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Dedicated to Professor Radu Păltănea on the occasion of his 70th anniversary

Abstract

The article discusses one of the classic problems of macroeconomic dy-
namics, on which the neo-Keynesian theory of growth is based, so that the
interaction between the multiplier and the accelerator. A new approach was
proposed to develop a mathematical model of the dynamics of the mutual
multiplier, which indicates the marginal propensity to save as a result of the
GDP growth, and the accelerator, which reflects the growth of capital of
the national income in the multiplier. The model is based on the hypoth-
esis of non-linear dependence of the consumption on the amount of profit.
This assumes that consumption growth is limited, i.e., a saturation effect
occurs. In addition, the model took into account the delayed reaction of
the accelerator to the influence of the multiplier. Under building the model,
the considered processes were considered continuous in time. This made it
possible to provide the mathematical model ”accelerator - multiplier” as a
system of two differential equations of the first order. The application of the
developed model to the analysis of the dynamic properties of the macroe-
conomic system makes it possible to evaluate the parameters at which the
”multiplier-accelerator” system enters a critical state. It has been proven
that the conditions for the occurrence of self-oscillations depend on the criti-
cal value of the accelerator power. The presence of a two-fold limit cycle with
corresponding ”soft” and ”hard” modes of birth (death) of the limit cycle
was also founded. The applied usefulness of the model is that the choice of
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management decisions taking into account these results allow us preventing
the occurrence of bifurcations and disasters in the process of evolution of the
macroeconomic systems.
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1 Introduction

The study of the ”multiplier-accelerator” system, on which Neo-Keynesian
theories of growth are based, and the construction of economic dynamics models
which takes into account the characteristics of the interaction between accumu-
lation and consumption are leading tasks of macroeconomics theory. One of the
most difficult problems that arise when constructing mathematical models of the
interaction of the investment multiplier, which shows how much the marginal
propensity to save limits GDP growth, and the accelerator, which reflects the
growth of the capital intensity of national income as a result of the initial invest-
ments multiplier effect, is the justification of the choice of the structure of this
delay impact [23], [35], [38]. Thanks to the action of the multiplier, a change in
investment causes a change in national income, which in turn causes a further
change in investment, and then - a further change in income, etc. Therefore, such
an interaction can lead to cyclical changes in national income over time. Besides,
minor changes in the parameters characterizing the state of the macroeconomic
system can lead to qualitative changes in the behavior of this system. It is the
consideration of the delayed impact of additional investments on GDP growth
that determines the fundamental difference between mathematical models of sys-
tem dynamics and static models. In this case, the mathematical model of any
economic object has the form of a system of functional (differential, integral or
difference) equations. Recently, system dynamics has attracted more and more
attention of researchers, since, relying on such mathematical models, it is possi-
ble to form the state policy of managing macroeconomic processes, taking into
account not only the consequences for which this management is carried out, but
also to determine the possibility of undesirable consequences, which will allow
developing measures in advance to prevent them.

The presented work provides a Literature Review of sources that are devoted
to issues of bifurcation analysis in the construction of models of nonlinear dynam-
ics. This allows us to formulate the main problems that arise in the study of the
interaction of the structural elements of the ”multiplier-accelerator” macroeco-
nomic system in conditions where such interaction is determined by the presence
of non-linear dependencies. In the section Data and Methodology, a new version
of the multiplier-accelerator model is proposed, in which, unlike the previous ones,
the dependence of consumption on the amount of profit is described by a nonlinear
function, while the behavior of the accelerator is described by a linear function.
Within this model, the parameters that control the boundaries between the re-
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gions of the bifurcation diagram are defined. The Conclusions section contains
generalizations about the nature of the evolution of the system, which relates the
saving function, the amount of government spending, and directly the value of
profit. and the direction of further improvement of the model is also determined.

