle C(A,R).

Theorem 2. An inversion takes a circle through the center of inversion to a line
not through the center, and vice versa.

The SymPy function to obtain the inversion of the line CD

import sympy as smp

def invL(A,B,C,D):
C1 = inv(A,B,C)
D1 = inv(A,B,D)
return smp.Circle(A,C1,D1)

Theorem 3. An inversion takes circles not through the center of inversion to
circles not through the center.

The SymPy function to obtain the inversion of the circle C(C, |CD|) is

import sympy as smp

def invC(A,B,C,D):
r1 = A.distance(B)
r2 = C.distance(D)
d = smp.Circle(C,r2)
E0 = smp.intersection(d,smp.Line(A,C));E1 = E0[0];E2 = E0[1]
s = smp.Segment(E1,E2)
F0 = smp.intersection(d,s.perpendicular_bisector());F1 = F0[0];F2 = F0[1]
P = inv(A,B,F1)
Q = inv(A,B,F2)
if(A.distance(C) == r2):

return smp.Line(P,Q)
else

return smp.Circle(P,Q,self.inv(A,B,D)

The power of SymPy for programming in geometry 209

B The common tangent of two circles

Two cases must be taken into account: the circles have or not the same radius.

def tang(A,B,C,D):
c = smp.Circle(A,A.distance(B))
d = smp.Circle(C,C.distance(D))
r1 = c.radius
r2 = d.radius
r = abs(r1-r2)
if r != 0:

if r1<r2:
e = smp.Circle(C,r)

else:
e = smp.Circle(A,r)

f = smp.Circle((A+C)/2,A.distance(C)/2)
E0 = smp.intersection(f,e);
if len(E0) == 0:

return []
else:

E = E0[0]
if r1<r2:

F0 = smp.intersection(d,smp.Ray(C,E));F = F0[0]
g0 = d.tangent_lines(F);g = g0[0]

else:
F0 = smp.intersection(c,smp.Ray(A,E));F = F0[0]
g0 = c.tangent_lines(F);g = g0[0]

h = g.reflect(smp.Line(A,C))
if r1+r2 < A.distance(C):

r = r1/(r1+r2)
G0 = smp.intersection(smp.Segment(A,C),smp.

Circle(A,r*A.distance(C)));G = G0[0]
l = d.tangent_lines(G)
return [g,h,l[0],l[1]]

elif r1+r2 == A.distance(C):
E0 = smp.intersection(smp.Segment(A,C),c);
p=c.tangent_lines(E0[0])
return [g,h,p[0]]

else:
return [g,h]

else:
E0 = smp.intersection(c,smp.Line(A,C).perpendicular_line(A))
p = c.tangent_lines(E0[0])
q = c.tangent_lines(E0[1])
if r1+r2 < A.distance(C):

r = r1/(r1+r2)
G0 = smp.intersection(smp.Segment(A,C),smp.

Circle(A,r*A.distance(C)));G = G0[0]
l = d.tangent_lines(G)
return [p[0],q[0],l[0],l[1]]

elif r1+r2 == A.distance(C):
E0 = smp.intersection(smp.Segment(A,C),c);
h=c.tangent_lines(E0[0])
return [p[0],q[0],h[0]]

else:
return [p[0],q[0]]

Corresponding to the cases we get the images from Fig. 5 and Fig. 6.

210 Ernest Scheiber

8 6 4 2 0 2 4 6 8
8

6

4

2

0

2

4

6

8

(a) Number of tangents is 0

8 6 4 2 0 2 4 6 8
8

6

4

2

0

2

4

6

8

(b) Number of tangents is 1

8 6 4 2 0 2 4 6 8
8

6

4

2

0

2

4

6

8

(c) Number of tangents is 2

8 6 4 2 0 2 4 6 8
8

6

4

2

0

2

4

6

8

(d) Number of tangents is 3

8 6 4 2 0 2 4 6 8
8

6

4

2

0

2

4

6

8

(e) Number of tangents is 4

Fig. 5: Common tangents of two circles with unequal radiuses

The power of SymPy for programming in geometry 211

8 6 4 2 0 2 4 6 8
8

6

4

2

0

2

4

6

8

(a) Number of tangents is 2

8 6 4 2 0 2 4 6 8
8

6

4

2

0

2

4

6

8

(b) Number of tangents is 3

8 6 4 2 0 2 4 6 8
8

6

4

2

0

2

4

6

8

(c) Number of tangents is 4

Fig. 6: Common tangents of two circles with equal radiuses

References
[1] Bakel’man I. Ya., Inversions. The Univ. of Chicago Press, Chicago, 1974.

[2] Henderson W. D., Taimina D., Inversions in Circles - Ch. 16. Experiencing Geometry - Project
Euclid, doi: 10.3792/euclid/9781429799850-20, 2020.

[3] Mihăileanu N.N., Complements of synthetic geometry (Romanian), Ed. Didactică şi Pedagogică,
Bucureşti, 1965.

[4] Pamfilos P., Inversion, http://http://users.math.uoc.gr/˜pamfilos/eGallery/
problems/Inversion.pdf.

[5] * * *, SymPy. https://www.sympy.org/en/index.html, 2023.

212 Ernest Scheiber