2 Literature review

Within the framework of the theory of dynamic systems, the limit cycle is
considered as one of the possible variants of the steady state of the system. This
is a certain closed (periodic) trajectory of the vector field, in the vicinity of which
there are no other periodic trajectories, and any trajectory sufficiently close to
the limit cycle tends to it either in forward or reverse time.The main feature of
complex systems is the non-linearity of their evolution, that is, the development
of the system is not linear, but can lead to both the formation of a new ordered
structure or chaos. And such structural transitions can occur with a slight change
in system parameters, that is, they are the result of the implementation of bifurca-
tions of various natures. It should be emphasized that bifurcation means a change
in qualitative, not quantitative, characteristics of a dynamic system. If such prop-
erties as the period or amplitude of cycles can be attributed to the quantitative
characteristics of a dynamic system, then the change of qualitative characteristics
means the transition from one type of stability (or instability) of the system to
another type of its stability (or instability). Accordingly, the set of parameters
determining the state of the dynamic system (the position of a point in the phase
space) can be divided into several subsets with different types of dynamics within
each subset. The boundaries between these subsets are bifurcation boundaries.
Depending on the type of changes that occur at the bifurcation boundary, bifur-
cations that may appear in the system are classified. Thus, the cyclicality of the
development of the economic system in terms of the theory of dynamic systems
can be represented as a sequence of limit cycles, and the transition from one limit
cycle to another is a consequence of bifurcation changes.

The concept of ”bifurcation” was introduced by Henri Poincaré in his paper
in mathematical physics and developed in the classic works of O.M. Lyapunov
on the theory of stability of differential equations solutions and trajectories of
dynamic systems. Further theoretical studies have shown that dynamic systems of
different nature have common features, for the definition of which it is appropriate
to use the theory of bifurcations. Since then, system dynamics has become the
subject of research by specialists in various fields of science, namely, in the field
of mechanics and electromechanics [37], [41], in chemistry [40], in the field of
economics [4], [10], [31], sociology [14], [19], biology and ecology [22], health care
[39] and many others. The presence of bifurcations is inherent in most dynamic
systems, and this should be considered the rule rather than the exception, so
bifurcation analysis is very important for understanding the dynamic properties
of complex systems. In this regard, the theory of nonlinear dynamic systems, and
in particular the theory of bifurcations, have gone beyond the interests of a single
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branch of science and acquired an interdisciplinary orientation, therefore, the
construction of mathematical models of complex systems of nonlinear dynamics
requires the development of a universal mathematical apparatus within the limits
of differential calculus.

The fact that bifurcation analysis acquires special importance in the construc-
tion of macroeconomic models of dynamics is emphasized by many theoretical
economists. Nonlinear dynamic modeling is becoming a popular methodology
among economists investigating various models of social networks, regional eco-
nomics, and environmental economics. The reasons for such interest are the lim-
itations of standard linear-stochastic models, that are unable to describe certain
features of economic reality. In addition, there was a growing awareness that the
dynamics of a complex economic system can be determined by endogenous factors
[36]. The application of dynamic analysis in the economy is primarily connected
with the development and flourishing of macroeconomics and, in particular, with
the study of business cycles and fluctuations.

Since the presence of bifurcations disrupts the stable functioning of economic
systems, which can lead to unpredictable consequences, bifurcation analysis is
important not only for understanding the dynamic properties of this system, but
also for choosing ways to stabilize it. The causes of structural instability can be
both external [1] and internal [6]. If we consider that bifurcations are generated
by endogenous mechanisms inherent in the very nature of economic systems, then
by changing the parameters of the system in a certain range, it is possible to avoid
undesirable irregular or even cyclical behavior. At the same time, the purpose of
such research is to identify a deterministic endogenous mechanism of irregular
fluctuations in the economy. As demonstrated in the paper [24], the application
of the nonlinear dynamics toolkit makes it possible to develop a strategy for sta-
bilizing an unstable Walrasian equilibrium due to a change in the income tax
rate or government spending. Another example of the usefulness of this approach
is the model of a medium-sized enterprise [2], [3], within which the quantitative
characteristics of irregular boundary dynamics are calculated based on such Lya-
punov indicators as dimensionality and entropy. This allows us to control the
development of the system, to adjust the factors that serve as bifurcation param-
eters, and with the help of a controlling influence with delayed feedback to create
the conditions for the transition from irregular limit dynamics to regular periodic
ones.

Barnett and Chen [5], having reviewed a large number of macroeconomic mod-
els, came to the conclusion that no case has yet been found in which the parameter
space of a macroeconomic model did not exhibit bifurcation stratification. Most
often, in macroeconomic models of dynamics, there are Hopf bifurcations, when
the loss of stability of the system is local, and saddle-node bifurcation, or a fold,
when a pair of singular points (stable and unstable) merge into a semi-stable sin-
gular point (saddle-node) and then disappear. The following works can be cited as
several examples. Thus, the work [7] compares various implementations of mon-
etary policy in Neo-Keynesian conditions. It is determined that the transition
from the optimal short-term commitment policy based on the negative feedback
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mechanism to the policy based on the positive feedback mechanism corresponds
to a Hopf bifurcation with opposite recommendations regulation policy of such a
system. In the work [33] it is shown that when justifying state policy on any issues,
which is carried out on the basis of mathematical models, it is necessary to take
into account the possibility of bifurcations of various types. The implementation
of bifurcations can lead the system to stagnation or a rigid state, accordingly, it
is necessary to adjust each parameter of the system in order to control the devel-
opment of the system and return it to a normal state. As another example, we
can cite the work [25], which considers a macroeconomic model of the interaction
of a non-linear investment function, which is considered continuous, and a logistic
production function, i.e., the IS – LM model, which is a development of the math-
ematical representation of Keynesian macroeconomic theory. The intersection
of the investment-savings (IS) and the liquidity preference-money supply (LM)
curves defines an equilibrium that occurs simultaneously in both goods and asset
markets. When studying the dynamics of this system, the main attention was paid
to determining the impact of the export multiplier. When conducting numerical
experiments, it was found that at a relatively low value of the export multiplier,
a fairly complex dependence of production on net exports was observed.

As already mentioned above, one of the urgent problems faced by researchers
when building dynamics models is the determination of the structure of the time
lag. For example, a delay political reaction to a change in the country’s macroe-
conomic stability can lead to Hopf bifurcation [30]. In his work [9] carried out
a macroeconomic analysis of the IS-LM model as an interaction of current and
previous incomes, the relationship between which is characterized by a fixed time
delay. He showed that in the case of a low tax rate and a small share of deferred
tax revenues, the loci of the Hopf bifurcation points form closed curves, some of
which overlap, and the equilibrium within these loci is unstable. Another exam-
ple is the work [13], in which a mathematical model of interactions between an
economically active population and economic growth is built. It is shown that
such a dynamic system can have supercritical or subcritical Hopf bifurcations,
and the stability of the bifurcation periodic solution depends on the choice of
parameters characterizing the delay. Economic processes in most cases depend
on past events, so one of the urgent problems faced by researchers when building
dynamic models is determining the structure of the time lag. Therefore, when
modeling economic phenomena, which can be discrete or continuous in time, it is
natural to use differential equations with various types of delays [16], [18], [34] ,
etc.

In the previous works of one of the authors of this study, two mathemat-
ical models of the interaction mechanism of the multiplier and the accelerator
were considered. And on the example of these models, the presence of various
components of economic cycles was demonstrated both at the substantive and
methodological levels. What these two models have in common is that they have
a number of built-in nonlinear elements and are formed in the tradition of modern
Keynesianism. The first of these models [42] is characterized by the presence of
two types of delay: from the point of view of investment demand, it is a lag with
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the finite time of the accelerator, and from the supply side, it is a continuous
distribution of delay, which is described by a linear differential equation of the
first order. In other words, the main postulate in the construction of this math-
ematical model was the essentially non-linear dependence of the accelerator on
the first derivative of profit and the linear function of consumption on the size
of profit. The main result of the analysis of the ”multiplier-accelerator” system
according to the considered model is the detection of a stable limit cycle charac-
terized by a ”soft” mode of occurrence of self-oscillations around the equilibrium
value of profit. And the stability of the limit cycle is determined by the structure
of the nonlinear function of the accelerator, which tends to saturation. The sec-
ond model of the macroeconomic system [43], system [44] has another basis. A
significant difference from the first model is the hypothesis of a continuously dis-
tributed lag of the accelerator. As for the action of the multiplier, a continuously
distributed delay in the form of a first-order differential equation describing the
evolution of profit was also used in relation to it. However, unlike the first model,
the consumption function was considered as a non-linear profit function. That is,
there are two nonlinear dependencies both on the side of the multiplier and on the
side of the accelerator. The presence of these two fundamentally different non-
linearities, as well as their dynamic interaction, suggest the appearance of stable
and unstable limit cycles, which, when combined, generate a double limit cycle.
Thus, the second model can generate a ”hard” self-oscillation excitation with a
catastrophic loss of stability. In general, this model of the macroeconomic system
has a more complex dynamic behavior compared to the previous model.

The purpose of this work is to analyze the interaction of the structural ele-
ments of the ”multiplier-accelerator” macroeconomic system in the presence of
nonlinear relationships. Such an interaction can lead to the formation of a com-
plex architecture of instability with the appearance of bifurcations of various types
and catastrophes, limit cycles, both stable and unstable, or homoclinic structures.
Such models are focused on the implementation of qualitative forecasting of the
nonlinear evolution of the macroeconomic system in order to identify equilibrium
states, predict the appearance of dynamic chaos, and so on.

3 Data and methodology

Let us consider one more model, i.e. the third, version of dynamics of the
multiplier-accelerator interaction. Unlike the previous two, it will use the non-
linear dependence of the consumption function on the amount of profit and the
simple linear dependence of the accelerator on the derivative of the profit within
one dynamic system.

First, let’s form a functional equation to describe the dynamics of the multi-
plier. Aggregate demand is given in the form of the well-known Keynesian ratio:

D(Y ) = C(Y ) + I +G (1)

where Y is the amount of profit; I is the volume of investment contributions;
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G is independent government expenditures; C (Y ) is consumption function; D(Y )
is aggregate macroeconomic demand. Suppose that C (Y ) is a non-linear function
that grows more slowly than a linear one, which corresponds to the so-called
”saturation effect”, which is associated with the fact that consumption growth is
limited. Let us represent the function C (Y ) in the form of a polynomial whose
degree is not higher than the third:

C(Y ) = c1Y + c2
Y 2

2
− c3

Y 3

6
(2)

where all coefficients ci (i = 1, 3.) are positive, and their values satisfy the
condition: 0 < ci < 1. It should be emphasized that we consider a real situation
when the growth of the consumption function is limited, that is, consumption does
not exceed a certain level. Therefore, the second derivative of the consumption
function must be negative for the function itself to be convex upward. In order
for the growth to slow down, the value of the profit of the third degree with a
”minus” sign is entered in the polynomial (2), and the coefficient itself is positive.

The amount of government expenditures, without violating commonality, will
be considered constant. The dynamics of a multiplier with a distributed delay
can be represented in the form of an integral relation:

Y (t) =

t∫
0

K1(t, τ) ·D (Y (τ)) · dτ. (3)

This means that the profit that exists at a fixed point in time τ depends on
all past values of aggregate demand. The function K1(t, τ), which is the kernel
of this integral transformation, is called weight, or ”dynamic memory function”.
As a rule, such functions are decreasing with respect to past moments of time.

Regarding the investment function I = I(t), we note that there is also a
distributed delay here, which we give in integral form:

I(t) =

t∫
0

K2(t, τ) · v0 · Y ′(τ) · dτ. (4)

where Y ′(τ) is derivative of the product; v0 is the power of the accelerator,
which has the dimension of time; K2(t, τ) is the corresponding kernel, to which
the same assumptions apply as to the kernel K1(t, τ).

Thus, if we combine the algebraic equation (1) and the integral equations (3)
and (4) into one system, we will have a system of integral-differential equations
from which the amount of profit Y (t) and the volume of investments I(t) can be
determined. This approach allows you to build a set of different mathematical
models, using various structures of kernels of integral transformations K1(t, τ)
and K2(t, τ) . As the simplest types of kernels K1(t, τ) and K2(t, τ) we will
take functions with an exponential delay relative to previous moments of time:
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K1(t, τ) =
1

T1
· exp

(
− t− τ

T1

)
; (5)

K2(t, τ) =
1

T2
· exp

(
− t− τ

T2

)
(6)

where T1 and T2 are fixed values of certain time constants that characterize
transient processes, respectively, in the multiplier and accelerator

In this case, the integral relations (3) and (4) taking into account equation (1)
can be transformed into the form:

Y (t) =

t∫
0

1

T1
· exp

(
− t− τ

T1

)
· (C (Y (t)) + I(τ) +G) · dτ (7)

I(t) =

t∫
0

1

T2
· exp

(
− t− τ

T2

)
· v0 · Y ′(t) · dτ (8)

If we differentiate in time relations (7) and (8) and perform the necessary
transformations, we will obtain a system of two ordinary differential equations
with respect to the unknowns Y (t) and I(t) :{

T1 · Y ′ = C(Y )− Y + I +G;

T2 · I ′ = v0 · Y ′ − I.
(9)

Thus, due to differentiation in time of the integral relations, the transition from
the original integral relations to the system of differential equations is carried out.

In order to reduce the number of parameters in the system of differential
equations (9), we will introduce relative time t = t

T2
, as well as non-dimensional

parameters v = v0
T2

and γ = T2
T1

. In this case, the system of equations takes the
following form: {

Y ′ = γ · (C(Y )− Y + I +G) ;

I ′ = v · Y ′ − I.
(10)

Let’s reduce the system of two differential equations (10) to one differential
equation of the second order with respect to the profit function Y (t). For this
purpose, we will introduce the savings function S(Y ) = Y −C(Y ), which we will
use later. Thanks to this, first equation of the system (10) takes the following
form:

Y ′ = γ · (I − S(Y ) +G) . (11)

We differentiate equation (11) by time (in the future, we will keep in mind
that the differentiation of all functions is carried out by time; in cases where the
differentiation is carried out by another variable, this will be indicated separately).
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After performing the transformations taking into account equation (10), we will
obtain a nonlinear differential equation of the second order:

Y ′′ +
(
1 + γ ·

(
S′(Y )− v

))
· Y ′ + γ · (S(Y )−G) = 0. (12)

where S′(Y ) is the derivative of the savings function of income.

We present the savings function and its profit derivative as it is used in the
model proposed in this paper:

S(Y ) = (1− c1)Y − c2
Y 2

2
+ c3

Y 3

6
(13)

S′(Y ) = 1− c1 − c2Y + c3
Y

2
(14)

The differential equation (12) can have special solutions that are determined
based on the condition S(Y ) = G:

c3
Y 3

6
− c2

Y 2

2
+ (1− c1)Y −G = 0. (15)

Analysis of the structure of the cubic equation (15) shows that it has at least
one positive root Y ∗, which corresponds to the state of equilibrium of the macroe-
conomic system. Let’s introduce a new variable Ỹ = Y − Y ∗ that determines the
deviation of profit from its value corresponding to the equilibrium state. For the
following transformations, we will need the values of the three derivatives of the
savings function, which correspond to the equilibrium state Y ∗. Here are these
derivatives:

S1 = S′(Y ) = 1− c1 − c2Y
∗ + c3

(Y ∗)2

2
; (16)

S2 = S′′(Y ∗) = c3Y
∗ − c2 (17)

S3 = S′′′(Y ∗) = c3 (18)

After performing the necessary transformations, we obtain the differential
equation with respect to the deviation from the product in an explicit form:

Ỹ ′′ + (1− γv + γS1) Ỹ
′ + γS1Ỹ + γS2Ỹ · Ỹ ′ + γS2

Ỹ 2

2
+

+ γS3
Ỹ 2 · Ỹ ′

2
+ γS3

Ỹ 3

6
= 0 (19)

The nonlinear differential equation of the second order (19) will be presented
in the form of a system of two ordinary differential equations of the first order
with respect to the variables y1 = Ỹ and y2 = Ỹ ′:
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y′1 = y2;

y′2 = −γS1y1 − (1 + γ (S1 − v)) y2 − γS2y1y2 − γS2
y21
2 −

−γS3
y21 ·y2
2 − γS3

y31
6 .

(20)

The linear part of system (20) has a characteristic polynomial:

λ2 + (1 + γ (S1 − v)) · λ+ γS1 = 0 (21)

Due to the fact that the value S1, which can be considered as the marginal
propensity to save, is a positive value, the real parts of the roots λ1 and λ2

equation (20) will have the same signs. This, in turn, means that the type of
equilibrium can be a stable (unstable) node or a focus. Since we are interested in
periodic processes described by system (20), we will assume the following:

1 + γ (S1 − v) = 2µ. (22)

where a parameter µ is a small variable that can be both positive and negative.
If we denote by ω2 = γS1, then equation (21) with respect to eigenvalues λ1 and
λ2 will have the form:

λ2 − 2µ · λ+ ω2 = 0 (23)

The solution of this quadratic equation can be given in the complex form:

λ1,2 = µ± i · ω (24)

That is, the roots of the characteristic equation (23) contain a small parameter
µ only in the first degree, and the values µ in degrees greater than the first can
be neglected.

It should be noted that since ω2 = γS1 > 0, only nodal or focal types of
equilibrium states can occur in the dynamic economic system considered in our
study. That is, neither homoclinic nor heteroclinic trajectories can be observed
in the studied system for the reason that there are no saddle points among the
equilibrium positions.

The study of local bifurcations of the vector field was carried out for the pur-
pose of a detailed analysis of the stability of equilibrium positions and construction
of the boundaries of the stability region. In the system under consideration, the
existence of both stable and unstable trajectories and orbits is possible.

It is clear that the type of equilibrium for µ < 0 is a stable focus, and for
µ > 0, accordingly, is unstable. Thus, the linear operator of this nonlinear system
of differential equations has two eigenvalues that correspond to both a stable focus
and an unstable one. The derivative of eigenvalues λ1 and λ2 by parameter µ is
equal to one: λ′

1,2 = 1. Therefore, it is possible to assume that all the conditions
of Hopf bifurcation theory [20], [21] about the existence of limit cycles in the
dynamic system (20) are fulfilled. From relation (22) we get:
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v = S1 +
1 + 2µ

γ
(25)

Assuming µ = 0 and returning to the original notation, we get:

v0 = S1 · T2 + T1 (26)

Therefore, formula (26), which has the dimension of time, describes the de-
pendence of the accelerator power v0 on the marginal propensity to save and the
corresponding time constants T1 and T2. According to formula (26), the critical
value of the accelerator power is a parameter at which the equilibrium value of
the profit Y ∗ changes its stability: an unstable focus becomes stable or vice versa
depending on the sign of the small parameter µ. At the same time, if µ = 0,
undamped oscillations with frequency ω are observed.

We remind you that in this system there can be neither homoclinic nor het-
eroclinic bifurcations, which is due to the structure of the model and limitations
on the parameters.

To further study the mechanism of the birth (death) of the limit cycle around
the equilibrium value, it is necessary to bring the system (20) to the appearance
of the Poincaré normal form. In the study of nonlinear vector field Normal form
theory is widely used in order to simplify the analysis of the original system of
differential equations [8], [32]. Let’s do this conversion by replacing the variables
y1 = x1 and y2 = µx1 − ωx2. After algebraic transformations, we obtain the
following system of differential equations:

x′1 = µx1 − ωx2;

x′2 = ωx1 − µx2 − γS2x1x2 +
γS2

ω (1 + 2µ)
x2
1
2

−γS3 ·
x2
1x2

2 + γS3

ω (1 + 3µ)
x3
1
6 .

(27)

Let’s once again introduce a new time scale t = ω·t. In this case, system (27)
takes the form:

x′1 =
µ
ωx1 − x2;

x′2 = x1 − µ
ωx2 −

γS2

ω x1x2 +
γS2

ω2 (1 + 2µ)
x2
1
2 −

−γS3

ω · x2
1x2

2 + γS3

ω2 (1 + 3µ)
x3
1
6 .

(28)

For the convenience of further transformations, we introduce the following
notations:

b11 =
γS2

ω
; b20(µ) =

γS2

ω2
(1 + 2µ) ; b21 =

γS3

ω
; b30(µ) =

γS3

ω2
(1 + 3µ) .

Taking into account the new notations, system (28) will have the form:
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{
x′1 =

µ
ωx1 − x2;

x′2 = x1 − µ
ωx2 − b11x1x2 + b20(µ) ·

x2
1
2 − b21

x2
1x2

2 + b30(µ) ·
x3
1
6 .

(29)

The system of two differential equations (29) can be reduced to one complex-
valued differential equation with respect to the variable z = x1 + i · x2:

z′ =
(µ
ω
+ i
)
z+g20

z2

2
+g11z·z̄+g02

z̄2

2
+g30

z3

6
+g21

z2 · z̄
2

+g12
z · z̄2

2
+g03

z̄3

6
. (30)

where

z̄ = x1 − i · x2; g11 = i
b20
4
; g20 = −b11 + i

b20
4

g02 =
b11
2

+ i
b20
4
;

g30 =
i · b30 − 3b21

8
; g21 =

i · b30 − b21
8

; g12 =
i · b30 + b21

8
; g03 =

i · b30 + 3b21
8

The nature of the stability of the limit cycle is determined by the sign of the
first Lapunov quantity. The limit cycle is stable if the first Lyapunov value is
negative, and unstable if the last value is positive. So it is necessary to determine
the type of stability of the limit cycle using the first Lyapunov quantity [11] and
[27], which has the form:

L1(µ) =
g21
2

+
g20g11

(
2λ+ λ̄

)
2 · |λ|2

+
|g11|2

λ
+

|g02|2

2
(
2λ− λ̄

) , (31)

where λ = µ
ω + i and λ̄ = µ

ω − i.

Let’s calculate the real part of the first Lyapunov quantity. Applying complex
arithmetic, after transformations we get:

l1 = ReL1(µ) =
γ2

ω3

(
S2
2 − S1S3

16
+

5S2
2

36

(
1− 1

ω2

)
µ

)
. (32)

If we assume that the value υ = S2
2 − S1S3 is small and changes in sign, then

the value l1 (µ, υ) is also small around zero. Accordingly, we have:

l1 (µ, υ) =
γ2

16ω3

(
υ +

20S2
2

9

(
1− 1

ω2

)
µ

)
. (33)

It follows from formulas (32) and (33) that the limit cycle is stable at l1 < 0
and unstable at l1 > 0. This conclusion suggests the existence of two cycles with
different types of stability at the same time. For this, to check this assumption,
it is necessary to find the second Lyapunov quantity l2 at µ = 0 and υ = 0.
According to works [28], [29], we will have:

l2 (0) =
−5(γS3)

2

576ω3
< 0. (34)
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The fact that we found a fixed value l2 (0) proves that there are two limit
cycles in this dynamic system.

After applying the polar coordinates z = ρ · eiφ to the differential equation
(30), we will make the transition from the normal Poincaré form to the canonical
form [17]: 

ρ′ = ρ
(µ
ω + l1(µ, υ) · ρ2 + l2(0) · ρ4

)
;

φ′ = 1. (35)

Equations in system (35) are independent. The second equation of the system
describes the rotational motion with unit speed (frequency). The trivial solution
of the first equation corresponds to the trivial equilibrium x1 = 0 and x2 = 0
( ρ = 0). The positive roots of the first equation must satisfy the equilibrium
condition:

µ

ω
+ l1(µ, υ) · ρ2 + l2(0) · ρ4 = 0 (36)

In this case, they determine the amplitude of limit cycles. Let’s rewrite (36)
in the form:

θ1 + θ2ρ
2 − ρ4 = 0, (37)

where θ1 =
576µω2

5(γS3)
2 and θ2 =

(
36υ+80S2

2

(
1− 1

ω2

)
µ
)

5S2
3

are small parameters.

Equation (37) may have one or two positive roots or none, corresponding to
the number of limit cycles. These solutions move away from the trivial solution
along the line H : θ1 = 0 and merge and vanish on the parabola G : θ22 +4θ1 = 0,
where θ2 > 0 . Figure 1 shows a bifurcation diagram on the plane of parameters
θ1 and θ2.

Figure 1: Bifurcation diagram of a double cycle on the plane of parameters θ1
and θ2.
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The line H : θ1 = 0 corresponds to the Hopf bifurcation. Along this line, the
equilibrium position is determined by the eigenvalues λ1,2 = ±i ( µ = 0; θ1 = 0).
The equilibrium is stable if θ1 < 0 and unstable if θ1 > 0. The first Lyapunov
quantity has the value l1 = θ2. If there is θ2 < 0, a stable limit cycle with a
”soft” mode of self-oscillation is observed on the line H−. If there is θ2 > 0, an
unstable limit cycle with ”hard” excitation of the periodic regime is observed on
the line H+. A stable limit cycle is born from equilibrium if the line H− crosses
from left to right. An unstable limit cycle occurs when the line H+ crosses in
the opposite direction. Both cycles merge and disappear on the line G. Lines
H and G divide the parameter plane into three regions. If you start from region
1, then the system has a resistant state of equilibrium and no cycles. Crossing
the line H− from region 1 to region 2 leads to the birth of a stable limit cycle.
When moving from region 2 to region 3, an unstable limit cycle appears inside a
stable one. Two cycles of opposite direction coexist in region 3, and merge and
disappear on the line G. These results of the bifurcation analysis are similar to
those, which were published for the double limit cycle in the work [26].

Of particular interest is the interpretation of a small parameter υ = S2
2 −S1S3

that is determined exclusively by the properties of the savings function S(Y ). The
construction of the parameter υ with accuracy up to a constant factor corresponds
to the so-called Schwartz derivative [15] of the savings function. When µ = 0 we
have the value of the Schwartz derivative υ < 0. This means stability of the limit
cycle. And when υ > 0, accordingly, the limit cycle is unstable. It should be
noted that υ is an exclusively static parameter [12] that depends exclusively on
the structure of the savings function S(Y ). When υ = 0 we have that S2

2 = S1S3.
Let’s return to the original ratios (16-18) that determine the derivatives of the

savings function. Accordingly, we get the ratio:

(c3Y
∗ − c2)

2 = c3

(
1− c1 − c2Y

∗ +
c3(Y

∗)2

2

)
. (38)

After transformations, the function looks like this:

(c3Y
∗ − c2)

2 = 2c3 (1− c1)− c22. (39)

Using relation (39), it is easy to determine the equilibrium value Y ∗:

Y ∗ =
c2 +

√
2c3(1− c1)− c22

c3
. (40)

Let’s consider the influence of the parameter c2 on the properties of the equi-
librium value Y ∗ and peculiarities of macroeconomic dynamics. The coefficient c2
performs the function of the shift parameter of the equilibrium value Y ∗ and no
more. Therefore, without violating generality, we will assume that c2 = 0. Then
from relation (40) we get:

Y ∗ =

√
2(1− c1)

c3
. (41)
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Using relation (39), it is possible to find the dependence of the constant level of
government spending G on the parameters c1 and c3 of the consumption function
C(Y ). From the equation

(1− c1)Y
∗ +

c3(Y
∗)3

6
= G, (42)

we find that

G =

√
8(1− c1)

3

9c3
. (43)

So, we see that the equilibrium value of the profit Y ∗ (41) and the value of the
function G (43), which defines the border between the regions of the bifurcation
diagram of a double cycle, on which the stable and unstable limit cycles merge and
disappear, depend only on the coefficients c1 and c3 of the third-degree polynomial,
with the help of which the consumption function C(Y ) was presented (2).

4 Further considerations

In the future, it is advisable to conduct a study of integral ratios between profit
and investment using the structure of kernels that differ from the exponent. In
this regard, it can be expected that the order of differential equations describing
the state of the macroeconomic system will increase to the third or more, which, in
turn, will create prerequisites for the appearance of dynamic chaos in the system
and will significantly affect the procedure for determining the forecasting horizon.

5 Conclusions

In this work, a study of the mathematical model of the dynamics of the macroe-
conomic system “multiplier-accelerator” was carried out. Unlike the models con-
sidered earlier, this model contains in the consumption function a single nonlin-
earity in the equation describing the mechanism of action of the multiplier, while
the structure of the accelerator is linear. The distributed delay was introduced
through the corresponding integral relations, with the help of which a mathe-
matical model of the dynamics of the macroeconomic system was obtained and
substantiated in the form of a system of two differential equations of the first
order. The analysis of the behavioral properties of the nonlinear dynamic system
under study made it possible to identify the conditions for the occurrence of the
self-oscillation mode. It is proved that these conditions depend on the critical
value of the accelerator power. The conducted studies showed the presence of a
two-fold limit cycle with corresponding ”soft” and ”hard” modes of birth (death)
of the limit cycle. A condition for separation of the oscillatory behavior of a
system with opposite types of stability is a change in the sign of the Schwartz
derivative of the savings function. For a two-fold limit cycle in the neighborhood
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of the equilibrium value of profit, parametric conditions are obtained that con-
nect the saving function, the amount of government expenditures, and directly
the value of profit at the equilibrium point.

Analyzing macroeconomic dynamics using the proposed mathematical model
makes it possible to identify the values of the parameters at which the system en-
ters a critical state. Taking into account the possible existence of self-oscillations
of different stability and determining the parameters of their appearance, when
making management decisions, it is possible to prevent the occurrence of bifurca-
tions and disasters in the process of the evolution of the macroeconomic system.
As a further development of the proposed model of nonlinear economic dynam-
ics, it is expedient to introduce another periodic component into consideration,
namely, to include it in the structure of public expenditures. In this case, we can
expect nonlinear resonance and chaotic profit behavior.
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